อนุพันธ์จะเท่ากับศูนย์เมื่อ อนุพันธ์ของฟังก์ชัน ความหมายทางเรขาคณิตของอนุพันธ์

ระดับแรก

อนุพันธ์ของฟังก์ชัน สุดยอดคู่มือ (2019)

ลองจินตนาการถึงถนนเส้นตรงที่ผ่านบริเวณเนินเขา นั่นคือขึ้นลงแต่ไม่เลี้ยวขวาหรือซ้าย หากแกนถูกชี้ในแนวนอนไปตามถนนและแนวตั้ง เส้นถนนจะคล้ายกับกราฟของฟังก์ชันต่อเนื่องบางอย่างมาก:

แกนเป็นระดับความสูงเป็นศูนย์ในระดับหนึ่งในชีวิตเราใช้ระดับน้ำทะเลเป็นมัน

เมื่อเราก้าวไปข้างหน้าตามถนนเช่นนั้น เราก็จะเคลื่อนขึ้นหรือลงด้วย นอกจากนี้เรายังสามารถพูดได้ว่า: เมื่ออาร์กิวเมนต์เปลี่ยนไป (การเคลื่อนที่ไปตามแกน Abscissa) ค่าของฟังก์ชันจะเปลี่ยนไป (การเคลื่อนที่ไปตามแกนกำหนด) ทีนี้ลองคิดดูว่าจะกำหนด "ความชัน" ของถนนของเราได้อย่างไร? สิ่งนี้จะเป็นค่าอะไร? ง่ายมาก: ความสูงจะเปลี่ยนไปเท่าใดเมื่อเคลื่อนที่ไปข้างหน้าในระยะทางหนึ่ง แท้จริงแล้ว ในส่วนต่างๆ ของถนน เมื่อเคลื่อนไปข้างหน้า (ตามแกน x) ไปอีกหนึ่งกิโลเมตร เราจะขึ้นหรือลงตามจำนวนเมตรที่ต่างกันเมื่อเทียบกับระดับน้ำทะเล (ตามแกน y)

เรามาแสดงถึงความก้าวหน้ากันเถอะ (อ่านว่า “เดลต้า x”)

ตัวอักษรกรีก (เดลต้า) มักใช้ในทางคณิตศาสตร์เป็นคำนำหน้าหมายถึง "การเปลี่ยนแปลง" นั่นคือ - นี่คือการเปลี่ยนแปลงปริมาณ - การเปลี่ยนแปลง; แล้วมันคืออะไร? ถูกต้องการเปลี่ยนแปลงขนาด

สิ่งสำคัญ: นิพจน์คือข้อมูลทั้งหมดเพียงตัวแปรเดียว อย่าแยก “เดลต้า” ออกจาก “x” หรือตัวอักษรอื่นใด! กล่าวคือ ตัวอย่างเช่น .

เราก็เลยเคลื่อนไปข้างหน้าในแนวนอนโดย ถ้าเราเปรียบเทียบเส้นถนนกับกราฟของฟังก์ชัน แล้วเราจะระบุการเพิ่มขึ้นได้อย่างไร? แน่นอน, . นั่นคือเมื่อเราก้าวไปข้างหน้า เราก็สูงขึ้น

ค่านั้นง่ายต่อการคำนวณ: ถ้าในตอนแรกเราอยู่ที่ความสูงและหลังจากเคลื่อนที่แล้วเราก็พบว่าตัวเองอยู่ในที่สูงแล้ว หากจุดสิ้นสุดต่ำกว่าจุดเริ่มต้น จุดนั้นจะติดลบ ซึ่งหมายความว่าเราไม่ได้กำลังขึ้น แต่กำลังลง

กลับไปที่ "ความชัน": นี่คือค่าที่แสดงความสูงที่เพิ่มขึ้น (สูงชัน) เมื่อเคลื่อนที่ไปข้างหน้าหนึ่งหน่วยระยะทาง:

สมมติว่าส่วนหนึ่งของถนนเมื่อเคลื่อนไปข้างหน้าหนึ่งกิโลเมตร ถนนจะสูงขึ้นหนึ่งกิโลเมตร แล้วความชันตรงนี้จะเท่ากัน และถ้าถนนในขณะที่เคลื่อนไปข้างหน้าเมตรลดลงกิโลเมตร? แล้วความชันจะเท่ากัน

ทีนี้มาดูบนยอดเขากันดีกว่า หากคุณใช้จุดเริ่มต้นของส่วนนี้ครึ่งกิโลเมตรก่อนถึงยอดเขา และส่วนท้ายอีกครึ่งกิโลเมตรหลังจากนั้น คุณจะเห็นว่าความสูงเกือบจะเท่ากัน

นั่นคือตามตรรกะของเรา ปรากฎว่าความชันตรงนี้เกือบเท่ากับศูนย์ ซึ่งไม่เป็นความจริงอย่างชัดเจน แค่ระยะทางกว่ากิโลเมตร อะไรๆ ก็เปลี่ยนแปลงได้มากมาย จำเป็นต้องพิจารณาพื้นที่ขนาดเล็กเพื่อการประเมินความชันที่เพียงพอและแม่นยำยิ่งขึ้น ตัวอย่างเช่น หากคุณวัดการเปลี่ยนแปลงของความสูงเมื่อคุณเคลื่อนที่ไปหนึ่งเมตร ผลลัพธ์ก็จะแม่นยำมากขึ้น แต่ความแม่นยำนี้ก็ยังไม่เพียงพอสำหรับเรา เพราะหากมีเสาอยู่กลางถนนเราก็ผ่านไปได้ แล้วเราควรเลือกระยะไหน? เซนติเมตร? มิลลิเมตร? น้อยดีกว่า!

ในชีวิตจริง การวัดระยะทางไปยังมิลลิเมตรที่ใกล้ที่สุดก็เกินพอแล้ว แต่นักคณิตศาสตร์มักมุ่งมั่นเพื่อความสมบูรณ์แบบอยู่เสมอ จึงได้คิดค้นแนวคิดขึ้นมา ไม่มีที่สิ้นสุดนั่นคือค่าสัมบูรณ์น้อยกว่าตัวเลขใดๆ ที่เราตั้งชื่อได้ ตัวอย่างเช่น คุณพูดว่า: หนึ่งล้านล้าน! มากน้อยแค่ไหน? แล้วคุณหารตัวเลขนี้ด้วย - แล้วมันจะยิ่งน้อยลงไปอีก และอื่นๆ หากเราต้องการเขียนว่าปริมาณเป็นจำนวนไม่สิ้นสุด เราจะเขียนดังนี้ (เราอ่านว่า “x มีแนวโน้มเป็นศูนย์”) มันสำคัญมากที่จะต้องเข้าใจ ว่าเลขนี้ไม่ใช่ศูนย์!แต่อยู่ใกล้มาก ซึ่งหมายความว่าคุณสามารถหารด้วยมันได้.

แนวคิดที่ตรงข้ามกับ infinitesimal นั้นมีขนาดใหญ่เป็นอนันต์ () คุณอาจเคยเจอมันมาก่อนเมื่อคุณกำลังศึกษาเรื่องอสมการ: จำนวนนี้เป็นแบบโมดูโลมากกว่าจำนวนใดๆ ที่คุณคิดได้ หากคุณหาจำนวนมากที่สุดเท่าที่จะเป็นไปได้ ให้คูณด้วย 2 แล้วคุณจะได้จำนวนที่มากขึ้นอีก และอนันต์นั้นยิ่งใหญ่กว่าสิ่งที่เกิดขึ้นด้วยซ้ำ อันที่จริง ใหญ่เป็นอนันต์และเล็กเป็นอนันต์เป็นสิ่งที่ตรงกันข้ามกัน นั่นคือ at และในทางกลับกัน: at

ตอนนี้เรากลับมาที่ถนนของเรากันดีกว่า ความชันที่คำนวณได้อย่างเหมาะสมคือความชันที่คำนวณสำหรับส่วนที่เล็กที่สุดของเส้นทาง นั่นคือ:

ฉันสังเกตว่าด้วยการกระจัดที่น้อยที่สุด การเปลี่ยนแปลงความสูงก็จะไม่มีขอบเขตเช่นกัน แต่ขอเตือนคุณว่าค่าน้อยที่สุดไม่ได้หมายความว่าเท่ากับศูนย์ หากคุณหารจำนวนที่น้อยที่สุดด้วยกัน คุณจะได้จำนวนสามัญที่สมบูรณ์ เช่น นั่นคือค่าเล็กๆ ค่าหนึ่งสามารถมีขนาดใหญ่กว่าค่าอื่นได้อย่างแน่นอน

ทั้งหมดนี้เพื่ออะไร? ถนน ความชัน... เราไม่ได้ไปแรลลี่รถยนต์ แต่เราสอนคณิตศาสตร์ และในทางคณิตศาสตร์ทุกอย่างเหมือนกันทุกประการ ต่างกันแค่เรียกต่างกันเท่านั้น

แนวคิดเรื่องอนุพันธ์

อนุพันธ์ของฟังก์ชันคืออัตราส่วนของการเพิ่มขึ้นของฟังก์ชันต่อการเพิ่มขึ้นของอาร์กิวเมนต์สำหรับการเพิ่มอาร์กิวเมนต์เพียงเล็กน้อย

ทีละน้อยในทางคณิตศาสตร์พวกเขาเรียกว่าการเปลี่ยนแปลง ขอบเขตที่อาร์กิวเมนต์ () เปลี่ยนแปลงเมื่อเคลื่อนที่ไปตามแกนเรียกว่า อาร์กิวเมนต์เพิ่มขึ้นและถูกกำหนดไว้ เรียกว่าฟังก์ชัน (ความสูง) เปลี่ยนแปลงไปเท่าใดเมื่อเคลื่อนที่ไปข้างหน้าตามแกนตามระยะทาง เพิ่มฟังก์ชันและถูกกำหนดไว้

ดังนั้นอนุพันธ์ของฟังก์ชันคืออัตราส่วนต่อเมื่อ เราแสดงอนุพันธ์ด้วยตัวอักษรเดียวกันกับฟังก์ชัน โดยจะมีเฉพาะจำนวนเฉพาะที่มุมขวาบนเท่านั้น: หรือเพียงแค่ ลองเขียนสูตรอนุพันธ์โดยใช้สัญลักษณ์เหล่านี้:

เหมือนกับการเปรียบเทียบกับถนน เมื่อฟังก์ชันเพิ่มขึ้น อนุพันธ์จะเป็นค่าบวก และเมื่อมันลดลง จะเป็นค่าลบ

อนุพันธ์สามารถเท่ากับศูนย์ได้หรือไม่? แน่นอน. เช่น ถ้าเราขับรถบนถนนแนวราบ ความชันจะเป็นศูนย์ และมันเป็นเรื่องจริงที่ความสูงไม่เปลี่ยนแปลงเลย ดังนั้นจึงเป็นไปตามอนุพันธ์: อนุพันธ์ของฟังก์ชันคงที่ (ค่าคงที่) เท่ากับศูนย์:

เนื่องจากการเพิ่มขึ้นของฟังก์ชันดังกล่าวจะเท่ากับศูนย์สำหรับค่าใดๆ

ลองจำตัวอย่างยอดเขากัน ปรากฎว่าเป็นไปได้ที่จะจัดเรียงส่วนปลายของส่วนในด้านตรงข้ามของจุดยอดในลักษณะที่ความสูงที่ส่วนปลายจะเท่ากันนั่นคือส่วนนั้นขนานกับแกน:

แต่ส่วนขนาดใหญ่เป็นสัญญาณของการวัดที่ไม่ถูกต้อง เราจะยกส่วนของเราขึ้นขนานกับตัวมันเอง จากนั้นความยาวของมันจะลดลง

ในที่สุด เมื่อเราเข้าใกล้ด้านบนสุดอย่างไม่สิ้นสุด ความยาวของส่วนนั้นก็จะสั้นลง แต่ในขณะเดียวกันก็ยังคงขนานกับแกนนั่นคือความแตกต่างของความสูงที่ปลายเท่ากับศูนย์ (ไม่ได้มีแนวโน้ม แต่เท่ากับ) ดังนั้นอนุพันธ์

สิ่งนี้สามารถเข้าใจได้ด้วยวิธีนี้: เมื่อเรายืนอยู่ที่จุดสูงสุด การเลื่อนไปทางซ้ายหรือขวาเล็กน้อยจะทำให้ความสูงของเราเปลี่ยนไปโดยประมาท

นอกจากนี้ยังมีคำอธิบายเกี่ยวกับพีชคณิตล้วนๆ อีกด้วย: ทางด้านซ้ายของจุดยอดฟังก์ชันจะเพิ่มขึ้น และทางด้านขวาจะลดลง อย่างที่เราทราบไปก่อนหน้านี้ เมื่อฟังก์ชันเพิ่มขึ้น อนุพันธ์จะเป็นค่าบวก และเมื่อมันลดลง จะเป็นค่าลบ แต่มันเปลี่ยนได้อย่างราบรื่นโดยไม่ต้องกระโดด (เนื่องจากถนนไม่เปลี่ยนความลาดชันทุกที่) ดังนั้นจึงต้องมีค่าระหว่างค่าลบและค่าบวก มันจะเป็นจุดที่ฟังก์ชันไม่เพิ่มขึ้นหรือลดลง - ที่จุดยอด

เช่นเดียวกับรางน้ำ (พื้นที่ที่ฟังก์ชันทางด้านซ้ายลดลงและทางด้านขวาเพิ่มขึ้น):

เพิ่มเติมเล็กน้อยเกี่ยวกับการเพิ่มขึ้น

ดังนั้นเราจึงเปลี่ยนข้อโต้แย้งเป็นขนาด เราเปลี่ยนจากค่าอะไร? ตอนนี้ (ข้อโต้แย้ง) กลายเป็นอะไรไปแล้ว? เราสามารถเลือกจุดใดก็ได้ และตอนนี้ เราจะเต้นจากจุดนั้น

พิจารณาจุดที่มีพิกัด ค่าของฟังก์ชันในนั้นเท่ากัน จากนั้นเราก็ทำการเพิ่มแบบเดียวกัน: เราเพิ่มพิกัดด้วย ตอนนี้เถียงอะไรกันอยู่? ง่ายมาก: . ตอนนี้ค่าของฟังก์ชันเป็นเท่าใด? อาร์กิวเมนต์ไปที่ไหน ฟังก์ชันก็เช่นกัน: . แล้วการเพิ่มฟังก์ชันล่ะ? ไม่มีอะไรใหม่: นี่ยังคงเป็นจำนวนที่ฟังก์ชันเปลี่ยนไป:

ฝึกหาส่วนเพิ่ม:

  1. ค้นหาส่วนเพิ่มของฟังก์ชัน ณ จุดที่ส่วนเพิ่มของอาร์กิวเมนต์เท่ากับ
  2. เช่นเดียวกับฟังก์ชัน ณ จุดหนึ่ง

โซลูชั่น:

ในจุดที่ต่างกันซึ่งมีการเพิ่มอาร์กิวเมนต์เท่ากัน การเพิ่มฟังก์ชันจะแตกต่างกัน ซึ่งหมายความว่าอนุพันธ์ในแต่ละจุดจะแตกต่างกัน (เราคุยกันเรื่องนี้ตั้งแต่เริ่มต้น - ความชันของถนนแตกต่างกันในแต่ละจุด) ดังนั้นเวลาเราเขียนอนุพันธ์เราต้องระบุว่าจุดไหน:

ฟังก์ชั่นพลังงาน

ฟังก์ชันยกกำลังคือฟังก์ชันที่มีการโต้แย้งในระดับหนึ่ง (ตรรกะใช่ไหม)

ยิ่งกว่านั้น - ในระดับใด ๆ : .

กรณีที่ง่ายที่สุดคือเมื่อเลขชี้กำลังคือ:

ลองหาอนุพันธ์ของมัน ณ จุดหนึ่งกัน จำคำจำกัดความของอนุพันธ์:

ข้อโต้แย้งจึงเปลี่ยนจากเป็น ฟังก์ชั่นเพิ่มขึ้นเท่าไหร่?

เพิ่มขึ้นเป็นเช่นนี้ แต่ฟังก์ชัน ณ จุดใดก็ตามจะเท่ากับอาร์กิวเมนต์ของมัน นั่นเป็นเหตุผล:

อนุพันธ์มีค่าเท่ากับ:

อนุพันธ์ของเท่ากับ:

b) ตอนนี้ให้พิจารณาฟังก์ชันกำลังสอง (): .

ทีนี้มาจำไว้ว่า ซึ่งหมายความว่าสามารถละเลยค่าของการเพิ่มขึ้นได้ เนื่องจากมีค่าเพียงเล็กน้อย ดังนั้นจึงไม่มีนัยสำคัญเมื่อเทียบกับพื้นหลังของคำอื่น:

ดังนั้นเราจึงมีกฎอีกข้อหนึ่ง:

c) เราดำเนินการต่อในซีรีส์เชิงตรรกะ: .

นิพจน์นี้สามารถทำให้ง่ายขึ้นได้หลายวิธี: เปิดวงเล็บแรกโดยใช้สูตรสำหรับการคูณแบบย่อของกำลังสามของผลรวม หรือแยกตัวประกอบนิพจน์ทั้งหมดโดยใช้ผลต่างของสูตรลูกบาศก์ ลองทำด้วยตัวเองโดยใช้วิธีการที่แนะนำ

ดังนั้นฉันจึงได้สิ่งต่อไปนี้:

และอีกครั้งให้เราจำไว้ ซึ่งหมายความว่าเราสามารถละเลยข้อกำหนดทั้งหมดที่มี:

เราได้รับ: .

d) สามารถรับกฎที่คล้ายกันสำหรับมหาอำนาจ:

e) ปรากฎว่ากฎนี้สามารถวางนัยทั่วไปสำหรับฟังก์ชันกำลังที่มีเลขชี้กำลังตามใจชอบ ไม่ใช่จำนวนเต็มด้วยซ้ำ:

(2)

กฎสามารถกำหนดได้ในคำว่า: “ระดับจะถูกยกไปข้างหน้าเป็นค่าสัมประสิทธิ์แล้วลดลงด้วย ”

เราจะพิสูจน์กฎนี้ในภายหลัง (เกือบจะในตอนท้ายสุด) ตอนนี้เรามาดูตัวอย่างบางส่วนกัน ค้นหาอนุพันธ์ของฟังก์ชัน:

  1. (ในสองวิธี: โดยสูตรและการใช้คำจำกัดความของอนุพันธ์ - โดยการคำนวณการเพิ่มขึ้นของฟังก์ชัน)
  1. . เชื่อหรือไม่ นี่คือฟังก์ชันกำลัง หากคุณมีคำถามเช่น “เป็นอย่างไรบ้าง? ปริญญาอยู่ที่ไหน?” จำหัวข้อ “” ไว้!
    ใช่ ใช่ รูตก็เป็นดีกรีเช่นกัน เป็นเศษส่วนเท่านั้น:
    ซึ่งหมายความว่ารากที่สองของเราเป็นเพียงกำลังที่มีเลขชี้กำลัง:
    .
    เราค้นหาอนุพันธ์โดยใช้สูตรที่เพิ่งเรียนรู้:

    หากมาถึงจุดนี้ไม่ชัดเจนอีกครั้ง ย้ำหัวข้อ “”!!! (ประมาณองศาที่มีเลขชี้กำลังเป็นลบ)

  2. . ตอนนี้เลขชี้กำลัง:

    และตอนนี้ผ่านคำจำกัดความ (ลืมไปแล้วหรือยัง?):
    ;
    .
    ตามปกติแล้ว เราละเลยคำที่มี:
    .

  3. . การรวมกันของกรณีก่อนหน้า: .

ฟังก์ชันตรีโกณมิติ

เราจะใช้ข้อเท็จจริงข้อหนึ่งจากคณิตศาสตร์ชั้นสูงดังนี้:

ด้วยการแสดงออก

คุณจะได้เรียนรู้การพิสูจน์ในปีแรกของสถาบัน (และเพื่อที่จะไปถึงที่นั่น คุณจะต้องผ่านการสอบ Unified State ให้ดี) ตอนนี้ฉันจะแสดงเป็นภาพกราฟิก:

เราจะเห็นว่าเมื่อไม่มีฟังก์ชัน - จุดบนกราฟจะถูกตัดออก แต่ยิ่งใกล้ค่ามากเท่าไรฟังก์ชันก็ยิ่งใกล้มากขึ้นเท่านั้น นี่คือสิ่งที่ "จุดมุ่งหมาย"

นอกจากนี้ คุณสามารถตรวจสอบกฎนี้ได้โดยใช้เครื่องคิดเลข ใช่ ใช่ อย่าเพิ่งอาย หยิบเครื่องคิดเลขมา เรายังไม่ถึงการสอบ Unified State

ดังนั้นเรามาลองกัน: ;

อย่าลืมเปลี่ยนเครื่องคิดเลขของคุณเป็นโหมดเรเดียน!

ฯลฯ เราจะเห็นว่ายิ่งน้อยค่าของอัตราส่วนก็จะยิ่งใกล้มากขึ้นเท่านั้น

ก) พิจารณาฟังก์ชัน ตามปกติเราจะหาส่วนเพิ่มของมัน:

ลองเปลี่ยนผลต่างของไซน์ให้เป็นผลคูณกัน ในการทำเช่นนี้เราใช้สูตร (จำหัวข้อ “”): .

ตอนนี้อนุพันธ์:

มาทดแทนกัน: . จากนั้นสำหรับสิ่งเล็กน้อย มันก็ไม่สิ้นสุดเช่นกัน: นิพจน์สำหรับจะอยู่ในรูปแบบ:

และตอนนี้เราจำมันได้ด้วยพจน์นี้ และจะเกิดอะไรขึ้นหากสามารถละเลยปริมาณที่น้อยที่สุดไปเป็นผลรวมได้ (นั่นคือ ที่)

ดังนั้นเราจึงได้กฎต่อไปนี้: อนุพันธ์ของไซน์เท่ากับโคไซน์:

สิ่งเหล่านี้เป็นอนุพันธ์พื้นฐาน (“ตาราง”) นี่คือหนึ่งในรายการ:

ต่อมาเราจะเพิ่มอีกสองสามอย่าง แต่สิ่งเหล่านี้สำคัญที่สุดเนื่องจากมีการใช้บ่อยที่สุด

ฝึกฝน:

  1. ค้นหาอนุพันธ์ของฟังก์ชันที่จุดหนึ่ง
  2. ค้นหาอนุพันธ์ของฟังก์ชัน

โซลูชั่น:

  1. ขั้นแรก มาหาอนุพันธ์ในรูปแบบทั่วไป แล้วแทนค่าของมัน:
    ;
    .
  2. ตรงนี้เรามีบางอย่างที่คล้ายกับฟังก์ชันกำลัง เราลองพาเธอไป
    มุมมองปกติ:
    .
    เยี่ยมมาก ตอนนี้คุณสามารถใช้สูตร:
    .
    .
  3. . เอ๋…..นี่มันอะไรเนี่ย????

โอเค คุณพูดถูก เรายังไม่รู้ว่าจะหาอนุพันธ์แบบนั้นได้อย่างไร ที่นี่เรามีฟังก์ชันหลายประเภทรวมกัน หากต้องการทำงานร่วมกับพวกเขา คุณต้องเรียนรู้กฎเพิ่มเติมอีกสองสามข้อ:

เลขชี้กำลังและลอการิทึมธรรมชาติ

มีฟังก์ชันในคณิตศาสตร์ซึ่งมีอนุพันธ์ของค่าใดๆ เท่ากับค่าของฟังก์ชันนั้นในเวลาเดียวกัน เรียกว่า “เลขชี้กำลัง” และเป็นฟังก์ชันเลขชี้กำลัง

ฐานของฟังก์ชันนี้ซึ่งเป็นค่าคงที่คือเศษส่วนทศนิยมอนันต์ ซึ่งก็คือจำนวนอตรรกยะ (เช่น) มันถูกเรียกว่า "หมายเลขออยเลอร์" ซึ่งเป็นสาเหตุที่เขียนแทนด้วยตัวอักษร

ดังนั้นกฎ:

จำง่ายมาก

อย่าเพิ่งไปไกล ลองพิจารณาฟังก์ชันผกผันทันที ฟังก์ชันใดเป็นฟังก์ชันผกผันของฟังก์ชันเลขชี้กำลัง ลอการิทึม:

ในกรณีของเรา ฐานคือตัวเลข:

ลอการิทึมดังกล่าว (นั่นคือลอการิทึมที่มีฐาน) เรียกว่า "ธรรมชาติ" และเราใช้สัญลักษณ์พิเศษสำหรับมัน: เราเขียนแทน

มันเท่ากับอะไร? แน่นอน, .

อนุพันธ์ของลอการิทึมธรรมชาตินั้นง่ายมาก:

ตัวอย่าง:

  1. ค้นหาอนุพันธ์ของฟังก์ชัน
  2. อนุพันธ์ของฟังก์ชันคืออะไร?

คำตอบ: ลอการิทึมเลขชี้กำลังและลอการิทึมธรรมชาติเป็นฟังก์ชันง่ายๆ ที่ไม่เหมือนใครจากมุมมองของอนุพันธ์ ฟังก์ชันเลขชี้กำลังและลอการิทึมกับฐานอื่นจะมีอนุพันธ์ที่แตกต่างกัน ซึ่งเราจะวิเคราะห์ในภายหลังหลังจากที่เราผ่านกฎการสร้างความแตกต่างแล้ว

กฎของความแตกต่าง

กฎของอะไร? ศัพท์ใหม่อีกแล้วเหรอ?!...

ความแตกต่างเป็นกระบวนการหาอนุพันธ์

นั่นคือทั้งหมดที่ คุณสามารถเรียกกระบวนการนี้ว่าอะไรอีกในคำเดียว? ไม่ใช่อนุพันธ์... นักคณิตศาสตร์เรียกอนุพันธ์ว่าการเพิ่มขึ้นของฟังก์ชันที่เท่ากัน คำนี้มาจากภาษาละตินว่า differentia - ความแตกต่าง ที่นี่.

เมื่อได้รับกฎเหล่านี้ทั้งหมด เราจะใช้สองฟังก์ชัน เช่น และ นอกจากนี้เรายังต้องมีสูตรสำหรับการเพิ่ม:

มีกฎทั้งหมด 5 ข้อ

ค่าคงที่ถูกนำออกจากเครื่องหมายอนุพันธ์

ถ้า - จำนวนคงที่ (คงที่) ดังนั้น

แน่นอนว่ากฎนี้ยังใช้ได้กับความแตกต่าง:

มาพิสูจน์กัน ปล่อยให้มันเป็นไปหรือง่ายกว่านั้น

ตัวอย่าง.

ค้นหาอนุพันธ์ของฟังก์ชัน:

  1. ณ จุดหนึ่ง;
  2. ณ จุดหนึ่ง;
  3. ณ จุดหนึ่ง;
  4. ตรงจุด

โซลูชั่น:

  1. (อนุพันธ์จะเท่ากันทุกจุด เนื่องจากเป็นฟังก์ชันเชิงเส้น จำได้ไหม?);

อนุพันธ์ของผลิตภัณฑ์

ทุกอย่างจะคล้ายกันที่นี่ เรามาแนะนำฟังก์ชันใหม่และค้นหาส่วนที่เพิ่มขึ้นกันดีกว่า:

อนุพันธ์:

ตัวอย่าง:

  1. ค้นหาอนุพันธ์ของฟังก์ชันและ;
  2. ค้นหาอนุพันธ์ของฟังก์ชันที่จุดหนึ่ง

โซลูชั่น:

อนุพันธ์ของฟังก์ชันเลขชี้กำลัง

ตอนนี้ความรู้ของคุณก็เพียงพอแล้วที่จะเรียนรู้วิธีค้นหาอนุพันธ์ของฟังก์ชันเอ็กซ์โปเนนเชียล ไม่ใช่แค่เลขยกกำลัง (คุณลืมไปแล้วหรือว่าสิ่งนั้นคืออะไร?)

แล้วเลขไหนล่ะ..

เรารู้อนุพันธ์ของฟังก์ชันแล้ว ลองลดฟังก์ชันของเราให้เป็นฐานใหม่:

ในการดำเนินการนี้ เราจะใช้กฎง่ายๆ: . แล้ว:

มันได้ผล ทีนี้ลองหาอนุพันธ์ และอย่าลืมว่าฟังก์ชันนี้ซับซ้อน

เกิดขึ้น?

ที่นี่ตรวจสอบตัวเอง:

สูตรนี้ดูคล้ายกับอนุพันธ์ของเลขชี้กำลังมาก เหมือนเดิม มันยังคงเหมือนเดิม มีเพียงตัวประกอบเท่านั้นที่ปรากฏ ซึ่งเป็นเพียงตัวเลข แต่ไม่ใช่ตัวแปร

ตัวอย่าง:
ค้นหาอนุพันธ์ของฟังก์ชัน:

คำตอบ:

นี่เป็นเพียงตัวเลขที่ไม่สามารถคำนวณได้หากไม่มีเครื่องคิดเลข กล่าวคือ ไม่สามารถเขียนลงในรูปแบบที่ง่ายกว่านี้ได้ ดังนั้นเราจึงทิ้งคำตอบไว้ในรูปแบบนี้

อนุพันธ์ของฟังก์ชันลอการิทึม

มันคล้ายกันตรงนี้: คุณรู้อนุพันธ์ของลอการิทึมธรรมชาติแล้ว:

ดังนั้น หากต้องการค้นหาลอการิทึมตามอำเภอใจที่มีฐานต่างกัน เช่น

เราจำเป็นต้องลดลอการิทึมนี้ลงเหลือฐาน คุณจะเปลี่ยนฐานของลอการิทึมได้อย่างไร? ฉันหวังว่าคุณจะจำสูตรนี้:

ตอนนี้เราจะเขียนแทน:

ตัวส่วนเป็นเพียงค่าคงที่ (จำนวนคงที่โดยไม่มีตัวแปร) อนุพันธ์ได้มาง่ายมาก:

อนุพันธ์ของฟังก์ชันเอกซ์โปเนนเชียลและลอการิทึมแทบไม่เคยพบในการตรวจสอบ Unified State แต่การรู้จักพวกมันจะไม่ฟุ่มเฟือย

อนุพันธ์ของฟังก์ชันเชิงซ้อน

"ฟังก์ชันที่ซับซ้อน" คืออะไร? ไม่ นี่ไม่ใช่ลอการิทึม และไม่ใช่อาร์กแทนเจนต์ ฟังก์ชันเหล่านี้อาจเข้าใจได้ยาก (แม้ว่าคุณจะพบว่าลอการิทึมยาก ลองอ่านหัวข้อ "ลอการิทึม" แล้วคุณจะโอเค) แต่จากมุมมองทางคณิตศาสตร์ คำว่า "ซับซ้อน" ไม่ได้หมายความว่า "ยาก"

ลองนึกภาพสายพานลำเลียงขนาดเล็ก: คนสองคนกำลังนั่งและทำอะไรบางอย่างกับวัตถุบางอย่าง ตัวอย่างเช่น อันแรกห่อแท่งช็อกโกแลตด้วยกระดาษห่อ และอันที่สองผูกด้วยริบบิ้น ผลลัพธ์ที่ได้คือวัตถุที่ประกอบขึ้นเป็นแท่งช็อกโกแลตที่พันและผูกด้วยริบบิ้น หากต้องการกินช็อกโกแลตแท่ง คุณต้องทำตามขั้นตอนย้อนกลับ

มาสร้างไปป์ไลน์ทางคณิตศาสตร์ที่คล้ายกันกัน: ก่อนอื่นเราจะหาโคไซน์ของตัวเลขแล้วยกกำลังสองของจำนวนผลลัพธ์ ดังนั้นเราจึงได้รับตัวเลข (ช็อคโกแลต) ฉันหาโคไซน์ของมัน (กระดาษห่อ) แล้วคุณก็ยกกำลังสองสิ่งที่ฉันได้ (ผูกมันด้วยริบบิ้น) เกิดอะไรขึ้น การทำงาน. นี่คือตัวอย่างของฟังก์ชันที่ซับซ้อน: เมื่อเราต้องการหาค่าของมัน เราจะดำเนินการแรกกับตัวแปรโดยตรง จากนั้นจึงดำเนินการที่สองกับผลลัพธ์จากฟังก์ชันแรก

เราสามารถทำขั้นตอนเดียวกันในลำดับย้อนกลับได้ง่ายๆ ขั้นแรกให้คุณยกกำลังสอง จากนั้นฉันจะหาโคไซน์ของตัวเลขผลลัพธ์: เป็นเรื่องง่ายที่จะคาดเดาว่าผลลัพธ์จะแตกต่างออกไปเกือบตลอดเวลา คุณลักษณะที่สำคัญของฟังก์ชันที่ซับซ้อน: เมื่อลำดับของการกระทำเปลี่ยนแปลง ฟังก์ชันก็จะเปลี่ยนไป

กล่าวอีกนัยหนึ่ง ฟังก์ชันที่ซับซ้อนคือฟังก์ชันที่มีอาร์กิวเมนต์เป็นฟังก์ชันอื่น: .

สำหรับตัวอย่างแรก .

ตัวอย่างที่สอง: (สิ่งเดียวกัน) .

การกระทำที่เราทำครั้งสุดท้ายจะถูกเรียกว่า ฟังก์ชั่น "ภายนอก"และการกระทำนั้นเกิดขึ้นก่อน - ตามนั้น ฟังก์ชั่น "ภายใน"(ชื่อเหล่านี้เป็นชื่อที่ไม่เป็นทางการ ฉันใช้เพื่ออธิบายเนื้อหาเป็นภาษาง่ายๆ เท่านั้น)

ลองพิจารณาด้วยตัวเองว่าฟังก์ชันใดเป็นฟังก์ชันภายนอกและฟังก์ชันใดภายใน:

คำตอบ:การแยกฟังก์ชันภายในและภายนอกจะคล้ายกันมากกับการเปลี่ยนแปลงตัวแปร ตัวอย่างเช่น ในฟังก์ชัน

  1. เราจะดำเนินการใดก่อน? ก่อนอื่น มาคำนวณไซน์ก่อน แล้วค่อยยกกำลังสามเท่านั้น ซึ่งหมายความว่ามันเป็นฟังก์ชันภายใน แต่เป็นฟังก์ชันภายนอก
    และฟังก์ชันดั้งเดิมคือองค์ประกอบ: .
  2. ภายใน: ; ภายนอก: .
    การตรวจสอบ: .
  3. ภายใน: ; ภายนอก: .
    การตรวจสอบ: .
  4. ภายใน: ; ภายนอก: .
    การตรวจสอบ: .
  5. ภายใน: ; ภายนอก: .
    การตรวจสอบ: .

เราเปลี่ยนตัวแปรและรับฟังก์ชัน

ทีนี้ เราจะแยกแท่งช็อกโกแลตออกมาแล้วมองหาอนุพันธ์ ขั้นตอนจะกลับกันเสมอ ขั้นแรกเรามองหาอนุพันธ์ของฟังก์ชันภายนอก จากนั้นจึงคูณผลลัพธ์ด้วยอนุพันธ์ของฟังก์ชันภายใน สัมพันธ์กับตัวอย่างดั้งเดิม ดูเหมือนว่า:

ตัวอย่างอื่น:

ในที่สุดเรามากำหนดกฎอย่างเป็นทางการกัน:

อัลกอริทึมในการค้นหาอนุพันธ์ของฟังก์ชันเชิงซ้อน:

ดูเหมือนง่ายใช่มั้ย?

ลองตรวจสอบด้วยตัวอย่าง:

โซลูชั่น:

1) ภายใน: ;

ภายนอก: ;

2) ภายใน: ;

(อย่าเพิ่งพยายามตัดมันออกตอนนี้! ไม่มีอะไรออกมาจากใต้โคไซน์จำได้ไหม?)

3) ภายใน: ;

ภายนอก: ;

ชัดเจนทันทีว่านี่เป็นฟังก์ชันที่ซับซ้อนสามระดับ: ท้ายที่สุดแล้วนี่เป็นฟังก์ชันที่ซับซ้อนในตัวเองอยู่แล้วและเรายังแยกรากออกจากมันด้วยนั่นคือเราทำการกระทำที่สาม (เราใส่ช็อคโกแลตลงใน กระดาษห่อและมีริบบิ้นอยู่ในกระเป๋าเอกสาร) แต่ไม่มีเหตุผลที่ต้องกลัว: เราจะยังคง "แกะ" ฟังก์ชันนี้ในลำดับเดิมเหมือนปกติ: จากจุดสิ้นสุด

นั่นคือ ขั้นแรกเราแยกความแตกต่างของราก จากนั้นจึงแยกโคไซน์ และเฉพาะนิพจน์ในวงเล็บเท่านั้น แล้วเราก็คูณมันทั้งหมด.

ในกรณีเช่นนี้ จะสะดวกในการนับจำนวนการกระทำ นั่นคือลองจินตนาการถึงสิ่งที่เรารู้ เราจะดำเนินการตามลำดับใดเพื่อคำนวณค่าของนิพจน์นี้ ลองดูตัวอย่าง:

ยิ่งดำเนินการในภายหลังฟังก์ชันที่เกี่ยวข้องก็จะยิ่งมี "ภายนอก" มากขึ้นเท่านั้น ลำดับของการกระทำเหมือนกับเมื่อก่อน:

โดยทั่วไปการทำรังจะมี 4 ระดับ เรามากำหนดแนวทางการดำเนินการกัน

1. การแสดงออกที่รุนแรง .

2. รูท .

3. ไซน์. .

4. สี่เหลี่ยม. .

5. นำทั้งหมดมารวมกัน:

อนุพันธ์ สั้น ๆ เกี่ยวกับสิ่งสำคัญ

อนุพันธ์ของฟังก์ชัน- อัตราส่วนของการเพิ่มขึ้นของฟังก์ชันต่อการเพิ่มขึ้นของอาร์กิวเมนต์สำหรับการเพิ่มอาร์กิวเมนต์เพียงเล็กน้อย:

อนุพันธ์พื้นฐาน:

กฎของความแตกต่าง:

ค่าคงที่ถูกนำออกจากเครื่องหมายอนุพันธ์:

อนุพันธ์ของผลรวม:

อนุพันธ์ของผลิตภัณฑ์:

อนุพันธ์ของผลหาร:

อนุพันธ์ของฟังก์ชันเชิงซ้อน:

อัลกอริทึมในการค้นหาอนุพันธ์ของฟังก์ชันเชิงซ้อน:

  1. เรากำหนดฟังก์ชัน "ภายใน" และค้นหาอนุพันธ์ของมัน
  2. เรากำหนดฟังก์ชัน "ภายนอก" และค้นหาอนุพันธ์ของมัน
  3. เราคูณผลลัพธ์ของจุดที่หนึ่งและที่สอง

เมื่อแก้ไขปัญหาต่างๆ ในด้านเรขาคณิต กลศาสตร์ ฟิสิกส์ และความรู้สาขาอื่นๆ ความต้องการเกิดขึ้นโดยใช้กระบวนการวิเคราะห์เดียวกันจากฟังก์ชันนี้ y=ฉ(x)รับฟังก์ชั่นใหม่ที่เรียกว่า ฟังก์ชันอนุพันธ์(หรือเพียงแค่ อนุพันธ์) ของฟังก์ชันที่กำหนด f(x)และถูกกำหนดด้วยสัญลักษณ์

กระบวนการที่มาจากฟังก์ชันที่กำหนด ฉ(x)รับคุณสมบัติใหม่ ฉ" (x), เรียกว่า ความแตกต่างและประกอบด้วย 3 ขั้นตอนดังนี้ 1) ให้ข้อโต้แย้ง xเพิ่มขึ้น  xและกำหนดส่วนเพิ่มที่สอดคล้องกันของฟังก์ชัน  y = ฉ(x+ x) -ฉ(x); 2) สร้างความสัมพันธ์

3) การนับ xคงที่และ  x0, เราหาได้
ซึ่งเราแสดงโดย ฉ" (x)ราวกับว่าเน้นว่าฟังก์ชันผลลัพธ์นั้นขึ้นอยู่กับค่าเท่านั้น xซึ่งเราไปถึงขีดจำกัดแล้ว คำนิยาม: อนุพันธ์ y " =f " (x) ฟังก์ชันที่กำหนด y=f(x) สำหรับ x ที่กำหนดเรียกว่าขีดจำกัดของอัตราส่วนของการเพิ่มขึ้นของฟังก์ชันต่อการเพิ่มขึ้นของอาร์กิวเมนต์ โดยมีเงื่อนไขว่าการเพิ่มขึ้นของอาร์กิวเมนต์มีแนวโน้มที่จะเป็นศูนย์ ถ้าแน่นอน มีขีดจำกัดนี้อยู่ เช่น มีจำกัด ดังนั้น,
, หรือ

โปรดทราบว่าหากมีค่าบางอย่าง xเช่น เมื่อใด x=ก, ทัศนคติ
ที่  x0 ไม่มีแนวโน้มที่จะมีขีดจำกัดจำกัด ดังนั้นในกรณีนี้ เขาจะบอกว่าฟังก์ชันนั้น ฉ(x)ที่ x=ก(หรือตรงจุด. x=ก) ไม่มีอนุพันธ์หรือหาอนุพันธ์ ณ จุดนั้นไม่ได้ x=ก.

2. ความหมายทางเรขาคณิตของอนุพันธ์

พิจารณากราฟของฟังก์ชัน y = f (x) ซึ่งหาอนุพันธ์ได้ในบริเวณใกล้กับจุด x 0

ฉ(x)

ลองพิจารณาเส้นตรงใดๆ ที่ผ่านจุดบนกราฟของฟังก์ชัน - จุด A(x 0, f (x 0)) และตัดกราฟที่จุดใดจุดหนึ่ง B(x;f(x)) เส้นตรงดังกล่าว (AB) เรียกว่าเส้นตัด จาก ∆ABC: ​​​​AC = ∆x; ВС =∆у; tgβ=∆y/∆x

ตั้งแต่ AC || Ox แล้ว ALO = BAC = β (สอดคล้องกับขนาน) แต่ ALO คือมุมเอียงของเส้นตัด AB กับทิศทางบวกของแกน Ox ซึ่งหมายความว่า tanβ = k คือความชันของเส้นตรง AB

ตอนนี้เราจะลด ∆х เช่น ∆х→ 0 ในกรณีนี้ จุด B จะเข้าใกล้จุด A ตามกราฟ และเส้นตัด AB จะหมุน ตำแหน่งจำกัดของเส้นตัด AB ที่ ∆x→ 0 จะเป็นเส้นตรง (a) เรียกว่าแทนเจนต์กับกราฟของฟังก์ชัน y = f (x) ที่จุด A

ถ้าเราไปถึงขีดจำกัดเป็น ∆x → 0 ในความเท่าเทียมกัน tgβ =∆y/∆x เราจะได้
ortg =f "(x 0) เนื่องจาก
-มุมเอียงของแทนเจนต์กับทิศทางบวกของแกน Ox
ตามคำนิยามของอนุพันธ์ แต่ tg = k คือสัมประสิทธิ์เชิงมุมของแทนเจนต์ซึ่งหมายถึง k = tg = f "(x 0)

ดังนั้น ความหมายทางเรขาคณิตของอนุพันธ์จึงเป็นดังนี้:

อนุพันธ์ของฟังก์ชันที่จุด x 0 เท่ากับความชันของแทนเจนต์กับกราฟของฟังก์ชันที่วาดที่จุดด้วย abscissa x 0 .

3. ความหมายทางกายภาพของอนุพันธ์

พิจารณาการเคลื่อนที่ของจุดตามแนวเส้นตรง ให้พิกัดของจุด ณ เวลาใดก็ได้ x(t) เป็นที่ทราบกันดี (จากหลักสูตรฟิสิกส์) ว่าความเร็วเฉลี่ยในช่วงเวลาหนึ่งเท่ากับอัตราส่วนของระยะทางที่เดินทางในช่วงเวลานี้ต่อเวลา กล่าวคือ

วาฟ = ∆x/∆t ไปที่ขีดจำกัดของความเสมอภาคสุดท้ายด้วย ∆t → 0

lim Vav (t) = (t 0) - ความเร็วทันทีที่เวลา t 0, ∆t → 0

และ lim = ∆x/∆t = x"(t 0) (ตามคำจำกัดความของอนุพันธ์)

ดังนั้น (t) =x"(t)

ความหมายทางกายภาพของอนุพันธ์มีดังนี้ อนุพันธ์ของฟังก์ชัน = (x) ณ จุดนั้นx 0 คืออัตราการเปลี่ยนแปลงของฟังก์ชัน(x) ณ จุดนั้นx 0

อนุพันธ์นี้ใช้ในฟิสิกส์เพื่อค้นหาความเร็วจากฟังก์ชันที่ทราบของพิกัดเทียบกับเวลา ความเร่งจากฟังก์ชันที่ทราบของความเร็วเทียบกับเวลา

(t) = x"(t) - ความเร็ว

a(f) = "(t) - ความเร่งหรือ

หากทราบกฎการเคลื่อนที่ของจุดวัสดุในวงกลม เราสามารถหาความเร็วเชิงมุมและความเร่งเชิงมุมระหว่างการเคลื่อนที่แบบหมุนได้:

φ = φ(t) - การเปลี่ยนแปลงมุมเมื่อเวลาผ่านไป

ω = φ"(t) - ความเร็วเชิงมุม

ε = φ"(t) - ความเร่งเชิงมุมหรือ ε = φ"(t)

หากทราบกฎการกระจายมวลของแท่งที่ไม่เป็นเนื้อเดียวกัน ก็จะสามารถหาความหนาแน่นเชิงเส้นของแท่งที่ไม่เป็นเนื้อเดียวกันได้:

ม. = ม.(x) - มวล

x  , ล. - ความยาวของไม้เรียว

p = m"(x) - ความหนาแน่นเชิงเส้น

เมื่อใช้อนุพันธ์ ปัญหาจากทฤษฎีความยืดหยุ่นและการสั่นสะเทือนฮาร์มอนิกจะได้รับการแก้ไข ดังนั้นตามกฎของฮุค

F = -kx, x – พิกัดตัวแปร, k – สัมประสิทธิ์ความยืดหยุ่นของสปริง เมื่อ ω 2 =k/m เราจะได้สมการเชิงอนุพันธ์ของลูกตุ้มสปริง x"(t) + ω 2 x(t) = 0,

โดยที่ ω = √k/√m ความถี่การสั่น (l/c), k คือความแข็งของสปริง (H/m)

สมการของรูปแบบ y" + ω 2 y = 0 เรียกว่าสมการของการออสซิลเลชันฮาร์มอนิก (เครื่องกล, ไฟฟ้า, แม่เหล็กไฟฟ้า) วิธีแก้สมการดังกล่าวคือฟังก์ชัน

y = Asin(ωt + φ 0) หรือ y = Acos(ωt + φ 0) โดยที่

เอ - แอมพลิจูดของการแกว่ง, ω - ความถี่ไซคลิก

φ 0 - เฟสเริ่มต้น

ปัญหา B9 ให้กราฟของฟังก์ชันหรืออนุพันธ์ที่คุณต้องการหาปริมาณใดปริมาณหนึ่งต่อไปนี้:

  1. มูลค่าของอนุพันธ์ ณ จุดใดจุดหนึ่ง x 0
  2. คะแนนสูงสุดหรือต่ำสุด (คะแนนสุดขีด)
  3. ช่วงของฟังก์ชันการเพิ่มและลด (ช่วงของความน่าเบื่อ)

ฟังก์ชันและอนุพันธ์ที่นำเสนอในปัญหานี้มีความต่อเนื่องกันอยู่เสมอ ทำให้การแก้ปัญหาง่ายขึ้นมาก แม้ว่างานนี้จะอยู่ในส่วนของการวิเคราะห์ทางคณิตศาสตร์ แต่แม้แต่นักเรียนที่อ่อนแอที่สุดก็สามารถทำได้ เนื่องจากไม่จำเป็นต้องมีความรู้เชิงทฤษฎีเชิงลึกที่นี่

ในการค้นหาค่าของอนุพันธ์ จุดสุดขั้ว และช่วงความซ้ำซ้อน มีอัลกอริธึมที่ง่ายและเป็นสากล - ทั้งหมดนี้จะกล่าวถึงด้านล่าง

อ่านเงื่อนไขของปัญหา B9 อย่างละเอียดเพื่อหลีกเลี่ยงการทำผิดพลาดโง่ๆ: บางครั้งคุณอาจเจอข้อความที่ค่อนข้างยาว แต่มีเงื่อนไขสำคัญบางประการที่ส่งผลต่อแนวทางการแก้ปัญหา

การคำนวณมูลค่าอนุพันธ์ วิธีสองจุด

หากปัญหาได้รับกราฟของฟังก์ชัน f(x) แทนเจนต์กับกราฟนี้ ณ จุดใดจุดหนึ่ง x 0 และจำเป็นต้องค้นหาค่าของอนุพันธ์ ณ จุดนี้ อัลกอริทึมต่อไปนี้จะถูกนำมาใช้:

  1. ค้นหาจุด "เพียงพอ" สองจุดบนกราฟแทนเจนต์: พิกัดของมันต้องเป็นจำนวนเต็ม ลองแสดงจุดเหล่านี้เป็น A (x 1 ; y 1) และ B (x 2 ; y 2) จดพิกัดให้ถูกต้อง - นี่คือประเด็นสำคัญในการแก้ปัญหา และข้อผิดพลาดใดๆ ที่จะนำไปสู่คำตอบที่ไม่ถูกต้อง
  2. เมื่อรู้พิกัดแล้ว ง่ายต่อการคำนวณการเพิ่มขึ้นของอาร์กิวเมนต์ Δx = x 2 − x 1 และการเพิ่มขึ้นของฟังก์ชัน Δy = y 2 − y 1 .
  3. ในที่สุด เราก็พบค่าของอนุพันธ์ D = Δy/Δx กล่าวอีกนัยหนึ่ง คุณต้องหารการเพิ่มขึ้นของฟังก์ชันด้วยการเพิ่มอาร์กิวเมนต์ และนี่จะเป็นคำตอบ

โปรดทราบอีกครั้ง: จะต้องค้นหาจุด A และ B บนเส้นสัมผัสกันอย่างแม่นยำ ไม่ใช่บนกราฟของฟังก์ชัน f(x) ดังที่มักเกิดขึ้น เส้นสัมผัสกันจะต้องมีจุดดังกล่าวอย่างน้อยสองจุด มิฉะนั้นโจทย์จะกำหนดไม่ถูกต้อง

พิจารณาจุด A (−3; 2) และ B (−1; 6) และค้นหาส่วนเพิ่ม:
∆x = x 2 − x 1 = −1 − (−3) = 2; Δy = y 2 − y 1 = 6 − 2 = 4

มาหาค่าของอนุพันธ์กันดีกว่า: D = Δy/Δx = 4/2 = 2

งาน. รูปนี้แสดงกราฟของฟังก์ชัน y = f(x) และแทนเจนต์ของฟังก์ชันที่จุดที่มี abscissa x 0 ค้นหาค่าอนุพันธ์ของฟังก์ชัน f(x) ที่จุด x 0 .

พิจารณาจุด A (0; 3) และ B (3; 0) ค้นหาส่วนเพิ่ม:
∆x = x 2 − x 1 = 3 − 0 = 3; Δy = y 2 − y 1 = 0 − 3 = −3

ตอนนี้เราพบค่าของอนุพันธ์แล้ว: D = Δy/Δx = −3/3 = −1

งาน. รูปนี้แสดงกราฟของฟังก์ชัน y = f(x) และแทนเจนต์ของฟังก์ชันที่จุดที่มี abscissa x 0 ค้นหาค่าอนุพันธ์ของฟังก์ชัน f(x) ที่จุด x 0 .

พิจารณาจุด A (0; 2) และ B (5; 2) และค้นหาส่วนเพิ่ม:
∆x = x 2 − x 1 = 5 − 0 = 5; Δy = y 2 − y 1 = 2 − 2 = 0

ยังคงต้องค้นหาค่าของอนุพันธ์: D = Δy/Δx = 0/5 = 0

จากตัวอย่างสุดท้าย เราสามารถกำหนดกฎได้: ถ้าแทนเจนต์ขนานกับแกน OX อนุพันธ์ของฟังก์ชันที่จุดแทนเจนต์จะเป็นศูนย์ ในกรณีนี้ คุณไม่จำเป็นต้องนับอะไรเลย เพียงแค่ดูกราฟ

การคำนวณคะแนนสูงสุดและต่ำสุด

บางครั้ง แทนที่จะเป็นกราฟของฟังก์ชัน ปัญหา B9 จะให้กราฟของอนุพันธ์ และจำเป็นต้องค้นหาจุดสูงสุดหรือต่ำสุดของฟังก์ชัน ในสถานการณ์นี้ วิธีสองจุดไม่มีประโยชน์ แต่มีอัลกอริธึมอื่นที่ง่ายกว่าด้วยซ้ำ ขั้นแรก เรามากำหนดคำศัพท์กันก่อน:

  1. จุด x 0 เรียกว่าจุดสูงสุดของฟังก์ชัน f(x) หากในย่านใกล้เคียงของจุดนี้มีความไม่เท่าเทียมกันดังต่อไปนี้: f(x 0) ≥ f(x)
  2. จุด x 0 เรียกว่าจุดต่ำสุดของฟังก์ชัน f(x) หากในย่านใกล้เคียงของจุดนี้มีความไม่เท่าเทียมกันดังต่อไปนี้: f(x 0) ≤ f(x)

หากต้องการค้นหาจุดสูงสุดและต่ำสุดจากกราฟอนุพันธ์ ให้ทำตามขั้นตอนเหล่านี้:

  1. เขียนกราฟอนุพันธ์ใหม่ โดยลบข้อมูลที่ไม่จำเป็นออกทั้งหมด ตามที่แสดงในทางปฏิบัติ ข้อมูลที่ไม่จำเป็นจะรบกวนการตัดสินใจเท่านั้น ดังนั้นเราจึงทำเครื่องหมายศูนย์ของอนุพันธ์บนแกนพิกัด - เท่านี้ก็เรียบร้อย
  2. ค้นหาสัญญาณของอนุพันธ์ในช่วงเวลาระหว่างศูนย์ ถ้าในบางจุด x 0 ทราบว่า f'(x 0) ≠ 0 แสดงว่าเป็นไปได้เพียงสองตัวเลือกเท่านั้น: f'(x 0) ≥ 0 หรือ f'(x 0) ≤ 0 เครื่องหมายของอนุพันธ์คือ ระบุได้ง่ายจากภาพวาดต้นฉบับ: หากกราฟอนุพันธ์อยู่เหนือแกน OX ดังนั้น f'(x) ≥ 0 และในทางกลับกัน หากกราฟอนุพันธ์อยู่ใต้แกน OX ดังนั้น f'(x) ≤ 0
  3. เราตรวจสอบศูนย์และสัญญาณของอนุพันธ์อีกครั้ง โดยที่เครื่องหมายเปลี่ยนจากลบเป็นบวกคือจุดต่ำสุด ในทางกลับกัน หากเครื่องหมายของอนุพันธ์เปลี่ยนจากบวกเป็นลบ นี่คือจุดสูงสุด การนับจะทำจากซ้ายไปขวาเสมอ

รูปแบบนี้ใช้ได้กับฟังก์ชันต่อเนื่องเท่านั้น - ไม่มีฟังก์ชันอื่นในปัญหา B9

งาน. รูปนี้แสดงกราฟของอนุพันธ์ของฟังก์ชัน f(x) ที่กำหนดในช่วงเวลา [−5; 5]. ค้นหาจุดต่ำสุดของฟังก์ชัน f(x) บนส่วนนี้

กำจัดข้อมูลที่ไม่จำเป็นออกไปและเหลือเพียงขอบเขต [−5; 5] และศูนย์ของอนุพันธ์ x = −3 และ x = 2.5 เรายังสังเกตสัญญาณ:

แน่นอนว่า ณ จุด x = −3 เครื่องหมายของอนุพันธ์จะเปลี่ยนจากลบเป็นบวก นี่คือจุดต่ำสุด

งาน. รูปนี้แสดงกราฟของอนุพันธ์ของฟังก์ชัน f(x) ที่กำหนดในช่วงเวลา [−3; 7]. ค้นหาจุดสูงสุดของฟังก์ชัน f(x) บนส่วนนี้

ลองวาดกราฟใหม่โดยเหลือเพียงขอบเขต [−3; 7] และศูนย์ของอนุพันธ์ x = −1.7 และ x = 5 ให้เราสังเกตสัญญาณของอนุพันธ์บนกราฟผลลัพธ์ เรามี:

เห็นได้ชัดว่า ณ จุด x = 5 เครื่องหมายของอนุพันธ์เปลี่ยนจากบวกเป็นลบ - นี่คือจุดสูงสุด

งาน. รูปนี้แสดงกราฟของอนุพันธ์ของฟังก์ชัน f(x) ซึ่งกำหนดบนช่วง [−6; 4]. ค้นหาจำนวนจุดสูงสุดของฟังก์ชัน f(x) ที่อยู่ในเซกเมนต์ [−4; 3].

จากเงื่อนไขของปัญหา เป็นไปตามว่าเพียงพอที่จะพิจารณาเฉพาะส่วนของกราฟที่ถูกจำกัดโดยเซ็กเมนต์ [−4; 3]. ดังนั้นเราจึงสร้างกราฟใหม่โดยทำเครื่องหมายเฉพาะขอบเขต [−4; 3] และศูนย์ของอนุพันธ์ข้างใน กล่าวคือ คะแนน x = −3.5 และ x = 2 เราได้รับ:

บนกราฟนี้มีจุดสูงสุดเพียงจุดเดียว x = 2 ณ จุดนี้เองที่เครื่องหมายของอนุพันธ์เปลี่ยนจากบวกเป็นลบ

หมายเหตุเล็กๆ น้อยๆ เกี่ยวกับจุดที่มีพิกัดที่ไม่ใช่จำนวนเต็ม ตัวอย่างเช่น ในโจทย์ข้อสุดท้ายถือว่าจุด x = −3.5 แต่ด้วยความสำเร็จแบบเดียวกัน เราจึงได้ x = −3.4 หากรวบรวมปัญหาอย่างถูกต้องการเปลี่ยนแปลงดังกล่าวไม่ควรส่งผลกระทบต่อคำตอบเนื่องจากคะแนน "ไม่มีที่อยู่อาศัยที่แน่นอน" ไม่ได้มีส่วนร่วมในการแก้ไขปัญหาโดยตรง แน่นอนว่าเคล็ดลับนี้ใช้ไม่ได้กับจำนวนเต็ม

การหาช่วงเวลาของฟังก์ชันเพิ่มและลด

ในปัญหาดังกล่าว เช่น จุดสูงสุดและต่ำสุด ขอเสนอให้ใช้กราฟอนุพันธ์เพื่อค้นหาพื้นที่ที่ฟังก์ชันนั้นเพิ่มขึ้นหรือลดลง ก่อนอื่น เรามานิยามกันก่อนว่าอะไรเพิ่มขึ้นและลดลง:

  1. ฟังก์ชัน f(x) กล่าวกันว่าเพิ่มขึ้นบนเซ็กเมนต์ ถ้าจุดสองจุดใดๆ x 1 และ x 2 จากเซ็กเมนต์นี้ ข้อความต่อไปนี้เป็นจริง: x 1 ≤ x 2 ⇒ f(x 1) ≤ f(x 2) . กล่าวอีกนัยหนึ่ง ยิ่งค่าอาร์กิวเมนต์มากขึ้น ค่าฟังก์ชันก็จะยิ่งมากขึ้นตามไปด้วย
  2. ฟังก์ชัน f(x) กล่าวกันว่ากำลังลดลงบนเซ็กเมนต์ ถ้าจุดสองจุดใดๆ x 1 และ x 2 จากเซกเมนต์นี้ ข้อความต่อไปนี้เป็นจริง: x 1 ≤ x 2 ⇒ f(x 1) ≥ f(x 2) . เหล่านั้น. ค่าอาร์กิวเมนต์ที่ใหญ่กว่าจะสอดคล้องกับค่าฟังก์ชันที่น้อยกว่า

ให้เรากำหนดเงื่อนไขที่เพียงพอสำหรับการเพิ่มขึ้นและลดลง:

  1. เพื่อให้ฟังก์ชันต่อเนื่อง f(x) เพิ่มขึ้นในส่วน ก็เพียงพอแล้วที่อนุพันธ์ภายในส่วนจะเป็นค่าบวก เช่น ฉ’(x) ≥ 0
  2. เพื่อให้ฟังก์ชันต่อเนื่อง f(x) ลดลงในส่วน ก็เพียงพอแล้วที่อนุพันธ์ภายในส่วนจะเป็นลบเช่น ฉ’(x) ≤ 0.

ให้เรายอมรับข้อความเหล่านี้โดยไม่มีหลักฐาน ดังนั้นเราจึงได้โครงร่างสำหรับการค้นหาช่วงเวลาของการเพิ่มขึ้นและลดลงซึ่งคล้ายกับอัลกอริทึมในการคำนวณจุดสุดขั้วหลายประการ:

  1. ลบข้อมูลที่ไม่จำเป็นทั้งหมด ในกราฟดั้งเดิมของอนุพันธ์ เราสนใจศูนย์ของฟังก์ชันเป็นหลัก ดังนั้นเราจะเหลือไว้เพียงศูนย์เท่านั้น
  2. ทำเครื่องหมายสัญญาณของอนุพันธ์ในช่วงเวลาระหว่างศูนย์ เมื่อ f’(x) ≥ 0 ฟังก์ชันจะเพิ่มขึ้น และเมื่อ f’(x) ≤ 0 ฟังก์ชันจะลดลง หากปัญหาทำให้เกิดข้อจำกัดกับตัวแปร x เราจะทำเครื่องหมายตัวแปรเหล่านั้นบนกราฟใหม่เพิ่มเติม
  3. ตอนนี้เรารู้พฤติกรรมของฟังก์ชันและข้อจำกัดแล้ว เหลือเพียงการคำนวณปริมาณที่ต้องการในปัญหา

งาน. รูปนี้แสดงกราฟของอนุพันธ์ของฟังก์ชัน f(x) ที่กำหนดในช่วงเวลา [−3; 7.5]. ค้นหาช่วงการลดลงของฟังก์ชัน f(x) ในคำตอบของคุณ ให้ระบุผลรวมของจำนวนเต็มที่อยู่ในช่วงเวลาเหล่านี้

ตามปกติ เราจะวาดกราฟใหม่และทำเครื่องหมายขอบเขต [−3; 7.5] เช่นเดียวกับศูนย์ของอนุพันธ์ x = −1.5 และ x = 5.3 จากนั้นเราสังเกตสัญญาณของอนุพันธ์ เรามี:

เนื่องจากอนุพันธ์เป็นลบในช่วงเวลา (− 1.5) นี่คือช่วงของฟังก์ชันที่ลดลง ยังคงต้องรวมจำนวนเต็มทั้งหมดที่อยู่ในช่วงเวลานี้:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

งาน. รูปนี้แสดงกราฟของอนุพันธ์ของฟังก์ชัน f(x) ซึ่งกำหนดบนช่วง [−10; 4]. ค้นหาช่วงการเพิ่มขึ้นของฟังก์ชัน f(x) ในคำตอบของคุณ ให้ระบุความยาวของส่วนที่ใหญ่ที่สุด

มากำจัดข้อมูลที่ไม่จำเป็นกันเถอะ ให้เราเหลือเพียงขอบเขต [−10; 4] และศูนย์ของอนุพันธ์ ซึ่งคราวนี้มีสี่ตัว: x = −8, x = −6, x = −3 และ x = 2 ลองทำเครื่องหมายเครื่องหมายของอนุพันธ์แล้วได้ภาพต่อไปนี้:

เราสนใจในช่วงเวลาของฟังก์ชันที่เพิ่มขึ้น เช่น โดยที่ f’(x) ≥ 0 มีช่วงเวลาดังกล่าวสองช่วงบนกราฟ: (−8; −6) และ (−3; 2) มาคำนวณความยาวกัน:
ลิตร 1 = − 6 − (−8) = 2;
ลิตร 2 = 2 − (−3) = 5

เนื่องจากเราจำเป็นต้องค้นหาความยาวของช่วงที่ใหญ่ที่สุด เราจึงเขียนค่า l 2 = 5 เป็นคำตอบ

หากคุณทำตามคำจำกัดความอนุพันธ์ของฟังก์ชัน ณ จุดหนึ่งคือขีดจำกัดของอัตราส่วนของการเพิ่มขึ้นของฟังก์ชัน Δ ถึงการเพิ่มอาร์กิวเมนต์ Δ x:

ทุกอย่างดูเหมือนจะชัดเจน แต่ลองใช้สูตรนี้คำนวณ เช่น อนุพันธ์ของฟังก์ชัน (x) = x 2 + (2x+ 3) · xบาป x. หากคุณทำทุกอย่างตามคำจำกัดความหลังจากคำนวณไปสองสามหน้าคุณก็เผลอหลับไป ดังนั้นจึงมีวิธีที่ง่ายและมีประสิทธิภาพมากกว่า

ประการแรก เราสังเกตว่าจากฟังก์ชันที่หลากหลายทั้งหมด เราสามารถแยกแยะสิ่งที่เรียกว่าฟังก์ชันพื้นฐานได้ สิ่งเหล่านี้เป็นนิพจน์ที่ค่อนข้างง่ายซึ่งมีการคำนวณและจัดตารางอนุพันธ์มายาวนาน ฟังก์ชันดังกล่าวค่อนข้างง่ายต่อการจดจำ - พร้อมด้วยอนุพันธ์ของฟังก์ชันเหล่านั้น

อนุพันธ์ของฟังก์ชันเบื้องต้น

ฟังก์ชั่นเบื้องต้นมีทั้งหมดตามรายการด้านล่าง อนุพันธ์ของฟังก์ชันเหล่านี้ต้องรู้ด้วยใจ ยิ่งกว่านั้นการจดจำไม่ใช่เรื่องยากเลย - นั่นเป็นเหตุผลว่าทำไมพวกเขาถึงเป็นระดับประถมศึกษา

ดังนั้นอนุพันธ์ของฟังก์ชันพื้นฐาน:

ชื่อ การทำงาน อนุพันธ์
คงที่ (x) = , 0 (ใช่ ศูนย์!)
กำลังที่มีเลขชี้กำลังเป็นตรรกยะ (x) = x n n · x n − 1
ไซนัส (x) = บาป x เพราะ x
โคไซน์ (x) = cos x −บาป x(ลบไซน์)
แทนเจนต์ (x) = ทีจี x 1/คอส 2 x
โคแทนเจนต์ (x) = กะรัต x − 1/ซิน 2 x
ลอการิทึมธรรมชาติ (x) = บันทึก x 1/x
ลอการิทึมตามอำเภอใจ (x) = บันทึก x 1/(x ln )
ฟังก์ชันเลขชี้กำลัง (x) = x x(ไม่มีอะไรเปลี่ยนแปลง)

หากฟังก์ชันพื้นฐานคูณด้วยค่าคงที่ตามอำเภอใจ อนุพันธ์ของฟังก์ชันใหม่ก็จะถูกคำนวณอย่างง่ายดายเช่นกัน:

( · )’ = · ’.

โดยทั่วไป ค่าคงที่สามารถนำออกจากเครื่องหมายของอนุพันธ์ได้ ตัวอย่างเช่น:

(2x 3)’ = 2 · ( x 3)’ = 2 3 x 2 = 6x 2 .

แน่นอนว่าคุณสามารถเพิ่มฟังก์ชันพื้นฐานเข้าด้วยกัน คูณ หาร และอื่นๆ อีกมากมายได้ นี่คือลักษณะที่ฟังก์ชันใหม่จะปรากฏขึ้น ซึ่งไม่เฉพาะเจาะจงอีกต่อไป แต่ยังมีความแตกต่างตามกฎบางอย่างอีกด้วย กฎเหล่านี้จะกล่าวถึงด้านล่างนี้

อนุพันธ์ของผลรวมและผลต่าง

ให้ฟังก์ชันได้รับ (x) และ (x) อนุพันธ์ที่เรารู้จัก ตัวอย่างเช่น คุณสามารถใช้ฟังก์ชันพื้นฐานที่กล่าวถึงข้างต้นได้ จากนั้นคุณจะพบอนุพันธ์ของผลรวมและผลต่างของฟังก์ชันเหล่านี้:

  1. ( + )’ = ’ +
  2. ()’ = ’ −

ดังนั้น อนุพันธ์ของผลรวม (ผลต่าง) ของสองฟังก์ชันจะเท่ากับผลรวม (ผลต่าง) ของอนุพันธ์ อาจมีเงื่อนไขเพิ่มเติม ตัวอย่างเช่น, ( + + ชม.)’ = ’ + ’ + ชม. ’.

พูดอย่างเคร่งครัด ไม่มีแนวคิดเรื่อง "การลบ" ในพีชคณิต มีแนวคิดเรื่อง "องค์ประกอบเชิงลบ" ดังนั้นความแตกต่าง สามารถเขียนใหม่เป็นผลรวมได้ + (−1) แล้วเหลือเพียงสูตรเดียวเท่านั้น - อนุพันธ์ของผลรวม

ฉ(x) = x 2 + บาป x; (x) = x 4 + 2x 2 − 3.

การทำงาน (x) คือผลรวมของฟังก์ชันพื้นฐาน 2 ฟังก์ชัน ดังนั้น:

ฉ ’(x) = (x 2 + บาป x)’ = (x 2)’ + (บาป x)’ = 2x+ คอส x;

เราให้เหตุผลคล้ายกันสำหรับฟังก์ชันนี้ (x). มีเพียงสามเทอมเท่านั้น (จากมุมมองของพีชคณิต):

ก ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

คำตอบ:
’(x) = 2x+ คอส x;
’(x) = 4x · ( x 2 + 1).

อนุพันธ์ของผลิตภัณฑ์

คณิตศาสตร์เป็นวิทยาศาสตร์เชิงตรรกะ ผู้คนจำนวนมากเชื่อว่าหากอนุพันธ์ของผลรวมเท่ากับผลรวมของอนุพันธ์ อนุพันธ์ของผลคูณก็จะตามมาด้วย โจมตี">เท่ากับผลคูณของอนุพันธ์ แต่สกรูคุณ! อนุพันธ์ของผลิตภัณฑ์คำนวณโดยใช้สูตรที่แตกต่างอย่างสิ้นเชิง กล่าวคือ:

( · ) ’ = ’ · + ·

สูตรนั้นเรียบง่ายแต่มักถูกลืม และไม่ใช่แค่เด็กนักเรียนเท่านั้น แต่ยังรวมถึงนักเรียนด้วย ผลลัพธ์ที่ได้คือการแก้ปัญหาอย่างไม่ถูกต้อง

งาน. ค้นหาอนุพันธ์ของฟังก์ชัน: (x) = x 3 คอส x; (x) = (x 2 + 7x− 7) · x .

การทำงาน (x) เป็นผลคูณของฟังก์ชันพื้นฐาน 2 ฟังก์ชัน ดังนั้นทุกอย่างจึงเป็นเรื่องง่าย:

ฉ ’(x) = (x 3คอส x)’ = (x 3)’ เพราะ x + x 3 (คอส x)’ = 3x 2คอส x + x 3 (- บาป x) = x 2 (3คอส xxบาป x)

การทำงาน (x) ตัวคูณแรกจะซับซ้อนกว่าเล็กน้อย แต่รูปแบบทั่วไปไม่เปลี่ยนแปลง แน่นอนว่าปัจจัยแรกของฟังก์ชัน (x) เป็นพหุนามและอนุพันธ์ของมันคืออนุพันธ์ของผลรวม เรามี:

ก ’(x) = ((x 2 + 7x− 7) · x)’ = (x 2 + 7x− 7)’ · x + (x 2 + 7x− 7) · ( x)’ = (2x+ 7) · x + (x 2 + 7x− 7) · x = x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · x = x(x+ 9) · x .

คำตอบ:
’(x) = x 2 (3คอส xxบาป x);
’(x) = x(x+ 9) · x .

โปรดทราบว่าในขั้นตอนสุดท้ายอนุพันธ์จะถูกแยกตัวประกอบ อย่างเป็นทางการไม่จำเป็นต้องทำเช่นนี้ แต่อนุพันธ์ส่วนใหญ่ไม่ได้คำนวณด้วยตัวเอง แต่เพื่อตรวจสอบฟังก์ชัน ซึ่งหมายความว่าอนุพันธ์เพิ่มเติมจะเท่ากับศูนย์ สัญญาณจะถูกกำหนด และอื่นๆ ในกรณีเช่นนี้ ควรแยกตัวประกอบนิพจน์จะดีกว่า

ถ้ามีสองฟังก์ชัน (x) และ (x), และ (x) ≠ 0 บนเซตที่เราสนใจ เราสามารถกำหนดฟังก์ชันใหม่ได้ ชม.(x) = (x)/(x). สำหรับฟังก์ชันดังกล่าว คุณยังสามารถหาอนุพันธ์ได้:

ไม่อ่อนแอใช่ไหม? ลบมาจากไหน? ทำไม 2? และเช่นนี้! นี่เป็นหนึ่งในสูตรที่ซับซ้อนที่สุด - คุณไม่สามารถเข้าใจได้หากไม่มีขวด ดังนั้นจึงควรศึกษาด้วยตัวอย่างที่เฉพาะเจาะจงจะดีกว่า

งาน. ค้นหาอนุพันธ์ของฟังก์ชัน:

ตัวเศษและส่วนของแต่ละเศษส่วนมีฟังก์ชันพื้นฐาน ดังนั้นสิ่งที่เราต้องมีคือสูตรสำหรับอนุพันธ์ของผลหาร:


ตามธรรมเนียมแล้ว เรามาแยกตัวประกอบของตัวเศษกัน - นี่จะทำให้คำตอบง่ายขึ้นมาก:

ฟังก์ชันที่ซับซ้อนไม่จำเป็นต้องมีสูตรยาวครึ่งกิโลเมตร ตัวอย่างเช่น การรับฟังก์ชันก็เพียงพอแล้ว (x) = บาป xและแทนที่ตัวแปร xพูดเปิด x 2 + อิน x. มันจะได้ผล (x) = บาป ( x 2 + อิน x) - นี่คือฟังก์ชันที่ซับซ้อน มันมีอนุพันธ์ด้วย แต่จะไม่สามารถค้นหาได้โดยใช้กฎที่กล่าวถึงข้างต้น

ฉันควรทำอย่างไรดี? ในกรณีเช่นนี้ การแทนที่ตัวแปรและสูตรเพื่อหาอนุพันธ์ของฟังก์ชันที่ซับซ้อนจะช่วย:

ฉ ’(x) = ’(ที) · ที', ถ้า xถูกแทนที่ด้วย ที(x).

ตามกฎแล้ว สถานการณ์ที่มีการทำความเข้าใจสูตรนี้น่าเศร้ายิ่งกว่าอนุพันธ์ของผลหารด้วยซ้ำ ดังนั้นจึงเป็นการดีกว่าที่จะอธิบายโดยใช้ตัวอย่างเฉพาะพร้อมคำอธิบายโดยละเอียดของแต่ละขั้นตอน

งาน. ค้นหาอนุพันธ์ของฟังก์ชัน: (x) = 2x + 3 ; (x) = บาป ( x 2 + อิน x)

โปรดทราบว่าหากอยู่ในฟังก์ชัน (x) แทนนิพจน์ 2 x+3 จะเป็นเรื่องง่าย xแล้วเราจะได้ฟังก์ชันพื้นฐาน (x) = x. ดังนั้นเราจึงทำการทดแทน: ให้ 2 x + 3 = ที, (x) = (ที) = ที. เราค้นหาอนุพันธ์ของฟังก์ชันเชิงซ้อนโดยใช้สูตร:

ฉ ’(x) = ’(ที) · ที ’ = ( ที)’ · ที ’ = ที · ที

และตอนนี้ - ให้ความสนใจ! เราทำการเปลี่ยนแบบย้อนกลับ: ที = 2x+ 3 เราได้รับ:

ฉ ’(x) = ที · ที ’ = 2x+3 (2 x + 3)’ = 2x+ 3 2 = 2 2x + 3

ทีนี้มาดูฟังก์ชั่นกัน (x). แน่นอนว่ามันจำเป็นต้องเปลี่ยนใหม่ x 2 + อิน x = ที. เรามี:

ก ’(x) = ’(ที) · ที’ = (บาป ที)’ · ที' = cos ที · ที

การแทนที่แบบย้อนกลับ: ที = x 2 + อิน x. แล้ว:

ก ’(x) = คอส ( x 2 + อิน x) · ( x 2 + อิน x)' = คอส ( x 2 + อิน x) · (2 x + 1/x).

นั่นคือทั้งหมด! ดังที่เห็นได้จากนิพจน์ที่แล้ว ปัญหาทั้งหมดลดลงเหลือเพียงการคำนวณผลรวมอนุพันธ์

คำตอบ:
’(x) = 2 · 2x + 3 ;
’(x) = (2x + 1/x) เพราะ ( x 2 + อิน x).

บ่อยครั้งในบทเรียนของฉัน แทนที่จะใช้คำว่า "อนุพันธ์" ฉันใช้คำว่า "เฉพาะ" ตัวอย่างเช่น เส้นขีดของผลรวมเท่ากับผลรวมของเส้นขีด นั่นชัดเจนกว่าเหรอ? นั่นเป็นสิ่งที่ดี

ดังนั้นการคำนวณอนุพันธ์จึงต้องกำจัดจังหวะเดียวกันนี้ตามกฎที่กล่าวไว้ข้างต้น จากตัวอย่างสุดท้าย ลองกลับไปสู่กำลังอนุพันธ์ด้วยเลขชี้กำลังที่เป็นตรรกยะ:

(x n)’ = n · x n − 1

น้อยคนที่รู้ว่าในบทบาทนี้ nอาจเป็นเลขเศษส่วนก็ได้ ตัวอย่างเช่นรากคือ x 0.5. จะเกิดอะไรขึ้นถ้ามีอะไรแปลก ๆ อยู่ใต้ราก? ผลลัพธ์จะเป็นฟังก์ชันที่ซับซ้อนอีกครั้ง - พวกเขาต้องการสร้างโครงสร้างดังกล่าวในการทดสอบและการสอบ

งาน. ค้นหาอนุพันธ์ของฟังก์ชัน:

ขั้นแรก ลองเขียนรากใหม่เป็นกำลังด้วยเลขชี้กำลังที่เป็นตรรกยะ:

ฉ(x) = (x 2 + 8x − 7) 0,5 .

ตอนนี้เราทำการทดแทน: ให้ x 2 + 8x − 7 = ที. เราค้นหาอนุพันธ์โดยใช้สูตร:

ฉ ’(x) = ’(ที) · ที ’ = (ที 0.5)’ · ที’ = 0.5 · ที−0.5 · ที ’.

มาทำการแทนที่แบบย้อนกลับกัน: ที = x 2 + 8x− 7. เรามี:

ฉ ’(x) = 0.5 · ( x 2 + 8x− 7) −0.5 · ( x 2 + 8x− 7)’ = 0.5 · (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

สุดท้ายก็กลับไปสู่รากเหง้า:

งาน.

ฟังก์ชัน y=f(x) ถูกกำหนดไว้ในช่วงเวลา (-5; 6) รูปนี้แสดงกราฟของฟังก์ชัน y=f(x) ค้นหาระหว่างจุด x 1, x 2, ..., x 7 จุดเหล่านั้นที่อนุพันธ์ของฟังก์ชัน f(x) เท่ากับศูนย์ ในการตอบสนองให้เขียนจำนวนคะแนนที่พบ

สารละลาย:

หลักการในการแก้ปัญหานี้คือ: มีพฤติกรรมที่เป็นไปได้สามประการของฟังก์ชันในช่วงเวลานี้:

1) เมื่อฟังก์ชันเพิ่มขึ้น (อนุพันธ์มีมากกว่าศูนย์)

2) เมื่อฟังก์ชันลดลง (โดยที่อนุพันธ์น้อยกว่าศูนย์)

3) เมื่อฟังก์ชันไม่เพิ่มหรือลดลง (โดยที่อนุพันธ์เป็นศูนย์หรือไม่มีอยู่)

เราสนใจตัวเลือกที่สาม

อนุพันธ์มีค่าเท่ากับศูนย์โดยที่ฟังก์ชันราบรื่นและไม่มีอยู่ที่จุดพัก ลองดูที่จุดเหล่านี้ทั้งหมด

x 1 - ฟังก์ชันเพิ่มขึ้น ซึ่งหมายถึงอนุพันธ์ f′(x) >0

x 2 - ฟังก์ชันใช้เวลาน้อยที่สุดและราบรื่น ซึ่งหมายถึงอนุพันธ์ f ′(x) = 0

x 3 - ฟังก์ชั่นใช้เวลาสูงสุด แต่เมื่อถึงจุดนี้มีการหยุดพักซึ่งหมายถึงอนุพันธ์ฉ ′(x) ไม่มีอยู่

x 4 - ฟังก์ชั่นใช้เวลาสูงสุด แต่เมื่อถึงจุดนี้มีการหยุดพักซึ่งหมายถึงอนุพันธ์ฉ ′(x) ไม่มีอยู่

x 5 - อนุพันธ์ f ′(x) = 0

x 6 - ฟังก์ชันเพิ่มขึ้น ซึ่งหมายถึงอนุพันธ์ f'(x) >0

x 7 - ฟังก์ชั่นใช้เวลาน้อยที่สุดและราบรื่นซึ่งหมายความว่าอนุพันธ์ f ′(x) = 0

เราเห็นแล้วว่า f ′(x) = 0 ที่จุด x 2, x 5 และ x 7 รวมเป็น 3 คะแนน

กำลังโหลด...กำลังโหลด...