แก้สมการเชิงอนุพันธ์ด้วยเงื่อนไขเริ่มต้นทางออนไลน์ การแก้สมการเชิงอนุพันธ์ออนไลน์

การแก้สมการเชิงอนุพันธ์ ด้วยบริการออนไลน์ของเรา คุณสามารถแก้สมการเชิงอนุพันธ์ทุกประเภทและความซับซ้อนได้ เช่น สมการเชิงอนุพันธ์ เอกพันธ์ ไม่เชิงเส้น เชิงเส้น ลำดับที่หนึ่ง ลำดับที่สอง พร้อมตัวแปรที่แยกได้หรือแยกไม่ได้ ฯลฯ คุณจะได้รับคำตอบของสมการเชิงอนุพันธ์ในรูปแบบการวิเคราะห์พร้อมคำอธิบายโดยละเอียด หลายคนสนใจ: เหตุใดจึงจำเป็นต้องแก้สมการเชิงอนุพันธ์ทางออนไลน์? สมการประเภทนี้พบได้ทั่วไปในคณิตศาสตร์และฟิสิกส์ ซึ่งเป็นไปไม่ได้ที่จะแก้ปัญหาต่างๆ มากมายโดยไม่ต้องคำนวณสมการเชิงอนุพันธ์ สมการเชิงอนุพันธ์ยังพบได้ทั่วไปในเศรษฐศาสตร์ การแพทย์ ชีววิทยา เคมี และวิทยาศาสตร์อื่นๆ การแก้สมการทางออนไลน์ทำให้งานของคุณง่ายขึ้นอย่างมาก เปิดโอกาสให้คุณเข้าใจเนื้อหาได้ดีขึ้นและทดสอบตัวเอง ข้อดีของการแก้สมการเชิงอนุพันธ์แบบออนไลน์ เว็บไซต์บริการทางคณิตศาสตร์สมัยใหม่ช่วยให้คุณสามารถแก้สมการเชิงอนุพันธ์ออนไลน์ได้ทุกความซับซ้อน ดังที่คุณทราบ มีสมการเชิงอนุพันธ์หลายประเภทและแต่ละประเภทก็มีวิธีการแก้ของตัวเอง ในบริการของเรา คุณสามารถค้นหาวิธีแก้สมการเชิงอนุพันธ์ของลำดับและประเภทใดก็ได้ทางออนไลน์ เพื่อรับวิธีแก้ไข เราขอแนะนำให้คุณกรอกข้อมูลเบื้องต้นแล้วคลิกปุ่ม "วิธีแก้ไข" ไม่รวมข้อผิดพลาดในการให้บริการดังนั้นคุณจึงมั่นใจได้ 100% ว่าคุณได้รับคำตอบที่ถูกต้อง แก้สมการเชิงอนุพันธ์ด้วยบริการของเรา แก้สมการเชิงอนุพันธ์ออนไลน์ ตามค่าเริ่มต้น ในสมการดังกล่าว ฟังก์ชัน y จะเป็นฟังก์ชันของตัวแปร x แต่คุณยังสามารถระบุการกำหนดตัวแปรของคุณเองได้ ตัวอย่างเช่น หากคุณระบุ y(t) ในสมการเชิงอนุพันธ์ บริการของเราจะกำหนดโดยอัตโนมัติว่า y เป็นฟังก์ชันของตัวแปร t ลำดับของสมการเชิงอนุพันธ์ทั้งหมดจะขึ้นอยู่กับลำดับสูงสุดของอนุพันธ์ของฟังก์ชันที่มีอยู่ในสมการ การแก้สมการดังกล่าวหมายถึงการค้นหาฟังก์ชันที่ต้องการ บริการของเราจะช่วยคุณแก้สมการเชิงอนุพันธ์ทางออนไลน์ คุณไม่จำเป็นต้องใช้ความพยายามมากนักในการแก้สมการ คุณเพียงแค่ต้องป้อนด้านซ้ายและด้านขวาของสมการลงในช่องที่ต้องกรอกแล้วคลิกปุ่ม "วิธีแก้ไข" เมื่อป้อนอนุพันธ์ของฟังก์ชันจะต้องแสดงด้วยเครื่องหมายอะพอสทรอฟี่ ในเวลาไม่กี่วินาที คุณจะได้รับคำตอบโดยละเอียดสำหรับสมการเชิงอนุพันธ์ บริการของเราฟรีอย่างแน่นอน สมการเชิงอนุพันธ์กับตัวแปรที่แยกไม่ออก หากในสมการเชิงอนุพันธ์มีนิพจน์ทางด้านซ้ายซึ่งขึ้นอยู่กับ y และทางด้านขวามีนิพจน์ที่ขึ้นอยู่กับ x สมการเชิงอนุพันธ์ดังกล่าวจะถูกเรียกพร้อมกับตัวแปรที่แยกได้ ด้านซ้ายอาจมีอนุพันธ์ของ y การแก้สมการเชิงอนุพันธ์ประเภทนี้จะอยู่ในรูปของฟังก์ชัน y ซึ่งแสดงผ่านอินทิกรัลของด้านขวาของสมการ หากทางด้านซ้ายมีค่าฟังก์ชัน y ต่างกัน ในกรณีนี้ ทั้งสองด้านของสมการจะรวมกัน เมื่อตัวแปรในสมการเชิงอนุพันธ์ไม่ถูกแยกออกจากกัน จะต้องแยกตัวแปรเหล่านั้นเพื่อให้ได้สมการเชิงอนุพันธ์ที่แยกจากกัน สมการเชิงอนุพันธ์เชิงเส้น สมการเชิงอนุพันธ์ที่มีฟังก์ชันและอนุพันธ์ทั้งหมดอยู่ในระดับแรกเรียกว่าเชิงเส้น รูปแบบทั่วไปของสมการ: y’+a1(x)y=f(x) f(x) และ a1(x) เป็นฟังก์ชันต่อเนื่องของ x การแก้สมการเชิงอนุพันธ์ประเภทนี้ลดการรวมสมการเชิงอนุพันธ์สองตัวเข้ากับตัวแปรที่แยกจากกัน ลำดับสมการเชิงอนุพันธ์ สมการเชิงอนุพันธ์อาจเป็นลำดับที่หนึ่ง สอง และที่ n ลำดับของสมการเชิงอนุพันธ์จะกำหนดลำดับของอนุพันธ์สูงสุดที่มีอยู่ ในบริการของเรา คุณสามารถแก้สมการเชิงอนุพันธ์ทางออนไลน์สำหรับสมการที่หนึ่ง สอง สาม ฯลฯ คำสั่ง. การแก้สมการจะเป็นฟังก์ชันใดๆ y=f(x) เมื่อแทนมันลงในสมการ คุณจะได้เอกลักษณ์ กระบวนการหาคำตอบของสมการเชิงอนุพันธ์เรียกว่าอินทิเกรต ปัญหาคอชี่. นอกเหนือจากสมการเชิงอนุพันธ์แล้ว หากให้เงื่อนไขเริ่มต้น y(x0)=y0 เข้าไปด้วย จะเรียกว่าปัญหาคอชี ตัวบ่งชี้ y0 และ x0 จะถูกเพิ่มเข้าไปในคำตอบของสมการและค่าของค่าคงที่ C จะถูกกำหนดจากนั้นจึงหาคำตอบเฉพาะของสมการที่ค่า C นี้ นี่คือวิธีแก้ไขปัญหา Cauchy ปัญหาคอชีเรียกอีกอย่างว่าปัญหาเกี่ยวกับเงื่อนไขขอบเขต ซึ่งพบได้ทั่วไปในฟิสิกส์และกลศาสตร์ คุณยังมีโอกาสที่จะตั้งปัญหาคอชี ซึ่งก็คือเลือกผลหารที่ตรงกับเงื่อนไขเริ่มต้นที่กำหนดตั้งแต่วิธีแก้ปัญหาที่เป็นไปได้ทั้งหมดจนถึงสมการ

I. สมการเชิงอนุพันธ์สามัญ

1.1. แนวคิดพื้นฐานและคำจำกัดความ

สมการเชิงอนุพันธ์คือสมการที่เกี่ยวข้องกับตัวแปรอิสระ x, ฟังก์ชันที่ต้องการ และอนุพันธ์หรือส่วนต่างของมัน

ในเชิงสัญลักษณ์ สมการเชิงอนุพันธ์เขียนดังนี้:

F(x,y,y")=0, F(x,y,y")=0, F(x,y,y",y",.., y (n))=0

สมการเชิงอนุพันธ์เรียกว่าสามัญหากฟังก์ชันที่ต้องการขึ้นอยู่กับตัวแปรอิสระตัวเดียว

การแก้สมการเชิงอนุพันธ์เรียกว่าฟังก์ชันที่เปลี่ยนสมการนี้ให้มีเอกลักษณ์

ลำดับของสมการเชิงอนุพันธ์คือลำดับของอนุพันธ์สูงสุดที่รวมอยู่ในสมการนี้

ตัวอย่าง.

1. พิจารณาสมการเชิงอนุพันธ์อันดับหนึ่ง

วิธีแก้สมการนี้คือฟังก์ชัน y = 5 ln x แท้จริงแล้วการทดแทน คุณ"ในสมการ เราได้เอกลักษณ์มา

และนี่หมายความว่าฟังก์ชัน y = 5 ln x– เป็นวิธีแก้สมการเชิงอนุพันธ์นี้

2. พิจารณาสมการเชิงอนุพันธ์อันดับสอง y" - 5y" +6y = 0. ฟังก์ชันคือคำตอบของสมการนี้

จริงหรือ, .

เมื่อแทนนิพจน์เหล่านี้ลงในสมการ เราได้: , – เอกลักษณ์

และนี่หมายความว่าฟังก์ชันคือคำตอบของสมการเชิงอนุพันธ์นี้

การอินทิเกรตสมการเชิงอนุพันธ์เป็นกระบวนการหาคำตอบของสมการเชิงอนุพันธ์

ผลเฉลยทั่วไปของสมการเชิงอนุพันธ์เรียกว่าฟังก์ชันของแบบฟอร์ม ซึ่งรวมถึงค่าคงที่ตามอำเภอใจอิสระมากเท่ากับลำดับของสมการ

ผลเฉลยบางส่วนของสมการเชิงอนุพันธ์เป็นสารละลายที่ได้จากสารละลายทั่วไปสำหรับค่าตัวเลขต่างๆ ของค่าคงที่ตามอำเภอใจ ค่าของค่าคงที่ตามอำเภอใจจะพบได้ที่ค่าเริ่มต้นบางค่าของอาร์กิวเมนต์และฟังก์ชัน

กราฟของคำตอบเฉพาะของสมการเชิงอนุพันธ์เรียกว่ากราฟ เส้นโค้งอินทิกรัล.

ตัวอย่าง

1. ค้นหาคำตอบเฉพาะของสมการเชิงอนุพันธ์อันดับหนึ่ง

xdx + ydy = 0, ถ้า = 4 ณ x = 3.

สารละลาย. เราได้อินทิเกรตทั้งสองข้างของสมการแล้ว

ความคิดเห็น ค่าคงที่ C ที่ได้รับตามอำเภอใจซึ่งเป็นผลมาจากการรวมสามารถแสดงในรูปแบบใด ๆ ที่สะดวกสำหรับการแปลงเพิ่มเติม ในกรณีนี้ เมื่อคำนึงถึงสมการทางบัญญัติของวงกลม จะสะดวกในการแสดงค่าคงที่ตามอำเภอใจ C ในรูปแบบ .

- คำตอบทั่วไปของสมการเชิงอนุพันธ์

ผลเฉลยเฉพาะของสมการที่ตรงตามเงื่อนไขเริ่มต้น = 4 ณ x = 3 หาได้จากค่าทั่วไปโดยการแทนที่เงื่อนไขเริ่มต้นลงในคำตอบทั่วไป: 3 2 + 4 2 = C 2 ; ค=5.

แทน C=5 ลงในคำตอบทั่วไป เราจะได้ x 2 +y 2 = 5 2 .

นี่เป็นคำตอบเฉพาะของสมการเชิงอนุพันธ์ที่ได้มาจากคำตอบทั่วไปภายใต้เงื่อนไขเริ่มต้นที่กำหนด

2. หาคำตอบทั่วไปของสมการเชิงอนุพันธ์

ผลเฉลยของสมการนี้คือฟังก์ชันใดๆ ก็ตามที่อยู่ในรูปแบบ โดยที่ C คือค่าคงที่ใดๆ ก็ตาม อันที่จริง เมื่อแทนลงในสมการ เราได้: , .

ดังนั้นสมการเชิงอนุพันธ์นี้จึงมีคำตอบจำนวนอนันต์ เนื่องจากสำหรับค่าที่แตกต่างกันของค่าคงที่ C ความเท่าเทียมกันจะเป็นตัวกำหนดคำตอบที่แตกต่างกันของสมการ

ตัวอย่างเช่น โดยการทดแทนโดยตรงคุณสามารถตรวจสอบได้ว่าฟังก์ชันต่างๆ เป็นการแก้สมการ

ปัญหาที่คุณต้องค้นหาวิธีแก้สมการโดยเฉพาะ ย" = ฉ(x,y)เป็นไปตามเงื่อนไขเริ่มต้น y(x 0) = y 0เรียกว่าปัญหาคอชี

การแก้สมการ ย" = ฉ(x,y)เป็นไปตามเงื่อนไขเริ่มต้น y(x 0) = y 0เรียกว่าวิธีแก้ปัญหาคอชี่

การแก้ปัญหาคอชีมีความหมายทางเรขาคณิตอย่างง่าย ตามคำจำกัดความเหล่านี้เพื่อแก้ปัญหาคอชี่ ย" = ฉ(x,y)ระบุว่า y(x 0) = y 0, หมายถึงการหาเส้นโค้งอินทิกรัลของสมการ ย" = ฉ(x,y)ซึ่งผ่านจุดที่กำหนด ม 0 (x 0,ใช่ 0).

ครั้งที่สอง สมการเชิงอนุพันธ์อันดับหนึ่ง

2.1. แนวคิดพื้นฐาน

สมการเชิงอนุพันธ์อันดับหนึ่งคือสมการของรูปแบบ F(x,y,y") = 0.

สมการเชิงอนุพันธ์ลำดับที่หนึ่งจะรวมถึงอนุพันธ์ลำดับที่หนึ่งด้วย และไม่รวมอนุพันธ์ลำดับที่สูงกว่า

สมการ ย" = ฉ(x,y)เรียกว่าสมการอันดับหนึ่งที่แก้ได้ด้วยอนุพันธ์

ผลเฉลยทั่วไปของสมการเชิงอนุพันธ์อันดับหนึ่งคือฟังก์ชันของรูปแบบ ซึ่งมีค่าคงที่ใดก็ได้หนึ่งค่า

ตัวอย่าง.พิจารณาสมการเชิงอนุพันธ์อันดับหนึ่ง

ผลเฉลยของสมการนี้คือฟังก์ชัน

อันที่จริงเราได้แทนที่สมการนี้ด้วยค่าของมัน

นั่นคือ 3x=3x

ดังนั้น ฟังก์ชันนี้จึงเป็นคำตอบทั่วไปของสมการของค่าคงที่ C ใดๆ

ค้นหาคำตอบเฉพาะของสมการนี้ที่ตรงตามเงื่อนไขตั้งต้น ย(1)=1การแทนที่เงื่อนไขเริ่มต้น x = 1, y = 1เราได้มาจากคำตอบทั่วไปของสมการ ค=0.

ดังนั้นเราจึงได้คำตอบเฉพาะจากวิธีทั่วไปโดยการแทนที่ค่าผลลัพธ์ลงในสมการนี้ ค=0– โซลูชั่นส่วนตัว

2.2. สมการเชิงอนุพันธ์กับตัวแปรที่แยกไม่ออก

สมการเชิงอนุพันธ์ที่มีตัวแปรที่แยกได้คือสมการของรูปแบบ: y"=ฉ(x)ก(y)หรือผ่านดิฟเฟอเรนเชียล โดยที่ ฉ(x)และ ก(ย)– ฟังก์ชั่นที่กำหนด

สำหรับพวกนั้น ซึ่งก็คือสมการ y"=ฉ(x)ก(y)เท่ากับสมการ ซึ่งในตัวแปรนั้น ปรากฏทางด้านซ้ายเท่านั้น และตัวแปร x จะอยู่ทางด้านขวาเท่านั้น พวกเขาพูดว่า "ในสมการ y"=ฉ(x)ก(yมาแยกตัวแปรกันเถอะ”

สมการของแบบฟอร์ม เรียกว่าสมการตัวแปรแยกส่วน

การบูรณาการทั้งสองด้านของสมการ โดย x, เราได้รับ G(y) = F(x) + Cคือคำตอบทั่วไปของสมการ โดยที่ ก(ญ)และ ฉ(x)– แอนติเดริเวทีฟบางตัวตามลำดับของฟังก์ชันและ ฉ(x), ค่าคงที่ตามอำเภอใจ

อัลกอริทึมสำหรับการแก้สมการเชิงอนุพันธ์ลำดับที่หนึ่งด้วยตัวแปรที่แยกไม่ออก

ตัวอย่างที่ 1

แก้สมการ ย" = xy

สารละลาย. อนุพันธ์ของฟังก์ชัน คุณ"แทนที่ด้วย

มาแยกตัวแปรกันดีกว่า

มารวมความเท่าเทียมกันทั้งสองด้านเข้าด้วยกัน:

ตัวอย่างที่ 2

2ปป" = 1- 3x 2, ถ้า ปี 0 = 3ที่ x 0 = 1

นี่คือสมการตัวแปรที่แยกออกจากกัน ลองจินตนาการว่ามันเป็นดิฟเฟอเรนเชียล เมื่อต้องการทำเช่นนี้ เราจะเขียนสมการนี้ใหม่ในรูปแบบ จากที่นี่

เราพบว่าเมื่อรวมทั้งสองด้านของความเสมอภาคสุดท้ายเข้าด้วยกัน

การแทนที่ค่าเริ่มต้น x 0 = 1, y 0 = 3เราจะพบ กับ 9=1-1+, เช่น. ค = 9

ดังนั้นอินทิกรัลบางส่วนที่ต้องการจะเป็น หรือ

ตัวอย่างที่ 3

เขียนสมการของเส้นโค้งที่ผ่านจุด ม(2;-3)และมีค่าแทนเจนต์กับสัมประสิทธิ์เชิงมุม

สารละลาย. ตามเงื่อนไข

นี่คือสมการที่มีตัวแปรที่แยกออกจากกันได้ เมื่อแบ่งตัวแปรเราจะได้:

เมื่อรวมทั้งสองข้างของสมการเข้าด้วยกัน เราจะได้:

โดยใช้เงื่อนไขเริ่มต้น x = 2และ ย = - 3เราจะพบ :

ดังนั้นสมการที่ต้องการจึงมีรูปแบบ

2.3. สมการเชิงอนุพันธ์เชิงเส้นของลำดับแรก

สมการเชิงอนุพันธ์เชิงเส้นของลำดับแรกคือสมการของรูปแบบ y" = ฉ(x)y + ก(x)

ที่ไหน ฉ(x)และ ก.(เอ็กซ์)- ฟังก์ชั่นที่ระบุบางอย่าง

ถ้า ก(x)=0จากนั้นสมการเชิงอนุพันธ์เชิงเส้นเรียกว่าเอกพันธ์และมีรูปแบบ: ย" = ฉ(x)y

ถ้าสมการแล้ว y" = ฉ(x)y + ก(x)เรียกว่าต่างกัน

ผลเฉลยทั่วไปของสมการเชิงอนุพันธ์เอกพันธ์เชิงเส้น ย" = ฉ(x)yได้มาจากสูตร: โดยที่ กับ– ค่าคงที่ตามอำเภอใจ

โดยเฉพาะถ้า ค =0,แล้ววิธีแก้ปัญหาก็คือ ย = 0ถ้าสมการเอกพันธ์เชิงเส้นมีรูปแบบ ย" = ไคที่ไหน เคเป็นค่าคงที่ ดังนั้นคำตอบทั่วไปของมันจะเป็นดังนี้:

ผลเฉลยทั่วไปของสมการเชิงอนุพันธ์แบบไม่เอกพันธ์เชิงเส้น y" = ฉ(x)y + ก(x)จะได้รับจากสูตร ,

เหล่านั้น. เท่ากับผลรวมของคำตอบทั่วไปของสมการเอกพันธ์เชิงเส้นที่สอดคล้องกันกับคำตอบเฉพาะของสมการนี้

สำหรับสมการแบบไม่เอกพันธ์เชิงเส้นของรูปแบบ y" = kx + b,

ที่ไหน เคและ - ตัวเลขบางตัวและผลเฉลยเฉพาะจะเป็นฟังก์ชันคงที่ ดังนั้นคำตอบทั่วไปจึงมีรูปแบบ

ตัวอย่าง. แก้สมการ y" + 2y +3 = 0

สารละลาย. มาแสดงสมการในรูปแบบกัน ย" = -2y - 3ที่ไหน เค = -2, ข= -3สารละลายทั่วไปได้มาจากสูตร

ดังนั้นโดยที่ C เป็นค่าคงที่ตามอำเภอใจ

2.4. การแก้สมการเชิงอนุพันธ์เชิงเส้นลำดับที่ 1 โดยวิธีเบอร์นูลลี

การหาคำตอบทั่วไปของสมการเชิงอนุพันธ์เชิงเส้นลำดับที่หนึ่ง y" = ฉ(x)y + ก(x)ลดการแก้สมการเชิงอนุพันธ์สองสมการด้วยตัวแปรที่แยกจากกันโดยใช้การทดแทน y=ยูวี, ที่ไหน ยูและ โวลต์- ฟังก์ชั่นที่ไม่รู้จักจาก x. วิธีการแก้ปัญหานี้เรียกว่าวิธีของเบอร์นูลลี

อัลกอริทึมสำหรับการแก้สมการเชิงอนุพันธ์เชิงเส้นลำดับที่หนึ่ง

y" = ฉ(x)y + ก(x)

1. ป้อนการทดแทน y=ยูวี.

2. สร้างความแตกต่างให้กับความเท่าเทียมกันนี้ ย" = คุณ"วี + ยูวี"

3. ทดแทน และ คุณ"ลงในสมการนี้: คุณ"v + ยูวี" =ฉ(x)ยูวี + ก(x)หรือ คุณ"v + uv" + f(x)uv = g(x).

4. จัดกลุ่มเงื่อนไขของสมการให้เป็นแบบนั้น ยูเอามันออกจากวงเล็บ:

5. จากวงเล็บ ให้เท่ากับศูนย์ ให้ค้นหาฟังก์ชัน

นี่คือสมการที่แยกออกจากกัน:

ลองแบ่งตัวแปรและรับ:

ที่ไหน . .

6. แทนค่าผลลัพธ์ โวลต์เข้าไปในสมการ (จากขั้นตอนที่ 4):

และหาฟังก์ชัน นี่คือสมการที่มีตัวแปรแยกกันได้:

7. เขียนคำตอบทั่วไปในรูปแบบ: , เช่น. .

ตัวอย่างที่ 1

หาคำตอบเฉพาะของสมการ ย" = -2y +3 = 0ถ้า ย = 1ที่ x = 0

สารละลาย. ลองแก้มันโดยใช้การแทนที่กัน y=ยูวี.ย" = คุณ"วี + ยูวี"

การทดแทน และ คุณ"เราก็จะได้สมการนี้

โดยการจัดกลุ่มพจน์ที่สองและสามทางด้านซ้ายของสมการ เราจะนำตัวประกอบร่วมออกมา ยู ออกจากวงเล็บ

เราถือนิพจน์ในวงเล็บให้เป็นศูนย์และเมื่อแก้สมการผลลัพธ์แล้วเราจะพบฟังก์ชัน วี = วี(x)

เราได้สมการที่มีตัวแปรแยกจากกัน ลองอินทิเกรตทั้งสองข้างของสมการนี้: ค้นหาฟังก์ชัน โวลต์:

ลองแทนค่าผลลัพธ์ที่ได้ โวลต์ในสมการที่เราได้รับ:

นี่คือสมการตัวแปรที่แยกออกจากกัน มารวมทั้งสองข้างของสมการกัน: เรามาค้นหาฟังก์ชันกันดีกว่า คุณ = คุณ(x,c) เรามาหาวิธีแก้ไขทั่วไปกัน: ให้เราค้นหาคำตอบเฉพาะของสมการที่ตรงตามเงื่อนไขเริ่มต้น ย = 1ที่ x = 0:

สาม. สมการเชิงอนุพันธ์ลำดับที่สูงกว่า

3.1. แนวคิดพื้นฐานและคำจำกัดความ

สมการเชิงอนุพันธ์อันดับสองคือสมการที่มีอนุพันธ์ไม่สูงกว่าอันดับสอง ในกรณีทั่วไป สมการเชิงอนุพันธ์อันดับสองเขียนเป็น: F(x,y,y",y") = 0

ผลเฉลยทั่วไปของสมการเชิงอนุพันธ์อันดับสองคือฟังก์ชันของรูปแบบ ซึ่งประกอบด้วยค่าคงที่ใดๆ สองตัว ค 1และ ค 2.

คำตอบเฉพาะของสมการเชิงอนุพันธ์อันดับสองคือคำตอบที่ได้จากคำตอบทั่วไปสำหรับค่าคงที่ตามอำเภอใจ ค 1และ ค 2.

3.2. สมการเชิงอนุพันธ์เอกพันธ์เชิงเส้นของลำดับที่สองด้วย ค่าสัมประสิทธิ์คงที่

สมการเชิงอนุพันธ์เอกพันธ์เชิงเส้นของลำดับที่สองที่มีค่าสัมประสิทธิ์คงที่เรียกว่าสมการของรูป y" + ไพ" +qy = 0, ที่ไหน พีและ ถาม- ค่าคงที่

อัลกอริทึมสำหรับการแก้สมการเชิงอนุพันธ์อันดับสองเอกพันธ์ที่มีค่าสัมประสิทธิ์คงที่

1. เขียนสมการเชิงอนุพันธ์ในรูปแบบ: y" + ไพ" +qy = 0.

2. สร้างสมการคุณลักษณะโดยแสดงถึง คุณ"ผ่าน ร 2, คุณ"ผ่าน , ใน 1: ร 2 + ปรา +q = 0

อาจมีการแก้ไขเกี่ยวกับอนุพันธ์ไปแล้ว หรือสามารถแก้ไขได้ด้วยอนุพันธ์ .

ผลเฉลยทั่วไปของสมการเชิงอนุพันธ์ชนิดบนช่วงเวลา เอ็กซ์ที่ให้มา สามารถพบได้โดยการหาอินทิกรัลของทั้งสองข้างของความเท่าเทียมกันนี้

เราได้รับ .

หากเราดูคุณสมบัติของอินทิกรัลไม่ จำกัด เราจะพบคำตอบทั่วไปที่ต้องการ:

y = F(x) + C,

ที่ไหน ฉ(x)- หนึ่งในฟังก์ชันดั้งเดิม ฉ(x)ในระหว่าง เอ็กซ์, ก กับ- ค่าคงที่ตามอำเภอใจ

โปรดทราบว่าในปัญหาส่วนใหญ่จะมีช่วงเวลา เอ็กซ์ไม่ได้ระบุ ซึ่งหมายความว่าจะต้องพบวิธีแก้ปัญหาสำหรับทุกคน xซึ่งและฟังก์ชันที่ต้องการ และสมการดั้งเดิมก็สมเหตุสมผล

หากคุณต้องการคำนวณผลเฉลยเฉพาะของสมการเชิงอนุพันธ์ที่ตรงตามเงื่อนไขเริ่มต้น y(x 0) = y 0จากนั้นหลังจากคำนวณอินทิกรัลทั่วไปแล้ว y = F(x) + Cยังคงจำเป็นต้องกำหนดค่าของค่าคงที่ ค = ค 0โดยใช้เงื่อนไขเริ่มต้น นั่นก็คือค่าคงที่ ค = ค 0กำหนดจากสมการ F(x 0) + C = y 0และคำตอบบางส่วนที่ต้องการของสมการเชิงอนุพันธ์จะอยู่ในรูปแบบ:

y = F(x) + C 0.

ลองดูตัวอย่าง:

ลองหาคำตอบทั่วไปของสมการเชิงอนุพันธ์แล้วตรวจสอบความถูกต้องของผลลัพธ์ ขอให้เราหาคำตอบเฉพาะของสมการที่จะเป็นไปตามเงื่อนไขเริ่มต้น

สารละลาย:

หลังจากที่เรารวมสมการเชิงอนุพันธ์ที่กำหนดแล้ว เราจะได้:

.

ลองใช้อินทิกรัลนี้โดยใช้วิธีการอินทิเกรตทีละส่วน:


ที่., เป็นคำตอบทั่วไปของสมการเชิงอนุพันธ์

เพื่อให้แน่ใจว่าผลลัพธ์ถูกต้อง เรามาตรวจสอบกันดีกว่า ในการทำเช่นนี้ เราจะแทนที่วิธีแก้ปัญหาที่เราพบลงในสมการที่กำหนด:


.

นั่นคือเมื่อ สมการดั้งเดิมกลายเป็นเอกลักษณ์:

ดังนั้นจึงหาคำตอบทั่วไปของสมการเชิงอนุพันธ์ได้ถูกต้อง

วิธีแก้ที่เราพบคือคำตอบทั่วไปของสมการเชิงอนุพันธ์สำหรับค่าจริงทุกค่าของอาร์กิวเมนต์ x.

ยังคงต้องคำนวณวิธีแก้ปัญหาเฉพาะสำหรับ ODE ที่จะตรงตามเงื่อนไขเริ่มต้น กล่าวอีกนัยหนึ่ง จำเป็นต้องคำนวณค่าคงที่ กับซึ่งความเท่าเทียมกันจะเป็นจริง:

.

.

จากนั้นจึงทำการทดแทน ค = 2ในคำตอบทั่วไปของ ODE เราจะได้คำตอบเฉพาะของสมการเชิงอนุพันธ์ที่ตรงตามเงื่อนไขเริ่มต้น:

.

สมการเชิงอนุพันธ์สามัญ สามารถแก้หาอนุพันธ์ได้โดยการหาร 2 ข้างของสมการด้วย ฉ(x). การแปลงนี้จะเท่ากันถ้า ฉ(x)จะไม่เปลี่ยนเป็นศูนย์ไม่ว่าในกรณีใด ๆ xจากช่วงอินทิเกรตของสมการเชิงอนุพันธ์ เอ็กซ์.

มีสถานการณ์ที่เป็นไปได้เมื่อค่าบางค่าของการโต้แย้ง xเอ็กซ์ฟังก์ชั่น ฉ(x)และ ก.(เอ็กซ์)กลายเป็นศูนย์ไปพร้อมๆ กัน สำหรับค่าที่คล้ายกัน xผลเฉลยทั่วไปของสมการเชิงอนุพันธ์คือฟังก์ชันใดๆ ซึ่งกำหนดไว้ในนั้นเพราะว่า .

ถ้าสำหรับค่าอาร์กิวเมนต์บางอย่าง xเอ็กซ์เป็นไปตามเงื่อนไข ซึ่งหมายความว่าในกรณีนี้ ODE ไม่มีทางแก้ไข

สำหรับคนอื่นๆ xจากช่วงเวลา เอ็กซ์ผลเฉลยทั่วไปของสมการเชิงอนุพันธ์ถูกกำหนดจากสมการที่ถูกแปลงแล้ว

ลองดูตัวอย่าง:

ตัวอย่างที่ 1

เรามาหาวิธีแก้ไขทั่วไปสำหรับ ODE กัน: .

สารละลาย.

จากคุณสมบัติของฟังก์ชันพื้นฐานเบื้องต้นเป็นที่ชัดเจนว่าฟังก์ชันลอการิทึมธรรมชาติถูกกำหนดไว้สำหรับค่าที่ไม่เป็นลบของอาร์กิวเมนต์ ดังนั้นโดเมนของคำจำกัดความของนิพจน์ ลิน(x+3)มีช่วงเวลาหนึ่ง x > -3 . ซึ่งหมายความว่าสมการเชิงอนุพันธ์ที่ให้มานั้นสมเหตุสมผล x > -3 . สำหรับค่าอาร์กิวเมนต์เหล่านี้ นิพจน์ x+3ไม่หายไป จึงแก้ ODE ของอนุพันธ์ได้โดยหาร 2 ส่วนด้วย x + 3.

เราได้รับ .

ต่อไป เราจะรวมสมการเชิงอนุพันธ์ที่ได้ซึ่งแก้ไขด้วยอนุพันธ์: . ในการหาอินทิกรัลนี้ เราใช้วิธีรวมมันไว้ใต้เครื่องหมายดิฟเฟอเรนเชียล

สมการเชิงอนุพันธ์อันดับหนึ่ง ตัวอย่างการแก้ปัญหา
สมการเชิงอนุพันธ์กับตัวแปรที่แยกไม่ออก

สมการเชิงอนุพันธ์ (DE) สองคำนี้มักจะทำให้คนทั่วไปหวาดกลัว สมการเชิงอนุพันธ์ดูเหมือนจะเป็นสิ่งที่ห้ามปรามและยากแก่การเรียนรู้สำหรับนักเรียนหลายคน อู้ยยยย... สมการเชิงอนุพันธ์ ฉันจะเอาตัวรอดทั้งหมดนี้ได้อย่างไร!

ความคิดเห็นและทัศนคตินี้ผิดโดยพื้นฐานเพราะในความเป็นจริง สมการเชิงอนุพันธ์ - ง่ายและยังสนุกอีกด้วย. คุณจำเป็นต้องรู้และสามารถทำอะไรได้บ้างเพื่อที่จะเรียนรู้วิธีแก้สมการเชิงอนุพันธ์? หากต้องการศึกษาการกระจายตัวให้ประสบความสำเร็จ คุณจะต้องเก่งในการบูรณาการและสร้างความแตกต่าง ยิ่งมีการศึกษาหัวข้อต่างๆ ได้ดีเท่าไร อนุพันธ์ของฟังก์ชันของตัวแปรหนึ่งตัวและ อินทิกรัลไม่ จำกัดยิ่งเข้าใจสมการเชิงอนุพันธ์ได้ง่ายขึ้นเท่านั้น ฉันจะพูดมากกว่านี้ถ้าคุณมีทักษะบูรณาการที่ดีไม่มากก็น้อยหัวข้อนี้ก็เกือบจะเชี่ยวชาญแล้ว! ยิ่งคุณแก้อินทิกรัลประเภทต่างๆ ได้มากเท่าไรก็ยิ่งดีเท่านั้น ทำไม คุณจะต้องบูรณาการมาก และสร้างความแตกต่าง อีกด้วย ขอเเนะนำเรียนรู้ที่จะค้นหา

ใน 95% ของกรณี เอกสารทดสอบประกอบด้วยสมการเชิงอนุพันธ์อันดับหนึ่ง 3 ประเภท: สมการที่แยกออกจากกันซึ่งเราจะดูในบทเรียนนี้ สมการเอกพันธ์และ สมการแบบไม่เอกพันธ์เชิงเส้น. สำหรับผู้ที่เริ่มศึกษาดิฟฟิวเซอร์ ฉันแนะนำให้คุณอ่านบทเรียนตามลำดับนี้ทุกประการ และหลังจากศึกษาสองบทความแรกแล้ว การรวมทักษะของคุณในเวิร์กช็อปเพิ่มเติมจะไม่เสียหาย - สมการลดลงเป็นเนื้อเดียวกัน.

มีสมการเชิงอนุพันธ์ประเภทที่หายากกว่านั้นอีก เช่น สมการเชิงอนุพันธ์รวม สมการเบอร์นูลลี และอื่นๆ อีกมากมาย สิ่งที่สำคัญที่สุดในสองประเภทสุดท้ายคือสมการในผลต่างรวม เนื่องจากนอกเหนือจากสมการเชิงอนุพันธ์นี้ ฉันกำลังพิจารณาวัสดุใหม่ - บูรณาการบางส่วน.

หากคุณมีเวลาเหลือเพียงวันหรือสองวัน, ที่ เพื่อการเตรียมการที่รวดเร็วเป็นพิเศษมี หลักสูตรแบบสายฟ้าแลบในรูปแบบ pdf

สถานที่สำคัญได้ถูกกำหนดแล้ว - ไปกันเลย:

ก่อนอื่น เรามาจำสมการพีชคณิตปกติกันก่อน ประกอบด้วยตัวแปรและตัวเลข ตัวอย่างที่ง่ายที่สุด: . การแก้สมการสามัญหมายความว่าอย่างไร? นี่หมายถึงการค้นหา ชุดตัวเลขซึ่งเป็นไปตามสมการนี้ สังเกตได้ง่ายว่าสมการของเด็กมีรากเดียว: . เพื่อความสนุก มาตรวจสอบและแทนที่รากที่พบลงในสมการของเรา:

– ได้รับความเท่าเทียมกันที่ถูกต้องซึ่งหมายความว่าพบวิธีแก้ปัญหาอย่างถูกต้อง

ดิฟฟิวเซอร์ได้รับการออกแบบในลักษณะเดียวกันมาก!

สมการเชิงอนุพันธ์ คำสั่งแรกโดยทั่วไป ประกอบด้วย:
1) ตัวแปรอิสระ
2) ตัวแปรตาม (ฟังก์ชัน);
3) อนุพันธ์อันดับหนึ่งของฟังก์ชัน: .

ในสมการลำดับที่ 1 บางสมการอาจไม่มี "x" และ/หรือ "y" แต่ก็ไม่มีนัยสำคัญ - สำคัญเพื่อไปที่ห้องควบคุม เคยเป็นอนุพันธ์อันดับหนึ่ง และ ไม่ได้มีอนุพันธ์ของคำสั่งซื้อที่สูงกว่า – ฯลฯ

แปลว่าอะไร ?การแก้สมการเชิงอนุพันธ์หมายถึงการค้นหา ชุดฟังก์ชั่นทั้งหมดซึ่งเป็นไปตามสมการนี้ ชุดของฟังก์ชันดังกล่าวมักจะมีรูปแบบ (- ค่าคงที่ตามอำเภอใจ) ซึ่งเรียกว่า คำตอบทั่วไปของสมการเชิงอนุพันธ์.

ตัวอย่างที่ 1

แก้สมการเชิงอนุพันธ์

กระสุนเต็ม. จะเริ่มตรงไหน สารละลาย?

ก่อนอื่น คุณต้องเขียนอนุพันธ์ใหม่ในรูปแบบที่ต่างออกไปเล็กน้อย เราจำการกำหนดที่ยุ่งยากซึ่งหลายท่านอาจดูไร้สาระและไม่จำเป็น นี่คือกฎเกณฑ์ในดิฟฟิวเซอร์!

ในขั้นตอนที่ 2 มาดูกันว่าเป็นไปได้หรือไม่ ตัวแปรแยกกัน?การแยกตัวแปรหมายความว่าอย่างไร พูดประมาณว่า ทางด้านซ้ายเราจำเป็นต้องออกไป "กรีก" เท่านั้น, ก อยู่ทางขวาจัดระเบียบ แค่ "X" เท่านั้น. การแบ่งตัวแปรดำเนินการโดยใช้การจัดการแบบ "โรงเรียน": นำพวกมันออกจากวงเล็บ, ถ่ายโอนเงื่อนไขจากส่วนหนึ่งไปยังอีกส่วนหนึ่งด้วยการเปลี่ยนเครื่องหมาย, ถ่ายโอนปัจจัยจากส่วนหนึ่งไปยังอีกส่วนหนึ่งตามกฎของสัดส่วน ฯลฯ

ส่วนต่างและเป็นตัวคูณเต็มและผู้เข้าร่วมในการสู้รบ ในตัวอย่างที่กำลังพิจารณา ตัวแปรจะถูกแยกออกจากกันอย่างง่ายดายโดยการโยนตัวประกอบตามกฎสัดส่วน:

ตัวแปรจะถูกแยกออกจากกัน ทางด้านซ้ายมีเพียง "Y's" ทางด้านขวา - เฉพาะ "X's"

ขั้นตอนต่อไป - การอินทิเกรตสมการเชิงอนุพันธ์. ง่ายมาก เราใส่อินทิกรัลไว้ทั้งสองด้าน:

แน่นอน เราจำเป็นต้องหาอินทิกรัล ในกรณีนี้จะเป็นแบบตาราง:

ดังที่เราจำได้ ค่าคงที่ถูกกำหนดให้กับแอนติเดริเวทีฟใดๆ มีอินทิกรัลสองตัวตรงนี้ แต่เขียนค่าคงที่ครั้งเดียวก็เพียงพอแล้ว (เนื่องจากค่าคงที่ + ค่าคงที่ยังคงเท่ากับค่าคงที่อื่น). ในกรณีส่วนใหญ่จะวางไว้ทางด้านขวา

พูดอย่างเคร่งครัด หลังจากหาอินทิกรัลแล้ว สมการเชิงอนุพันธ์จะถูกแก้ไข สิ่งเดียวก็คือว่า "y" ของเราไม่ได้แสดงผ่าน "x" นั่นคือมีการนำเสนอวิธีแก้ปัญหา โดยปริยายรูปร่าง. การแก้สมการเชิงอนุพันธ์ในรูปแบบโดยนัยเรียกว่าการแก้สมการเชิงอนุพันธ์ อินทิกรัลทั่วไปของสมการเชิงอนุพันธ์. นั่นคือ นี่คืออินทิกรัลทั่วไป

คำตอบในรูปแบบนี้ค่อนข้างยอมรับได้ แต่มีตัวเลือกที่ดีกว่านี้ไหม มาลองรับกันดูครับ การตัดสินใจร่วมกัน.

โปรด, จำเทคนิคแรกมันเป็นเรื่องธรรมดามากและมักใช้ในทางปฏิบัติ: หากลอการิทึมปรากฏทางด้านขวาหลังจากการรวมเข้าด้วยกัน ในหลายกรณี (แต่ไม่เสมอไป!) ขอแนะนำให้เขียนค่าคงที่ไว้ใต้ลอการิทึม.

นั่นคือ, แทนมักจะเขียนรายการ .

เหตุใดจึงจำเป็น? และเพื่อให้ง่ายต่อการแสดงออกถึง “เกม” การใช้คุณสมบัติของลอการิทึม . ในกรณีนี้:

ตอนนี้ลอการิทึมและโมดูลสามารถลบออกได้:

มีการนำเสนอฟังก์ชันอย่างชัดเจน นี่คือวิธีแก้ปัญหาทั่วไป

คำตอบ: การตัดสินใจร่วมกัน: .

คำตอบของสมการเชิงอนุพันธ์หลายตัวนั้นค่อนข้างง่ายที่จะตรวจสอบ ในกรณีของเรา การดำเนินการนี้ทำได้ค่อนข้างง่าย โดยเราใช้วิธีแก้ไขปัญหาที่พบและแยกแยะความแตกต่าง:

จากนั้นเราแทนอนุพันธ์ลงในสมการดั้งเดิม:

– ได้ความเท่าเทียมกันที่ถูกต้อง ซึ่งหมายความว่าคำตอบทั่วไปเป็นไปตามสมการ ซึ่งเป็นสิ่งที่จำเป็นต้องตรวจสอบ

เมื่อให้ค่าที่แตกต่างกันคงที่ คุณจะได้จำนวนอนันต์ โซลูชั่นส่วนตัวสมการเชิงอนุพันธ์. เป็นที่ชัดเจนว่าฟังก์ชันใด ๆ , ฯลฯ เป็นไปตามสมการเชิงอนุพันธ์

บางครั้งเรียกว่าวิธีแก้ปัญหาทั่วไป ครอบครัวของฟังก์ชั่น. ในตัวอย่างนี้ วิธีแก้ปัญหาทั่วไป คือตระกูลของฟังก์ชันเชิงเส้น หรือถ้าให้ละเอียดกว่านั้นคือตระกูลที่มีสัดส่วนโดยตรง

หลังจากทบทวนตัวอย่างแรกอย่างละเอียดแล้ว ก็ควรตอบคำถามไร้เดียงสาหลายข้อเกี่ยวกับสมการเชิงอนุพันธ์:

1)ในตัวอย่างนี้ เราสามารถแยกตัวแปรได้ สิ่งนี้สามารถทำได้เสมอหรือไม่?ไม่ไม่เสมอไป และบ่อยครั้งที่ตัวแปรไม่สามารถแยกออกจากกันได้ ตัวอย่างเช่นใน สมการอันดับหนึ่งที่เป็นเนื้อเดียวกันคุณต้องเปลี่ยนมันก่อน ในสมการประเภทอื่นๆ เช่น ในสมการอินฮอโมจีนัสเชิงเส้นลำดับที่หนึ่ง คุณจำเป็นต้องใช้เทคนิคและวิธีการต่างๆ เพื่อค้นหาคำตอบทั่วไป สมการที่มีตัวแปรที่แบ่งแยกได้ซึ่งเราพิจารณาในบทเรียนแรกเป็นสมการเชิงอนุพันธ์ที่ง่ายที่สุด

2) เป็นไปได้ไหมที่จะอินทิเกรตสมการเชิงอนุพันธ์?ไม่ไม่เสมอไป เป็นเรื่องง่ายมากที่จะเกิดสมการ "แฟนซี" ที่ไม่สามารถบูรณาการได้ นอกจากนี้ยังมีปริพันธ์ที่ไม่สามารถนำมารวมกันได้ แต่ DE ดังกล่าวสามารถแก้ไขได้โดยใช้วิธีพิเศษโดยประมาณ รับประกันว่า D’Alembert และ Cauchy... ...เอ่อ ซุ่มซ่อนอยู่นะ ยิ่งอ่านไปเยอะเมื่อกี้ ฉันเกือบเสริมว่า "มาจากอีกโลกหนึ่ง" เลย

3) ในตัวอย่างนี้ เราได้รับคำตอบในรูปแบบของอินทิกรัลทั่วไป . เป็นไปได้เสมอไหมที่จะหาคำตอบทั่วไปจากอินทิกรัลทั่วไป นั่นคือ แสดงออก “y” อย่างชัดเจน?ไม่ไม่เสมอไป ตัวอย่างเช่น: . แล้วคุณจะแสดงออกถึง "กรีก" ที่นี่ได้อย่างไร! ในกรณีเช่นนี้ ควรเขียนคำตอบเป็นอินทิกรัลทั่วไป นอกจากนี้บางครั้งก็เป็นไปได้ที่จะหาวิธีแก้ปัญหาทั่วไป แต่เขียนไว้ยุ่งยากและงุ่มง่ามจนเป็นการดีกว่าที่จะทิ้งคำตอบไว้ในรูปแบบของอินทิกรัลทั่วไป

4) …บางทีนั่นก็เพียงพอแล้วสำหรับตอนนี้ ในตัวอย่างแรกที่เราพบ อีกจุดสำคัญแต่เพื่อไม่ให้ครอบคลุม "หุ่นเชิด" ด้วยข้อมูลใหม่จำนวนมาก ฉันจะทิ้งไว้จนกว่าจะถึงบทเรียนถัดไป

เราจะไม่รีบร้อน รีโมทคอนโทรลแบบเรียบง่ายอีกตัวหนึ่งและวิธีแก้ปัญหาทั่วไปอื่น:

ตัวอย่างที่ 2

ค้นหาคำตอบเฉพาะของสมการเชิงอนุพันธ์ที่ตรงตามเงื่อนไขตั้งต้น

สารละลาย:ตามเงื่อนไขต้องหาครับ โซลูชันส่วนตัว DE ที่เป็นไปตามเงื่อนไขเริ่มต้นที่กำหนด การกำหนดคำถามนี้เรียกอีกอย่างว่า ปัญหาคอชี่.

ขั้นแรกเราจะหาวิธีแก้ปัญหาทั่วไป ไม่มีตัวแปร "x" ในสมการ แต่ไม่ควรสับสน สิ่งสำคัญคือมันมีอนุพันธ์อันดับหนึ่ง

เราเขียนอนุพันธ์ใหม่ในรูปแบบที่ต้องการ:

แน่นอนว่าตัวแปรต่างๆ สามารถแยกออกจากกันได้ เด็กผู้ชายทางซ้าย เด็กผู้หญิงทางด้านขวา:

มารวมสมการกัน:

จะได้อินทิกรัลทั่วไป ที่นี่ฉันได้วาดค่าคงที่ด้วยเครื่องหมายดอกจัน ความจริงก็คือในไม่ช้ามันจะกลายเป็นค่าคงที่อื่น

ตอนนี้เราพยายามแปลงอินทิกรัลทั่วไปให้เป็นคำตอบทั่วไป (แสดงตัว "y" อย่างชัดเจน) มารำลึกถึงสิ่งเก่าดีๆจากโรงเรียน: . ในกรณีนี้:

ค่าคงที่ในตัวบ่งชี้ดูไม่บริสุทธิ์ ดังนั้นจึงมักจะถูกนำลงมาสู่พื้นดิน โดยรายละเอียดจะเป็นเช่นนี้ โดยใช้คุณสมบัติขององศา เราจะเขียนฟังก์ชันใหม่ดังนี้:

ถ้าเป็นค่าคงที่ ก็แสดงว่าเป็นค่าคงที่ด้วย ลองกำหนดใหม่ด้วยตัวอักษร:

จำไว้ว่า “การรื้อถอน” คงที่คือ เทคนิคที่สองซึ่งมักใช้ในการแก้สมการเชิงอนุพันธ์

ดังนั้นวิธีแก้ปัญหาทั่วไปคือ: . นี่เป็นกลุ่มฟังก์ชันเลขชี้กำลังที่ดี

ในขั้นตอนสุดท้าย คุณจะต้องค้นหาวิธีแก้ปัญหาเฉพาะที่ตรงตามเงื่อนไขเริ่มต้นที่กำหนด นี่เป็นเรื่องง่ายเช่นกัน

ภารกิจคืออะไร? จำเป็นต้องรับ เช่นค่าคงที่เพื่อให้เป็นไปตามเงื่อนไข

สามารถจัดรูปแบบได้หลายวิธี แต่นี่อาจเป็นวิธีที่ชัดเจนที่สุด ในวิธีแก้ปัญหาทั่วไป แทนที่จะเป็น "X" เราจะแทนที่ศูนย์ และแทนที่จะเป็น "Y" เราแทนที่ด้วยสอง:



นั่นคือ,

รุ่นการออกแบบมาตรฐาน:

ตอนนี้เราแทนค่าที่พบของค่าคงที่ลงในวิธีแก้ปัญหาทั่วไป:
– นี่คือวิธีแก้ปัญหาเฉพาะที่เราต้องการ

คำตอบ: โซลูชันส่วนตัว:

มาตรวจสอบกัน การตรวจสอบโซลูชันส่วนตัวประกอบด้วยสองขั้นตอน:

ก่อนอื่นคุณต้องตรวจสอบว่าวิธีแก้ปัญหาเฉพาะที่พบว่าตรงตามเงื่อนไขเริ่มต้นจริงหรือไม่ แทนที่จะเป็น "X" เราแทนที่ศูนย์แล้วดูว่าเกิดอะไรขึ้น:
- ใช่ ได้รับสองอันแล้ว ซึ่งหมายความว่าเป็นไปตามเงื่อนไขเริ่มต้น

ขั้นตอนที่สองเป็นที่คุ้นเคยอยู่แล้ว เราใช้วิธีแก้ปัญหาเฉพาะที่เป็นผลลัพธ์และค้นหาอนุพันธ์:

เราแทนลงในสมการดั้งเดิม:


– ได้รับความเท่าเทียมกันที่ถูกต้อง

สรุป: พบวิธีแก้ปัญหาเฉพาะอย่างถูกต้อง

เรามาดูตัวอย่างที่มีความหมายมากขึ้นกันดีกว่า

ตัวอย่างที่ 3

แก้สมการเชิงอนุพันธ์

สารละลาย:เราเขียนอนุพันธ์ใหม่ในรูปแบบที่เราต้องการ:

เราประเมินว่าสามารถแยกตัวแปรได้หรือไม่? สามารถ. เราย้ายเทอมที่สองไปทางด้านขวาโดยเปลี่ยนเครื่องหมาย:

และเราโอนตัวคูณตามกฎสัดส่วน:

ตัวแปรถูกแยกออกจากกัน มารวมทั้งสองส่วนเข้าด้วยกัน:

ฉันต้องเตือนคุณว่าวันพิพากษาใกล้เข้ามาแล้ว ถ้าเรียนไม่เก่ง อินทิกรัลไม่ จำกัดแก้ไขตัวอย่างแล้วไม่มีที่ไป - คุณจะต้องเชี่ยวชาญมันตอนนี้

อินทิกรัลของด้านซ้ายหาได้ง่าย เราจัดการกับอินทิกรัลของโคแทนเจนต์โดยใช้เทคนิคมาตรฐานที่เราดูในบทเรียน การบูรณาการฟังก์ชันตรีโกณมิติปีที่แล้ว:


ทางด้านขวา เรามีลอการิทึม และตามคำแนะนำทางเทคนิคแรกของฉัน ค่าคงที่ควรเขียนไว้ใต้ลอการิทึมด้วย

ทีนี้เราพยายามจัดรูปอินทิกรัลทั่วไปให้ง่ายขึ้น เนื่องจากเรามีเพียงลอการิทึม จึงค่อนข้างเป็นไปได้ (และจำเป็น) ที่จะกำจัดพวกมันออกไป โดยใช้ คุณสมบัติที่ทราบเรา "แพ็ค" ลอการิทึมให้มากที่สุด ฉันจะเขียนมันโดยละเอียด:

บรรจุภัณฑ์เสร็จสิ้นแล้วเพื่อให้ขาดรุ่งริ่งอย่างป่าเถื่อน:

เป็นไปได้ไหมที่จะแสดง "เกม"? สามารถ. จำเป็นต้องยกกำลังทั้งสองส่วน

แต่คุณไม่จำเป็นต้องทำเช่นนี้

เคล็ดลับทางเทคนิคประการที่สาม:หากเพื่อให้ได้วิธีแก้ปัญหาทั่วไปจำเป็นต้องเพิ่มพลังหรือหยั่งราก ในกรณีส่วนใหญ่คุณควรละเว้นการกระทำเหล่านี้และปล่อยให้คำตอบอยู่ในรูปอินทิกรัลทั่วไป ความจริงก็คือวิธีแก้ปัญหาทั่วไปจะดูแย่มาก - ด้วยรากขนาดใหญ่สัญญาณและถังขยะอื่น ๆ

ดังนั้นเราจึงเขียนคำตอบในรูปของอินทิกรัลทั่วไป ถือเป็นแนวปฏิบัติที่ดีที่จะนำเสนอในรูปแบบ คือ ทางด้านขวาถ้าเป็นไปได้ให้เหลือเพียงค่าคงที่ ไม่จำเป็นต้องทำเช่นนี้ แต่การเอาใจอาจารย์จะเป็นประโยชน์เสมอ ;-)

คำตอบ:อินทิกรัลทั่วไป:

! บันทึก: อินทิกรัลทั่วไปของสมการใดๆ สามารถเขียนได้มากกว่าหนึ่งวิธี ดังนั้น หากผลลัพธ์ของคุณไม่ตรงกับคำตอบที่ทราบก่อนหน้านี้ ไม่ได้หมายความว่าคุณแก้สมการไม่ถูกต้อง

อินทิกรัลทั่วไปนั้นค่อนข้างง่ายที่จะตรวจสอบ สิ่งสำคัญคือต้องค้นหาได้ อนุพันธ์ของฟังก์ชันที่ระบุโดยปริยาย. มาแยกคำตอบกันดีกว่า:

เราคูณทั้งสองพจน์ด้วย:

และหารด้วย:

ได้สมการเชิงอนุพันธ์ดั้งเดิมมาทุกประการ ซึ่งหมายความว่าหาอินทิกรัลทั่วไปได้ถูกต้อง

ตัวอย่างที่ 4

ค้นหาคำตอบเฉพาะของสมการเชิงอนุพันธ์ที่ตรงตามเงื่อนไขตั้งต้น ดำเนินการตรวจสอบ

นี่คือตัวอย่างให้คุณแก้ด้วยตัวเอง

ฉันขอเตือนคุณว่าอัลกอริทึมประกอบด้วยสองขั้นตอน:
1) ค้นหาวิธีแก้ปัญหาทั่วไป
2) ค้นหาวิธีแก้ปัญหาเฉพาะที่จำเป็น

การตรวจสอบยังดำเนินการในสองขั้นตอน (ดูตัวอย่างในตัวอย่างที่ 2) คุณต้อง:
1) ตรวจสอบให้แน่ใจว่าวิธีแก้ปัญหาเฉพาะที่พบเป็นไปตามเงื่อนไขเริ่มต้น
2) ตรวจสอบว่าวิธีแก้ปัญหาเฉพาะโดยทั่วไปเป็นไปตามสมการเชิงอนุพันธ์

เฉลยเต็มและเฉลยท้ายบทเรียน

ตัวอย่างที่ 5

หาคำตอบเฉพาะของสมการเชิงอนุพันธ์ เป็นไปตามเงื่อนไขเริ่มต้น ดำเนินการตรวจสอบ

สารละลาย:ก่อนอื่น เรามาหาวิธีแก้ทั่วไปกันก่อน สมการนี้ มีดิฟเฟอเรนเชียลสำเร็จรูปอยู่แล้ว ดังนั้น วิธีแก้จึงถูกทำให้ง่ายขึ้น เราแยกตัวแปร:

มารวมสมการกัน:

อินทิกรัลทางด้านซ้ายเป็นตาราง อินทิกรัลทางด้านขวาจะถูกนำไปใช้ วิธีการรวมฟังก์ชันภายใต้เครื่องหมายดิฟเฟอเรนเชียล:

ได้รับอินทิกรัลทั่วไปแล้ว เป็นไปได้ไหมที่จะแสดงวิธีแก้ปัญหาทั่วไปได้สำเร็จ สามารถ. เราแขวนลอการิทึมไว้ทั้งสองด้าน เนื่องจากมีค่าเป็นบวก สัญญาณโมดูลัสจึงไม่จำเป็น:

(หวังว่าทุกคนจะเข้าใจการเปลี่ยนแปลง เรื่องแบบนี้ก็น่าจะรู้อยู่แล้ว)

ดังนั้นวิธีแก้ปัญหาทั่วไปคือ:

ลองหาคำตอบเฉพาะที่สอดคล้องกับเงื่อนไขเริ่มต้นที่กำหนด
ในวิธีแก้ปัญหาทั่วไป แทนที่จะเป็น "X" เราจะแทนที่ศูนย์ และแทนที่จะเป็น "Y" เราแทนที่ลอการิทึมของสอง:

การออกแบบที่คุ้นเคยมากขึ้น:

เราแทนค่าที่พบของค่าคงที่ลงในวิธีแก้ปัญหาทั่วไป

คำตอบ:โซลูชันส่วนตัว:

ตรวจสอบ: ขั้นแรก ให้ตรวจสอบว่าตรงตามเงื่อนไขเริ่มต้นหรือไม่:
- ทุกอย่างเป็นสิ่งที่ดี.

ทีนี้ ลองตรวจสอบว่าคำตอบเฉพาะที่พบเป็นไปตามสมการเชิงอนุพันธ์หรือไม่ ค้นหาอนุพันธ์:

ลองดูสมการดั้งเดิม: – มันถูกนำเสนอในรูปแบบดิฟเฟอเรนเชียล มีสองวิธีในการตรวจสอบ สามารถแสดงส่วนต่างจากอนุพันธ์ที่พบได้:

ให้เราแทนที่วิธีแก้ปัญหาเฉพาะที่พบและผลต่างผลลัพธ์ลงในสมการดั้งเดิม :

เราใช้เอกลักษณ์ลอการิทึมพื้นฐาน:

ได้รับความเท่าเทียมกันที่ถูกต้อง ซึ่งหมายความว่าพบวิธีแก้ปัญหาเฉพาะอย่างถูกต้อง

วิธีที่สองของการตรวจสอบเป็นแบบมิเรอร์และคุ้นเคยมากขึ้น: จากสมการ ลองแสดงอนุพันธ์โดยหารชิ้นส่วนทั้งหมดด้วย:

และใน DE ที่ถูกแปลงเราจะแทนที่สารละลายบางส่วนที่ได้รับและอนุพันธ์ที่พบ ผลจากการลดความซับซ้อนควรได้รับความเท่าเทียมกันที่ถูกต้องด้วย

ตัวอย่างที่ 6

แก้สมการเชิงอนุพันธ์ นำเสนอคำตอบในรูปของอินทิกรัลทั่วไป

นี่คือตัวอย่างให้คุณแก้โจทย์ด้วยตัวเอง กรอกคำตอบและตอบในตอนท้ายของบทเรียน

มีปัญหาอะไรรออยู่เมื่อแก้สมการเชิงอนุพันธ์ด้วยตัวแปรที่แยกกันไม่ได้?

1) ไม่ชัดเจนเสมอไป (โดยเฉพาะกับ "กาน้ำชา") ที่สามารถแยกตัวแปรได้ ลองพิจารณาตัวอย่างที่มีเงื่อนไข: . ที่นี่คุณต้องนำปัจจัยออกจากวงเล็บ: และแยกราก: . ชัดเจนว่าจะต้องทำอะไรต่อไป

2) ความยากลำบากในการบูรณาการนั่นเอง อินทิกรัลมักไม่ใช่วิธีที่ง่ายที่สุด และหากมีข้อบกพร่องในทักษะการค้นหา อินทิกรัลไม่ จำกัดแล้วจะเป็นเรื่องยากกับตัวกระจายสัญญาณหลายตัว นอกจากนี้ ตรรกะ “เนื่องจากสมการเชิงอนุพันธ์นั้นง่าย อย่างน้อยก็ปล่อยให้อินทิกรัลซับซ้อนกว่านี้” เป็นที่นิยมในหมู่ผู้รวบรวมคอลเลกชันและคู่มือการฝึกอบรม

3) การเปลี่ยนแปลงที่มีค่าคงที่ ดังที่ทุกคนสังเกตเห็นแล้วว่าค่าคงที่ในสมการเชิงอนุพันธ์สามารถจัดการได้อย่างอิสระ และการแปลงบางอย่างอาจไม่ชัดเจนสำหรับมือใหม่เสมอไป ลองดูตัวอย่างเงื่อนไขอื่น: . ขอแนะนำให้คูณเงื่อนไขทั้งหมดด้วย 2: . ค่าคงที่ผลลัพธ์ก็เป็นค่าคงที่บางประเภทเช่นกัน ซึ่งสามารถแสดงได้โดย: . ใช่ และเนื่องจากมีลอการิทึมอยู่ทางด้านขวา จึงแนะนำให้เขียนค่าคงที่ใหม่ในรูปแบบของค่าคงที่อื่น: .

ปัญหาคือพวกเขามักจะไม่สนใจดัชนีและใช้ตัวอักษรตัวเดียวกัน ด้วยเหตุนี้ บันทึกการตัดสินใจจึงอยู่ในรูปแบบต่อไปนี้:

บาปแบบไหน? มีข้อผิดพลาดอยู่ตรงนั้น! พูดอย่างเคร่งครัดใช่ อย่างไรก็ตาม จากมุมมองที่สำคัญ ไม่มีข้อผิดพลาด เนื่องจากจากการแปลงค่าคงที่ของตัวแปร จึงยังคงได้รับค่าคงที่ของตัวแปร

หรืออีกตัวอย่างหนึ่ง สมมติว่าในระหว่างการแก้สมการนั้น จะได้อินทิกรัลทั่วไปมา คำตอบนี้ดูน่าเกลียด ดังนั้นจึงแนะนำให้เปลี่ยนเครื่องหมายของแต่ละเทอม: . อย่างเป็นทางการมีข้อผิดพลาดอีกอย่างหนึ่งที่นี่ - ควรเขียนไว้ทางด้านขวา แต่บอกเป็นนัยอย่างไม่เป็นทางการว่า “ลบ ce” ยังคงเป็นค่าคงที่ ( ซึ่งสามารถสื่อถึงความหมายใดๆ ได้อย่างง่ายดาย!)ดังนั้นการใส่ "ลบ" จึงไม่สมเหตุสมผลและคุณสามารถใช้ตัวอักษรตัวเดียวกันได้

ฉันจะพยายามหลีกเลี่ยงแนวทางที่ไม่ระมัดระวัง และยังคงกำหนดดัชนีที่แตกต่างกันให้กับค่าคงที่เมื่อแปลงค่าเหล่านั้น

ตัวอย่างที่ 7

แก้สมการเชิงอนุพันธ์ ดำเนินการตรวจสอบ

สารละลาย:สมการนี้ช่วยให้สามารถแยกตัวแปรได้ เราแยกตัวแปร:

มาบูรณาการกัน:

ไม่จำเป็นต้องกำหนดค่าคงที่ตรงนี้เป็นลอการิทึม เนื่องจากจะไม่มีประโยชน์อะไรจากสิ่งนี้

คำตอบ:อินทิกรัลทั่วไป:

ตรวจสอบ: แยกความแตกต่างคำตอบ (ฟังก์ชันโดยนัย):

เรากำจัดเศษส่วนโดยการคูณทั้งสองพจน์ด้วย:

ได้รับสมการเชิงอนุพันธ์ดั้งเดิมแล้ว ซึ่งหมายความว่าพบอินทิกรัลทั่วไปได้อย่างถูกต้อง

ตัวอย่างที่ 8

ค้นหาวิธีแก้ปัญหาเฉพาะของ DE
,

นี่คือตัวอย่างให้คุณแก้ด้วยตัวเอง คำใบ้เดียวก็คือว่า คุณจะได้อินทิกรัลทั่วไปที่นี่ และถ้าพูดให้ถูกต้องกว่านั้น คุณต้องคิดค้นเพื่อหาวิธีแก้ปัญหาเฉพาะเจาะจง แต่ อินทิกรัลบางส่วน. เฉลยเต็มและเฉลยท้ายบทเรียน

สมการเชิงอนุพันธ์สามัญ คือสมการที่เกี่ยวข้องกับตัวแปรอิสระ ซึ่งเป็นฟังก์ชันที่ไม่รู้จักของตัวแปรนี้และอนุพันธ์ของตัวแปร (หรือดิฟเฟอเรนเชียล) ของลำดับต่างๆ

ลำดับของสมการเชิงอนุพันธ์ เรียกว่าลำดับของอนุพันธ์สูงสุดที่อยู่ในนั้น

นอกจากสมการทั่วไปแล้ว ยังมีการศึกษาสมการเชิงอนุพันธ์ย่อยด้วย สิ่งเหล่านี้คือสมการที่เกี่ยวข้องกับตัวแปรอิสระ ฟังก์ชันที่ไม่รู้จักของตัวแปรเหล่านี้ และอนุพันธ์ย่อยของตัวแปรนั้นเทียบกับตัวแปรเดียวกัน แต่เราจะพิจารณาเท่านั้น สมการเชิงอนุพันธ์สามัญ ดังนั้นเพื่อความกระชับเราจึงละเว้นคำว่า "ธรรมดา"

ตัวอย่างของสมการเชิงอนุพันธ์:

(1) ;

(3) ;

(4) ;

สมการ (1) คือลำดับที่สี่ สมการ (2) คือลำดับที่สาม สมการ (3) และ (4) คือลำดับที่สอง สมการ (5) คือลำดับที่หนึ่ง

สมการเชิงอนุพันธ์ nลำดับที่ไม่จำเป็นต้องมีฟังก์ชันที่ชัดเจน ซึ่งเป็นอนุพันธ์ทั้งหมดตั้งแต่ตัวแรกถึง n-ลำดับที่และตัวแปรอิสระ อาจไม่มีอนุพันธ์ของคำสั่งบางคำสั่ง ฟังก์ชัน หรือตัวแปรอิสระอย่างชัดเจน

ตัวอย่างเช่น ในสมการ (1) ไม่มีอนุพันธ์อันดับสามและอันดับสองอย่างชัดเจน รวมถึงฟังก์ชันด้วย ในสมการ (2) - อนุพันธ์อันดับสองและฟังก์ชัน ในสมการ (4) - ตัวแปรอิสระ ในสมการ (5) - ฟังก์ชัน เฉพาะสมการ (3) เท่านั้นที่มีอนุพันธ์ ฟังก์ชัน และตัวแปรอิสระทั้งหมดอย่างชัดเจน

การแก้สมการเชิงอนุพันธ์ ทุกฟังก์ชันถูกเรียก ย = ฉ(x)เมื่อนำมาแทนสมการจะกลายเป็นอัตลักษณ์

กระบวนการหาคำตอบของสมการเชิงอนุพันธ์เรียกว่ากระบวนการของมัน บูรณาการ.

ตัวอย่างที่ 1หาคำตอบของสมการเชิงอนุพันธ์

สารละลาย. ลองเขียนสมการนี้ในรูปแบบ วิธีแก้คือหาฟังก์ชันจากอนุพันธ์ของมัน ฟังก์ชันดั้งเดิม ดังที่ทราบจากแคลคูลัสอินทิกรัล นั้นเป็นฟังก์ชันแอนติเดริเวทีฟสำหรับ เช่น

นั่นคือสิ่งที่มันเป็น คำตอบของสมการเชิงอนุพันธ์นี้ . การเปลี่ยนแปลงในนั้น เราจะได้รับวิธีแก้ปัญหาที่แตกต่างกัน เราพบว่ามีวิธีแก้สมการเชิงอนุพันธ์อันดับหนึ่งจำนวนอนันต์

ผลเฉลยทั่วไปของสมการเชิงอนุพันธ์ nลำดับที่ 2 คือคำตอบที่แสดงอย่างชัดเจนเกี่ยวกับฟังก์ชันที่ไม่รู้จักและประกอบด้วย nค่าคงที่ตามอำเภอใจอิสระเช่น

การแก้สมการเชิงอนุพันธ์ในตัวอย่างที่ 1 นั้นเป็นคำตอบทั่วไป

ผลเฉลยบางส่วนของสมการเชิงอนุพันธ์ วิธีแก้ปัญหาที่เรียกว่าค่าคงที่ตามอำเภอใจ

ตัวอย่างที่ 2ค้นหาคำตอบทั่วไปของสมการเชิงอนุพันธ์และคำตอบเฉพาะสำหรับ .

สารละลาย. ลองอินทิเกรตทั้งสองข้างของสมการหลายๆ ครั้งเท่ากับลำดับของสมการเชิงอนุพันธ์กัน

,

.

เป็นผลให้เราได้รับวิธีแก้ปัญหาทั่วไป -

ของสมการอนุพันธ์อันดับสามที่กำหนด

ตอนนี้เรามาดูวิธีแก้ปัญหาเฉพาะภายใต้เงื่อนไขที่ระบุกัน ในการทำเช่นนี้ให้แทนที่ค่าของพวกเขาแทนค่าสัมประสิทธิ์ตามอำเภอใจแล้วรับ

.

หากนอกเหนือจากสมการเชิงอนุพันธ์แล้ว เงื่อนไขเริ่มต้นจะได้รับในรูปแบบ ดังนั้นปัญหาดังกล่าวจะถูกเรียกว่า ปัญหาคอชี่ . แทนค่าและลงในคำตอบทั่วไปของสมการแล้วค้นหาค่าของค่าคงที่ตามอำเภอใจ แล้วคำตอบเฉพาะของสมการของค่าที่พบ . นี่คือวิธีแก้ปัญหาคอชี่

ตัวอย่างที่ 3แก้โจทย์คอชี่สำหรับสมการเชิงอนุพันธ์จากตัวอย่างที่ 1 เรื่อง ถึง

สารละลาย. ให้เราแทนค่าจากเงื่อนไขเริ่มต้นไปเป็นวิธีแก้ปัญหาทั่วไป = 3, x= 1. เราได้

เราเขียนวิธีแก้ปัญหาของปัญหาคอชีสำหรับสมการเชิงอนุพันธ์อันดับหนึ่งนี้:

การแก้สมการเชิงอนุพันธ์ แม้แต่สมการที่ง่ายที่สุด ก็ต้องอาศัยทักษะการอินทิเกรตและอนุพันธ์ที่ดี รวมถึงฟังก์ชันที่ซับซ้อน ดังตัวอย่างต่อไปนี้

ตัวอย่างที่ 4หาคำตอบทั่วไปของสมการเชิงอนุพันธ์

สารละลาย. สมการนี้เขียนอยู่ในรูปแบบที่คุณสามารถอินทิเกรตทั้งสองด้านได้ทันที

.

เราใช้วิธีการอินทิเกรตโดยการเปลี่ยนตัวแปร (การทดแทน) ปล่อยให้มันเป็นอย่างนั้น

จำเป็นต้องใช้ ดีเอ็กซ์และตอนนี้ - ความสนใจ - เราทำสิ่งนี้ตามกฎของการสร้างความแตกต่างของฟังก์ชันที่ซับซ้อนตั้งแต่นั้นมา xและมีฟังก์ชันที่ซับซ้อน ("แอปเปิ้ล" คือการสกัดรากที่สองหรือที่เหมือนกันคือยกกำลัง "ครึ่งหนึ่ง" และ "เนื้อสับ" เป็นการแสดงออกใต้ราก):

เราพบอินทิกรัล:

กลับไปสู่ตัวแปร x, เราได้รับ:

.

นี่คือคำตอบทั่วไปของสมการเชิงอนุพันธ์ดีกรีแรก

ไม่เพียงแต่ต้องใช้ทักษะจากส่วนก่อนหน้าของคณิตศาสตร์ชั้นสูงในการแก้สมการเชิงอนุพันธ์เท่านั้น แต่ยังต้องใช้ทักษะตั้งแต่ระดับประถมศึกษาด้วย นั่นก็คือ คณิตศาสตร์ของโรงเรียนด้วย ดังที่ได้กล่าวไปแล้ว ในสมการเชิงอนุพันธ์ของลำดับใดๆ อาจไม่มีตัวแปรอิสระ นั่นคือตัวแปร x. ความรู้เรื่องสัดส่วนจากโรงเรียนที่ไม่ลืม (แต่ ขึ้นอยู่กับใคร) จากโรงเรียน จะช่วยแก้ปัญหานี้ได้ นี่คือตัวอย่างถัดไป

กำลังโหลด...กำลังโหลด...