Особенности кругооборота воды и некоторых веществ в биосфере. Какую функцию в биосфере выполняет круговорот веществ Химия окруж круговорот воды в биосфере

Круговорот веществ в биосфере – это «путешествие» определённых химических элементов по пищевой цепи живых организмов, благодаря энергии Солнца. В процессе «путешествия» некоторые элемент, по разным причинам, выпадают и остаются как правила, в земле. Их место занимают такие же, которые, обычно, попадают из атмосферы. Это максимально упрощенное описание того, что является гарантией жизни на планете Земля. Если такое путешествие почему-то прервется, то и существование всего живого прекратится.

Чтобы описать кратко круговорот веществ в биосфере необходимо поставить несколько отправных точек. Во-первых, из более чем девяноста химических элементов, известных и встречающихся в природе, для живых организмов, необходимо около сорока. Во-вторых, количество этих веществ ограничено. В-третьих, речь идет только о биосфере, то есть о жизнь содержащей оболочке земли, а, значит, о взаимодействиях между живыми организмами. В-четвертых, энергией, которая способствует круговороту, является энергия, поступающая от Солнца. Энергия, рождающаяся в недрах Земли в результате различных реакций, в рассматриваемом процессе участия не принимает. И последнее. Необходимо опередить точку отсчета этого «путешествия». Она условна, так как не может быть конца и начала у круга, но это необходимо для того, чтобы с чего-то начать описывать процесс. Начнем с самого нижнего звена трофической цепи – с редуцентов или могильщиков.

Ракообразные, черви, личинки, микроорганизмы, бактерии и прочие могильщики, потребляя кислород и используя энергию, перерабатывают неорганические химические элементы в органическую субстанцию, пригодную для питания живыми организмами и дальнейшего ее движения по пищевой цепи. Далее эти, уже органические вещества, едят консументы или потребители, к которым относятся не только животные, птицы, рыбы и тому подобное, но и растения. Последние являются продуцентами или производителями. Они, используя эти питательные вещества и энергию, вырабатывают кислород, который является основным элементом, пригодным для дыхания всего живого на планете. Консументы, продуценты и, даже редуценты погибают. Их останки, вместе с органическими веществами, находящимися в них, «падают» в распоряжение могильщиков.

И все повторяется вновь. Например, весь кислород, существующий в биосфере, делает свой оборот за 2000 лет, а углекислый газ за 300. Такой кругооборот принято называть биогеохимическим циклом.

Некоторые органические вещества в процессе своего «путешествия» вступают в реакции и взаимодействия с другими веществами. В результате образуются смеси, которые в том виде, в каком они есть, не могут быть переработаны редуцентами. Такие смеси остаются «храниться» в земле. Не все органические вещества, попадающие на «стол» могильщиков, не могут ими переработаться. Не все могут перегнить при помощи бактерий. Такие неперегнившие остатки попадают на хранение. Все, что остается на хранении или в резерве, выбывает из процесса и в круговорот веществ в биосфере не входят.

Таким образом, в биосфере круговорот веществ, движущей силой которого является деятельность живых организмов, можно разделить на две составляющие. Одна – резервный фонд – это часть вещества, которая не связана с деятельностью живых организмов и до времени в обороте не участвует. И вторая – это оборотный фонд. Он представляет собой лишь небольшую часть вещества, которая активно используется живыми организмами.

Атомы каких основных химических элементов столь необходимы для жизни на Земле? Это: кислород, углерод, азот, фосфор и некоторые другие. Из соединений, основным в кругообороте, можно назвать воду.

Кислород

Круговорот кислорода в биосфере следует начать с процесса фотосинтеза, в результате которого миллиарды лет назад он и появился. Он выделяется растениями из молекул воды под воздействием солнечной энергии. Кислород образуется также в верхних слоях атмосферы в ходе химических реакций в парах воды, где химические соединения разлагаются под воздействие электромагнитного излучения. Но это незначительный источник кислорода. Основным является фотосинтез. Кислород содержится и в воде. Хотя его там, в 21 раз меньше, чем в атмосфере.

Образовавшийся кислород используется живыми организмами для дыхания. Он также является окислителем для различных минеральных солей.

И человек является потребителем кислорода. Но с началом научно-технической революции, это потребление многократно возросло, так как кислород сжигается или связывается при работе многочисленных промышленных производств, транспорта, для удовлетворения бытовых и иных нужд в ходе жизнедеятельности людей. Существовавший до этого так называемый обменный фонд кислорода в атмосфере в размере 5% общего его объема, то есть вырабатывалось в процессе фотосинтеза столько кислорода, сколько его потреблялось. То теперь этого объема становиться катастрофически мало. Происходит потребление кислорода, так сказать, из неприкосновенного запаса. Оттуда, куда его уже некому добавить.

Незначительно смягчает эту проблему, что некоторая часть органических отходов не перерабатывается и не попадает под воздействие гнилостных бактерий, а остается в осадочных породах, образуя торф, уголь и тому подобные ископаемые.

Если результатом фотосинтеза является кислород, то его сырьем – углерод.

Азот

Круговорот азота в биосфере связан с образованием таких важнейших органических соединений, как: белки, нуклеиновые кислоты, липопротеиды, АТФ, хлорофилл и другие. Азот, в молекулярной форме, содержится в атмосфере. Вместе с живыми организмами — это всего около 2% всего, имеющего на Земле азота. В таком виде он может употребляться только бактериями и сине-зелёными водорослями. Для остального растительного мира в молекулярной форме азот не может служить питанием, а может перерабатываться лишь в виде неорганических соединений. Некоторые виды таких соединений образуются во время гроз и с дождевыми осадками попадают в воду и почву.

Самыми активными «переработчиками» азота или азотофиксаторами являются клубеньковые бактерии. Они поселяются в клетках корней бобовых и преобразовывают молекулярный азот в его соединения, пригодные для растений. После их отмирания, азотом обогащается и почва.

Гнилостные бактерии расщепляют азотосодержащие органические соединения до аммиака. Часть его уходит в атмосферу, а другая иными видами бактерий окисляется до нитритов и нитратов. Те, в свою очередь, поступают в качестве питания для растений и нитрифицирующими бактериями восстанавливаются до оксидов и молекулярного азота. Которые вновь попадают в атмосферу.

Таким образом, видно, что основную роль в кругообороте азота, играют различные виды бактерий. И если уничтожить хотя бы 20 таких видов, то жизнь на планете прекратится.

И опять установленный кругооборот был разорван человеком. Он для целей увеличения урожайности сельскохозяйственных культур, стал активно применять азотосодержащие удобрения.

Углерод

Круговорот углерода в биосфере неразрывно связан с кругооборотом кислорода и азота.

В биосфере схема круговорота углерода базируется на жизнедеятельности зеленых растений и их способности к превращению углекислого газа в кислород, то есть фотосинтезе.

Углерод взаимодействует с другими элементами различными способами и входит в состав практически всех классов органических соединений. Например, он входит в состав углекислого газа, метана. Он растворен в воде, где его содержание значительно больше чем в атмосфере.

Хотя по распространённости углерод не входит в десятку, но в живых организмах он составляет от 18 до 45% сухой массы.

Мировой океан служит регулятором содержания углекислого газа. Как только его доля в воздухе повышается, вода выравнивает положения, поглощая углекислый газ. Еще одним потребителем углерода в океане являются морские организмы, которые используют его для строительства раковин.

Круговорот углерода в биосфере основывается на наличии в атмосфере и гидросфере углекислого газа, который является своеобразным обменным фондом. Пополняется он за счет дыхания живых организмов. Бактерии, грибы и другие микроорганизмы, принимающие участие в процессе разложения органических остатков в почве, также участвуют в пополнении углекислым газом атмосферы.Углерод «консервируется» в минерализованных неперегнивших органических остатках. В каменном и буром угле, торфе, горючих сланцах и тому подобных отложениях. Но основным резервным фондом углерода являются известняки и доломиты. Содержащийся в них углерод «надежно спрятан» в глубине планеты и высвобождается лишь при тектонических сдвигах и выбросах вулканических газов при извержениях.

Благодаря тому, что процесс дыхания с выделение углерода и процесс фотосинтеза с его поглощением проходит через живые организмы очень быстро, в кругообороте участвует лишь незначительная доля всего углерода планеты. Если бы этот процесс был невзаимным, то растения только суши использовали весь углерод всего в течение 4-5 лет.

В настоящее время, благодаря деятельности человека, растительный мир не имеет недостатка с углекислым газом. Он пополняется сразу и одновременно из двух источников. Путем сжигания кислорода при работе промышленности производств и транспорта, а также в связи с использованием для работы этих видов человеческой деятельности тех «консервов» — угля, торфа, сланцев и так далее. Отчего содержание углекислого газа в атмосфере возросло на 25%.

Фосфор

Круговорот фосфора в биосфере неразрывно связан с синтезом таких органических веществ, как: АТФ, ДНК, РНК и другие.

В почве и воде содержание фосфора очень мало. Основные его запасы в горных породах, образовавшихся в далеком прошлом. С выветриванием этих пород начинается кругооборот фосфора.

Растениями фосфор усваивается лишь в виде ионов ортофосфорной кислоты. В основном это продукт переработки могильщиками органических остатков. Но если почвы имеют повышенный щелочной или кислотный фактор, то фосфаты практически в них не растворяются.

Фосфор является прекрасным питательным веществом для различного вида бактерий. Особенно сине-зеленой водоросли, которая при увеличенном содержании фосфора бурно развивается.

Тем не менее большая часть фосфора уносится с речными и другими водами в океан. Там он активно поедается фитопланктоном, а с ним морским птицам и другим видам животных. Впоследствии фосфор попадает на океаническое дно и формирует осадочные породы. То есть возвращается в землю, лишь под слоем морской воды.

Как видно кругооборот фосфора специфичен. Его трудно и назвать кругооборотом, так как он не замкнут.

Сера

В биосфере круговорот серы необходим для образования аминокислот. Он создает трехмерную структуру белков. В нем участвуют бактерии и организмы, потребляющие кислород для синтеза энергии. Они окисляют серу до сульфатов, а одноклеточные доядерные живые организмы, восстанавливают сульфаты до сероводорода. Кроме них, целые группы серобактерий, окисляют сероводород до серы и далее до сульфатов. Растения могут потреблять из почвы лишь ион серы — SO 2- 4. Таким образом, одни микроорганизмы являются окислителями, а другие восстановителями.

Местами накопления серы и ее производных в биосфере является океан и атмосфера. В атмосферу сера поступает с выделением сероводорода из воды. Кроме того, сера попадает в атмосферу в виде диоксида при сжигании на производствах и в бытовых нуждах горючего ископаемого топлива. В первую очередь угля. Там она окисляется и, превращаясь в серную кислоту в дождевой воде, с ней же выпадает на землю. Кислотные дожди сами по себе наносят существенный вред всему растительному и животному миру, а кроме этого, с ливневыми и талыми водами, попадают в реки. Реки несут ионы сульфатов серы в океан.

Содержится сера также в горных породах в виде сульфидов, в газообразном виде — сероводород и сернистый газ. На дне морей имеются залежи самородной серы. Но это все «резерв».

Вода

В биосфере нет более распространенного вещества. Его запасы в основном в солено-горьком виде вод морей и океанов – это около 97%. Остальное пресные воды, ледники и подземные и грунтовые воды.

Круговорот воды в биосфере условно начинается с ее испарения с поверхности водоемов и листьев растений и составляет примерно 500 000 куб. км. Обратно она возвращается в виде осадков, которые попадают либо непосредственно обратно в водоемы, либо, пройдя через почву и подземные воды.

Роль воды в биосфере и истории ее эволюции такова, что вся жизнь с момента своего появления, была полностью зависима от воды. В биосфере вода многократно через живые организмы прошла циклы разложения и рождения.

Кругооборот воды имеет под собой в большей степени физический процесс. Однако, животный и, особенно, растительный мир принимает в этом немаловажное участие. Испарения воды с поверхностных участков листьев деревьев таков, что, например, гектар леса испаряет в сутки до 50 тонн воды.

Если испарение воды с поверхностей водоемов естественно для ее кругооборота, то для континентов с их лесными зонами, такой процесс – единственный и главный способ его сохранения. Здесь кругооборот идет как бы в замкнутом цикле. Осадки образуются из испарений с поверхностей почвы и растений.

В процессе фотосинтеза растения используют водород, содержащийся в молекуле воды, для создания нового органического соединения и выделения кислорода. И, наоборот, в процессе дыхания, живые организмы, происходит процесс окисления и вода образуется снова.

Описывая кругооборот различный видов химических веществ, мы сталкиваемся с более активным влиянием человека на эти процессы. В настоящее время природа, за счет многомиллиардной истории своего выживания, справляется с регулированием и восстановлением нарушенных балансов. Но первые симптомы «болезни» уже есть. И это «парниковый эффект». Когда две энергии: солнечная и отраженная Землей, не защищают живые организмы, а, наоборот, усиливают одна другую. В результате чего повышается температура окружающей среды. Какие последствия такого повышения могут быть, кроме ускоренного таяния ледников, испарения воды с поверхностей океана, суши и растений?

Видео — Круговорот веществ в биосфере

Биогеохимические круговороты. В.И. Вернадский писал: «Живое вещество охватывает и перестраивает все химические процессы биосферы, действенная его энергия огромна. Живое вещество есть самая мощная геологическая сила, растущая сходом времени» . Данное высказывание является постулатом о важнейшей роли живых организмов в формировании и поддержании основных физико-химических свойств оболочек Земли. В концепции биосферы выявляется целостность функциональной системы в пространстве, занятой жизнью, где реализуется единство геологических и биологических сил на нашей планете. Основные свойства жизни реализуются за счет высокой химической активности живых организмов, их подвижности и способности к самопроизведению и эволюции. В поддержании жизни как планетарного явления важнейшее значение имеет биоразнообразие, множество форм жизни, которые отличаются набором потребляемых веществ и выделяемых в среду продуктов жизнедеятельности. Биоразнообразие - основа устойчивого (самоподдержи-вающего) функционирования биосферы, которая создает биогеохимические циклы вещества, превращение энергии и использование информации.

Круговорот биогенов. Из почти 100 химических элементов, которые встречаются в природной среде, почти 40 необходимы для функционирования живых организмов. Из этих химических элементов N (азот), С (углерод), Н (водород), О (кислород), Р (фосфор), Б (сера) (в том числе и в катионной форме) относятся к главным биогенам, которые требуются в значимых объемах. Химические элементы циркулируют в биосфере по различным путям биологического круговорота: поглощаются живым веществом, «заряжаются» энергией, затем покидают живое вещество, отдавая накопленную энергию во внешнюю среду (табл. 19).

Биогеохимические циклы с круговоротными принципами функционирования в геосферах Земли подразделяются на два основных типа: 1) круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере (океан) и 2) осадочный цикл с резервным фондом в земной коре.

Процессы круговорота происходят в конкретных экосистемах, но в полном виде биогеохимические циклы реализуются лишь на уровне биосферы в целом.

Круговорот углерода. Углерод является одним из самых, наверное, часто упоминаемых химических элементов при рассмотрении геологических, биологических, а в последние годы и технических проблем. Углерод (С) встречается на нашей планете в чрезвычайно

разнообразных соединениях, начиная с нахождения в виде чистого углерода (графит, уголь и т. д.), вплоть до высокомолекулярных органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента, - диоксид углерода (углекислый газ С0 2). Диоксид углерода является одним из главных составляющих компонентов атмосферы, а также находится в гидросфере в растворенном состоянии. При описании фотосинтеза был рассмотрен процесс перехода углерода из состава диоксида углерода в сахара (глюкозу и др.). Следующие за этим другие разнообразные реакции синтеза в биологических системах образовавшиеся углеводы трансформируют в более сложные высокомолекулярные органические соединения: липиды, крахмал, гликоген и др. Постепенно происходит формирование тканей и их рост за счет вновь образованных соединений. Одновременно эти вещества являются источником органических соединений для других живых организмов. В последующих жизненных процессах за счет кислорода, поступающего при дыхании, происходит окисление органических соединений, представляющее в данном случае ряд последовательных реакций, в результате чего образуется диоксид углерода, который выводится за пределы организма и поступает либо в атмосферу, либо растворяется в воде (рис. 97).

После завершения жизненного цикла - гибели (смерти) организма его ткани подвергаются биологическому разложению под воздействием редуцентов, что также приводит к поступлению диоксида углерода в атмосферу. Этот процесс приурочен к почвенным горизонтам и определяет сущность почвенного дыхания.

Другим процессом, движущим углерод, является образование гумуса с помощью сапрофагов и последующую минерализацию вещества под действием грибов и бактерий. Это весьма медленный процесс, скорость которого обусловлена количеством кислорода, химическим составом почвы, се температурой. При недостатке кислорода и высокой кислотности происходит накопление углерода в торфе. Аналогичные процессы в отдаленные геологические эпохи сформировали залежи угля и нефти, что останавливало процесс круговорота углерода.

Если все процессы жизнедеятельности протекают в гидросфере, то происходит аналогичная приостановка в результате связывания углерода в кальците (СаСО,), входящим в состав коралловых, фузули-новых, ракушечных известняков, писчего мела.и др. Это самая глубокая консервация углерода, освобождение которого возможно лишь при регрессии моря и дальнейшем выщелачивании карбонатных пород за счет атмосферных осадков или при биологическом выветривании под действием лишайников, корней растений и микроорганизмов.

Химические элементы, содержащиеся в живых организмах, и их присутствие в окружающей среде (Б. Небел, 1993)

Биологически важные молекулы или ионы, содержащие данный элемент

Присутствие в окружающей среде

Название

Горные породы и почвы

Диоксид углерода (углекислый газ)

Кислород (для дыхания)

Газообразный

кислород

Кислород (выделяемый при фотосинтезе)

Газообразный азот

аммоний-ион

нитрат-ион

Сульфат-ион

Фосфат-ион

Ион калия

Ион кальция

Ион магния

Микроэлементы:

Ионы железа

Марганец

Ион марганца

Ион цинка

Молибден

Ион молибдена

Ион хлора

Примечание. Перечисленные элементы входят восстав всех живых организмов-растений, животных, микробов. Некоторым видам нужны и другие элементы (например, человеку нужен ешс натрий и йод).

Восполнение ресурсов СОг в процессе л ^ деятельности человека

Равновесие атмосфера -вода

Известняк

Рис. 97. Круговорот углерода в биосфере

Известковые | П _ 07 и (коралловые) Р ‘ рифы х м

Круговорот фосфора. Фосфор один из достаточно широко распространенных химических элементов, входящих в состав различных, в том числе и породообразующих минералов, формирующих ряд горных пород. В процессе выветривания этих пород в значительных количествах фосфор поступает в биогеоценозы, а также за счет выщелачивания атмосферными осадками и в конечном счете накапливается в гидросфере. Во всех случаях фосфор оказывается в пищевых системах, но его подготовка не является простой. Фосфор же необходим организмам для построения генов и молекул соединений, переносящих энергию внутри клеток (рис. 98).

В минералах фосфор содержится в форме неорганического фосфата-иона (РО4 3). Фосфаты обладают растворимостью, но не образуют газообразных форм, т. е. нелетучи. Растения способны к поглощению фосфата из водного раствора для включения их в состав различных органических соединений. В растениях фосфор выступает уже в форме так называемого органического фосфата. В этой форме он уже способен к движению по пищевым цепям и к его передаче ор-

Рис 98.

ганизмам экосистем. При каждом переходе от одного трофического уровня к другому достаточное количество фосфоросодержащего соединения для получения организмом энергии подвергается окислению при клеточном дыхании. В этом случае фосфор может оказаться только в составе мочи или ее аналогов и быть выведенным за пределы организма в окружающую среду, где собственно может начать дальнейший цикл через поглощение растениями.

Необходимо остановиться более подробно на различиях в круговоротах фосфора и углерода. Углерод в виде диоксида углерода поступает в виде газа в атмосферу, где свободно распространяется повсеместно воздушными потоками вплоть до нового усвоения растениями. Фосфор же не образует аналогичной газовой формы, и свободного возврата его в экосистему нет. Жидкие же соединения фосфора поступают в водоемы, где они активно насыщают (вплоть до перенасыщения) водные экосистемы. Из водоема фосфор не может возвратиться на сушу, за исключением небольшого количества в виде помета рыбоядных птиц, который откладывается на побережье, на-

пример залежи гуано на побережье Перу, фосфаты откладываются на дне водоемов. Возвращаются на сушу фосфоросодержащие горные породы вместе с процессами регрессии моря и при орогенезе.

Как считает Б. Небел, фосфат и аналогичные минеральные биогены, находящиеся в почве, циркулируют в экосистеме лишь в том случае, если содержащие их «отходы» жизнедеятельности откладываются в местах поглощения данного элемента. Это характерно для всех естественных экосистем (Б. Небел, 1993).

Круговорот кислорода. Биохимический цикл - планетарный процесс, который является объединяющим элементом для атмосферы, гидросферы и литосферы. В атмосфере преобладающей формой кислорода является молекула О г, но, как отмечали уже, имеется еще О,-озон и О-атомарный кислород. Кислород в свободной форме является как продуктом жизнедеятельности, так и элементом, поддерживающим жизнь. В.И. Вернадский писал: «Жизнь, создающая в земной коре свободный кислород, тем самым создает озон и предохраняет биосферу от губительных коротких излучений небесных светил» . На рис. 99 показан круговорот кислорода в биосфере, из которого видно, что он представляет собой сумму весьма сложных процессов, так как кислород входит в состав многих различных органических и-неорганических соединений. Однако главным является обмен между атмосферой и живыми организмами. Процесс фотосин-


Озоновый

экран

Рис. 99. Круговорот кислорода в биосфере (П. Клауд, А. Джибор, 1972)

Фитопланктон Лк "в освещенной зоне Г Г

НгО+СРгНгСОгНСХ^^Н -2НС0 3 -Н 2 0+С0^

теза продуцирует кислород, а процессы разложения его связывают. Незначительное количество кислорода образуется в процессе диссоциации молекул воды и озона в верхних слоях атмосферы под воздействием ультрафиолетовой радиации. Значительная часть кислорода расходуется на окислительные процессы в земной коре, при вулканических извержениях и т. п.

Круговорот азота. Движение азота представляет собой достаточно сложный и отличительный от круговорота других биогенов процесс, так как включает в себя газообразную и минеральную фазу. Атмосфера содержит 78 % азота (Ы 2). При всей огромной значимости азота для жизнедеятельности живых организмов они не могут непосредственно потреблять этот газ из атмосферы. Растения усваивают ионы аммония (ЫН^) или нитрата (N0^). Для того чтобы азот преобразовался в эти формы, необходимо участие некоторых бактерий или синезеленых водорослей (цианобактерий). Процесс превращения газообразного азота (Ы,) в аммонийную форму носит название азотфиксации. Важнейшую роль среди азотфиксирующих микроорганизмов играют бактерии из рода ЮйгоЫит, которые образуют симбиотические связи с бобовыми растениями. Среди последних наибольшее значение имеют клевер и люцерна. Азотфиксирующие бактерии, создавая форму азота, которая усваивается растениями, за счет симбиотического взаимодействия,позволяют накапливаться азоту в наземных и подземных частях растений; к примеру за год на одном гектаре клевера или люцерны накапливается от 150 до 400 кг азота. Сами азотфиксирующие микроорганизмы, среди которых есть виды, синтезирующие

.Атмосферный азот

Белок

Изверженные

породы

Биологи - РастительВосстановление Денитри-

ческа я ные и живот нитратов фикация

Фиксация «ь/е отходы,

)мертвые организмы

імиак

іитри^ьі

В подземные воды

Оксид азота (!)

Нитраты

Рис. 100. Круговорот азота в биосфере

сложные протеины, отмирая, обогащают почву органическим азотом. При этом за год в почву поступает около 25 кг азота на 1 га (И.А. Шилов, 2000) (рис. 100).

В природе есть также микроорганизмы, которые обладают симбиотическими связями не только с бобовыми, но и с другими растениями. В водной среде и на переувлажненных почвах азотфиксаиию осуществляют синезеленые водоросли (способные одновременно и к фотосинтезу). В любом из описан ных случаев азот потребляется либо в виде нитратов, либо в аммонийной форме.

Азот после потребления его растениями участвует в синтезе протеинов, которые, сосредоточиваясь в листьях растений, затем обеспечивают азотное питание фитофагов. Мертвые организмы и отходы жизнедеятельности (экскременты) являются средой обитания и служат пищей для сапрофагов, которые, как мы уже отмечали выше, постепенно разлагают органические азотосодержащие соединения до неорганических. По Й.А. Шилову (2000), конечным звеном в этой цепи оказываются аммонифицирующие организмы, образующие аммиак (N14,), который, кстати, может быть вовлечен в цикл нитрификации. Шггозотопаь окисляют аммиак в нитриты, а №{гоЬас(ег окисляют нитриты в нитраты и таким образом круговорот азота может быть продолжен. Параллельно с описанными процессами происходит постоянное возвращение азота в атмосферу за счет деятельности бактерий-денитрификатов, способных разлагать нитраты и в азот (N2). Эти бактерии, как правило, имеют широкое распространение в плодородных почвах там, где много азота и углерода. Эти бактерии за годе I га поверхности почвы выделяют в атмосферу до 50-60 кг азота (рис. 101).

Кроме указанных процессов азот-фиксации в природной среде возможно образование оксидов азота при электрических грозовых разрядах. Эти оксиды затем в виде селитры или азотной кислоты при смешивании с атмосферными осадками попадают в почву (при разрядах молний фиксируется от 4 до 10 кг азота на 1 га). Имеет место и фотохимическая фиксация азота.

Рис. 101. * Клубеньки» на корнях бобовых растений (Б. Небел, 1992)


Атмо

сфера

Почва и * осадки

Сульфиды железа

Рис. 102. Круговорот серы в биосфере

Возможно выключение азота из круговоротных процессов путем аккумуляции его соединений в глубоководных океанических осадках, что компенсируется, правда, частичным выделением азота (N2) при вулканических извержениях.

Круговорот серы. Это один из главных биогенов, который попадает в почвенные горизонты в результате естественного разложения отдельных горных пород, содержащих такие минералы, как пирит - серный колчедан (Ре8 2), медный колчедан (СиРе8 3) и при разложении органических веществ, преимущественно растительного происхождения. Из почвы по корневым системам сера поступает в растения, где синтезируются серосодержащие аминокислоты - цистин, цистеин, метионин. Для процессов жизнедеятельности сера необходима животным в значительных количествах, попадает она к ним с пищей (рис. 102).

Из органических соединений сера поступает в почву при разложении преимущественно растительных остатков микроорганизмами. Сера органического происхождения восстанавливается в сероводород (Н 2 3), минеральную серу или окисляется в сульфаты, которые вновь могут быть поглощены корнями растений, т. е. вновь поступает в биологический круговорот.

Круговорот воды. В данном случае речь идет не об отдельном биогене, а о соединении двух важнейших биогенов водорода (Н) и кислорода (О), т. е. воды, значимость которой для жизни на Земле абсолютна. Круговорот воды представляет собой процесс непрерывного, взаимосвязанного перемещения воды в глобальных масштабах. Круговорот воды осуществляется под влиянием солнечной энергии,


гравитации, жизнедеятельности организмов. В целом для планеты главным источником прихода воды служат атмосферные осадки, а расхода - испарение, которые сбалансированно составляют 525 тыс. км! или 1030 мм в год.

На рис. 103 показан круговорот воды, в котором можно выделить так называемые малый и большой. При малом круговороте вода, испарившаяся с поверхности океана, вновь возвращается в него в виде атмосферных осадков. При большом круговороте часть испарившейся с водной поверхности влаги выпадает не только на океан, но и на сушу, где питает реки и другие водоемы, но в конечном счете с подземным или поверхностным стоком возвращается в океан.

Выше были рассмотрены аспекты водного баланса гидросферы. Необходимо отметить, что наибольшей активностью в водообмене обладают речные воды (обновляются каждые 11 дней) против, например, вод полярных ледников (обмен совершается за 8000 лет). Речная вода в естественных условиях практически всегда пресная и служит для потребления многими живыми организмами. По мнению многих ученых, круговорот воды представляет собой глобальный гигантский опреснитель воды.

Значимую роль в процессе круговорота воды играет эвапотранс-пирация, которая представляет собой количество влаги, переходящее в атмосферу в результате транспирации зеленых растений и испарения с поверхности почвы, т. е. суммарное испарение (принято измерять его в мг/(дм 5 ч).). Транспирацией именуют испарение воды зелеными частями растений, причем она испаряется со всей наружной и всех внутренних поверхностей растений, соприкасающихся с

воздухом. Общая транспирация зависит от многих экологических факторов (освещенность, сухость воздуха, ветер, рельеф и др.). Наибольшей транспирацией характеризуются болотные и плавающие растения (рогоз, частуха, рдест - до 4000 мг/(дм 2 -ч)). Из наземных растений сильнее всего транспирируют травянистые растения солнечных местообитаний - до 2500 мг/(дм 2 - ч); кустарники в тундре дают всего 150 мг/(дм 2 -ч), а тропические деревья в лесах области туманов лишь до 120 мг/(дм 2 -ч). У вечнозеленых хвойных пород игольчатая хвоя в передней части устьичного аппарата имеет высокую пробку, которая служит дополнительным препятствием для транспирации. У пустынных растений транспирация служит единственным способом защиты организма от летальных последствий воздействий высоких температур.

Проведенные специалистами ФРГ количественные оценки роли эвапотранспирации в круговороте воды показали следующее: при средней годовой норме осадков 771 мм в море с подземным и поверхностным стоком поступает менее их половины - 367 мм, а оставшиеся 404 мм эвапотранспирируются. Шведские ученые установили, что 1 га елового леса за один год транспирирует при сухой почве до 2100 м 1 воды. Величина эвапотранспирации для растительных формаций средней Европы составляет до 7000 т на 1 га в год. Отдельные виды древесных пород с успехом могут использоваться для осушения болот. Классическим примером может служить осушение Колхидских болот в Грузии посадками эвкалиптов (25, 42].

Круговорот биогенных катионов. В процессах обмена веществ живых организмов необходимо участие различных катионов. Некоторые из них содержатся в довольно значительных количествах и поэтому их относят к категории микроэлементов - это натрий (Ыа), калий (К), кальций (Са), магний (^). Другие содержатся в малых количествах (миллионные доли сухого вещества), но также обязательны для устойчивого функционирования живых организмов. Это микроэлементы в виде катионов железа (Ре), цинка {Ъп), меди (Си), марганца (Мп) и некоторые другие.

Основным источником биогенных катионов на суше является почва, куда они попадают при процессах выветривания горных пород. Из почвы с помощью корневой системы растений катионы попадают сначала в ткани растений, а затем поглощаются травоядными и т. д. Ряд животных способен частично получать биогенные катионы непосредственно из почвы - процесс солонцевания. Минерализация экскрементов и остатков живых организмов позволяет макро- и микроэлементам возвратиться в почву, что вновь делает их доступными для включения в повторный биогенный круговорот.

Такой довольно простой цикл нарушается выносом биогенных элементов в реки и оттуда в моря и океаны. Выщелачивание дождевыми водами приводит к деградации коллоидального абсорбирующего комплекса и к ослаблению корневых систем растений. Особенно заметно этот процесс проявляется во влажном климате; в умеренной зоне это приводит к оподзоливанию почв.

Биогеохимические процессы у различных организмов. Входящие в биогеохимические циклы различные биологические соединения и неорганические элементы вовлекаются в весьма разнообразные, многоступенчатые процессы: органический синтез, многократная трансформация органических веществ при метаболизме и разложении их до минеральных составляющих при редуцировании. Отдельные элементы круговоротных процессов главных биогенов, рассмотренные выше, составляют биологический круговорот веществ. Основные трофические уровни, которые образуют базу этого круговорота, представлены конкретными видами продуцентов, кон-сументов, редуцентов и естественно, что они существенно различаются между собой по типу метаболизма, а это значит и по конкретной функции, выполняемой на данном трофическом уровне.

Автотрофы и гетеротрофы представляют собой главное подразделение живых организмов по пищевому признаку; автотрофы относятся к продуцентам, а гетеротрофы соответственно к консументам и редуцентам.

Автотрофы, используя солнечную энергию (фотосинтетики) или энергию химических связей (хемосинтетики) из диоксида углерода, воды и необходимых минеральных компонентов, синтезируют основные классы органических веществ: углеводы, жиры (липиды), белки, нуклеиновые кислоты и т. п. Каждое из этих веществ имеет свое значение для жизнедеятельности организмов.

Углеводы. Принципиальная формула этих соединений углерода, водорода и кислорода - С т (Н,0)„. В класс углеводов входят сахара: моносахариды - С 6 Н }

Loading...Loading...