Образование кислорода при фотосинтезе. Процесс фотосинтеза в листьях растений

Где происходит фотосинтез?

листьях зеленых растений

Определение

1) Световая фаза;

2) Темновая фаза.

Фазы фотосинтеза

Световая фаза

Темновая фаза

Результат

Где происходит фотосинтез?

Что ж, сразу отвечая на вопрос, скажу, что фотосинтез происходит в листьях зеленых растений , а точнее в их клетках. Главную роль здесь играют хлороплатсы, специальные клетки, без которых фотосинтез невозможен. Я отмечу, что этот процесс, фотосинтез, является, как мне кажется, удивительным свойством живого.

Ведь каждый знает, что с помощью фотосинтеза поглощается углекислый газ и выделяется кислород. Такое простое для понимания явление, и в то же время одно из самых сложных процессов живых организмов, в котором принимают участие огромное количество разных частиц и молекул. Чтобы в конце выделился кислород, которым мы все с вами дышим.

Что ж, попытаюсь рассказать, как мы получаем драгоценный кислород.

Определение

Фотосинтез – синтез органических веществ из неорганических с помощью солнечного света. Другими словами, падающий на листья, солнечный свет дает необходимую энергию для процесса фотосинтеза. В результате из неорганики образуется органика и выделяется кислород воздуха.

Фотосинтез протекает в 2 фазы:

1) Световая фаза;

2) Темновая фаза.

Расскажу немного о фазах фотосинтеза.

Фазы фотосинтеза

Световая фаза – как ясно из названия, происходит на свету, на поверхностной мембране клеток зеленого листа (говоря научным языком- на мембране гранн). Основными участниками здесь будут хлорофилл, специальные белковые молекулы (белки переносчики) и АТФ- синтетаза, являющаяся поставщиком энергии.

Световая фаза, как и вообще процесс фотосинтеза, начинается с действия кванта света на молекулу хлорофилла. В результате этого взаимодействия хлорофилл приходит в возбужденное состояние, из-за чего эта самая молекула теряет электрон, который переходит на наружную поверхность мембраны. Далее, что бы восстановить потерянный электрон, молекула хлорофилла отбирает его у молекулы воды, из-за чего происходит ее разложение. Все мы знаем, что вода состоит из двух молекул водорода и одной кислорода, и при разложении воды кислород поступает в атмосферу, а положительно заряженный водород собирается на внутренней поверхности мембраны.

Таким образом получилось так, что по одну сторону сконцентрированы отрицательно заряженные электроны и по другую положительно заряженные протоны водорода. С этого момента появляется молекула АТФ-синтетазы, которая образует своеобразный коридор для прохождения протонов к электронам и для снижения этой разности концентраций, о которой мы говорили ниже. На этом месте световая фаза заканчивается и заканчивается она образованием энергетической молекулы АТФ и восстановлением специфической молекулы переносчика НАДФ*Н2.

Другими словами, произошло разложение воды, из-за чего выделился кислород и образовалась молекула АТФ, которая даст энергию для дальнейшего протекания фотосинтеза.

Темновая фаза – как ни странно, фаза эта может протекать как на свету, так и при темноте. Протекает эта фаза в специальных органоидах клеток листа, активно участвующих в фотосинтезе (пластиды). Эта фаза включает несколько химических реакций, которые протекают с помощью той самой молекулы АТФ, синтезированной в первой фазе, и НАДФН. В свою очередь, главные роли здесь принадлежат воде и углекислому газу. Для темновой фазы необходимо непрерывное поступление энергии. Углекислый газ поступает из атмосферы, водород образовался в первую фазу, за энергию отвечает молекула АТФ. Главным результатом темновой фазы являются углеводы, то есть та самая органика, которая необходима растениям для жизни.

Результат

Так и происходит тот самый процесс образования органики (углеводов) из неорганики. В результате растения получают продукты, необходимые им для жизни, а мы получаем кислород воздуха. Добавлю, что весь этот процесс протекает исключительно в зеленых растениях, в клетках которых есть хлоропласты («зеленые клетки»).

Полезно0 Не очень

На настоящий момент у живых организмов обнаружено два типа пигментов, способных выполнять функцию фотосинтетических антенн. Данные пигменты поглощают кванты видимого света и обеспечивают дальнейшее запасание энергии излучения в виде энергии электрохимического градиента H + на биологических мембранах. Менее распространен случай, при котором в качестве антенны служит производное витамина А, ретиналь; у подавляющего большинства организмов роль антенн играют хлорофиллы. В соответствии с этим выделяют бесхлорофилльный и хлорофилльный фотосинтез.

Бесхлорофилльный фотосинтез

Система бесхлорофилльного фотосинтеза отличается значительной простотой организации, в связи с чем предполагается эволюционно первичным механизмом запасания энергии электромагнитного излучения. Эффективность бесхлорофилльного фотосинтеза как механизма преобразования энергии сравнительно низка (на один поглощённый квант переносится лишь один H +).

Открытие у галофильных архей

Dieter Oesterhelt и Walther Stoeckenius идентифицировали в «пурпурных мембранах» представителя галофильных архей Halobacterium salinarium (прежнее название Н. halobium ) белок, который позже был назван бактериородопсином . В скором времени были накоплены факты, указывающие на то, что бактериородопсин является светозависимым генератором протонного градиента . В частности, было продемонстрировано фотофосфорилирование на искусственных везикулах, содержащих бактериородопсин и митохондриальную АТФ-синтазу, фотофосфорилирование в интактных клетках H. salinarium , светоиндуцируемое падение pH среды и подавление дыхания, причем все эти эффекты коррелировали со спектром поглощения бактериородопсина. Таким образом, были получены неопровержимые доказательства существования бесхлорофилльного фотосинтеза.

Механизм

Фотосинтетический аппарат экстремальных галобактерий является наиболее примитивным из ныне известных; в нём отсутствует электрон-транспортная цепь. Цитоплазматическая мембрана галобактерий является сопрягающей мембраной, содержащей два основных компонента: светозависимую протонную помпу (бактериородопсин) и АТФ-синтазу . Работа такого фотосинтетического аппарата основана на следующих трансформациях энергии:

  1. Хромофор бактериородопсина ретиналь поглощает кванты света, что приводит к конформационным изменениям в структуре бактериородопсина и транспорту протона из цитоплазмы в периплазматическое пространство. Кроме того, дополнительный вклад в электрическую составляющую градиента вносит активный светозависимый импорт хлорид аниона, который обеспечивает галородопсин [ ] . Таким образом, в результате работы бактериородопсина энергия солнечного излучения трансформируется в энергию электрохимического градиента протонов на мембране.
  2. При работе АТФ-синтазы энергия трансмембранного градиента трансформируется в энергию химических связей АТФ. Таким образом, осуществляется хемиосмотическое сопряжение.

При бесхлорофилльном типе фотосинтеза (как и при реализации циклических потоков в электрон-транспортных цепях) не происходит образования восстановительных эквивалентов (восстановленного ферредоксина или НАД(Ф)Н), необходимых для ассимиляции углекислого газа. Поэтому при бесхлорофилльном фотосинтезе не происходит ассимиляции углекислого газа, а осуществляется исключительно запасание солнечной энергии в форме АТФ (фотофосфорилирование).

Значение

Основной путь получения энергии для галобактерий - аэробное окисление органических соединений (при культивировании используют углеводы и аминокислоты). При дефиците кислорода помимо бесхлорофилльного фотосинтеза источниками энергии для галобактерий может служить анаэробное нитратное дыхание или сбраживание аргинина и цитруллина . Однако в эксперименте было показано, что бесхлорофилльный фотосинтез может служить и единственным источником энергии в анаэробных условиях при подавлении анаэробного дыхания и брожения при обязательном условии, что в среду вносят ретиналь, для синтеза которого необходим кислород.

Хлорофилльный фотосинтез

Хлорофилльный фотосинтез отличается от бактериородопсинового значительно большей эффективностью запасания энергии. На каждый поглощённый квант излучения против градиента переносится не менее одного H + и в некоторых случаях энергия запасается в форме восстановленных соединений (ферредоксин, НАДФ).

Аноксигенный

Аноксигенный (или бескислородный) фотосинтез протекает без выделения кислорода. К аноксигенному фотосинтезу способны пурпурные и зелёные бактерии , а также гелиобактерии .

При аноксигенном фотосинтезе возможно осуществление:

  1. Светозависимого циклического транспорта электронов, не сопровождающегося образованием восстановительных эквивалентов и приводящего исключительно к запасанию энергии света в форме АТФ . При циклическом светозависимом электронном транспорте необходимости в экзогенных донорах электронов не возникает. Потребность в восстановительных эквивалентах обеспечивается нефотохимическим путём, как правило, за счёт экзогенных органических соединений.
  2. Светозависимого нециклического транспорта электронов, сопровождающегося и образованием восстановительных эквивалентов, и синтезом АДФ. При этом возникает потребность в экзогенных донорах электронов , которые необходимы для заполнения электронной вакансии в реакционном центре. В качестве экзогенных доноров электронов могут использоваться как органические, так и неорганические восстановители. Среди неорганических соединений наиболее часто используются различные восстановленные формы серы (сероводород , молекулярная сера , сульфиты , тиосульфаты , тетратионаты , тиогликоляты), также возможно использование молекулярного водорода .

Оксигенный

Оксигенный (или кислородный) фотосинтез сопровождается выделением кислорода в качестве побочного продукта. При оксигенном фотосинтезе осуществляется нециклический электронный транспорт, хотя при определенных физиологических условиях осуществляется исключительно циклический электронный транспорт. В качестве донора электронов при нециклическом потоке используется крайне слабый донор электронов - вода .

Оксигенный фотосинтез распространён гораздо шире. Характерен для высших растений , водорослей , многих протистов и цианобактерий .

Этапы

Фотосинтез - процесс с крайне сложной пространственно-временной организацией.

Разброс характерных времен различных этапов фотосинтеза составляет 19 порядков: скорость процессов поглощения квантов света и миграции энергии измеряется в фемтосекундном интервале (10 −15 с), скорость электронного транспорта имеет характерные времена 10 −10 −10 −2 с, а процессы, связанные с ростом растений, измеряются днями (10 5 −10 7 с).

Также большой разброс размеров характерен для структур, обеспечивающих протекание фотосинтеза: от молекулярного уровня (10 −27 м 3) до уровня фитоценозов (10 5 м 3).

В фотосинтезе можно выделить отдельные этапы, различающиеся по природе и характерным скоростям процессов:

  • Фотофизический;
  • Фотохимический;
  • Химический:
    • Реакции транспорта электронов;
    • «Темновые» реакции или циклы углерода при фотосинтезе.

На первом этапе происходит поглощение квантов света пигментами , их переход в возбуждённое состояние и передача энергии к другим молекулам фотосистемы. На втором этапе происходит разделение зарядов в реакционном центре, перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НАДФН . Первые два этапа вместе называют светозависимой стадией фотосинтеза . Третий этап происходит уже без обязательного участия света и включает в себя биохимические реакции синтеза органических веществ с использованием энергии, накопленной на светозависимой стадии. Чаще всего в качестве таких реакций рассматривается цикл Кальвина и глюконеогенез , образование сахаров и крахмала из углекислого газа воздуха.

Пространственная локализация

Лист

Фотосинтез растений осуществляется в хлоропластах : полуавтономных двухмембранных органеллах , относящихся к классу пластид . Хлоропласты могут содержаться в клетках стеблей , плодов , чашелистиков , однако основным органом фотосинтеза является лист. Лист сформировался в ходе эволюции и анатомически приспособлен к поглощению энергии света и ассимиляции углекислоты . Плоская форма листа обеспечивающая большое отношение поверхности к объёму, позволяет более полно использовать энергию солнечного света. Вода, необходимая для поддержания тургора и протекания фотосинтеза, доставляется к листьям из корневой системы по ксилеме развитой сети проводящих пучков (жилок листа) и стебля . Потеря воды в результате испарения через устьицы и в меньшей степени через кутикулу (транспирация) служит движущей силой транспорта по сосудам. Однако избыточная транспирация является нежелательной и у растений в ходе эволюции сформировались различные приспособления, направленные на снижение потерь воды. Отток ассимилятов, необходимый для функционирования цикла Кальвина , осуществляется по флоэме проводящих пучков (жилок) и флоэме стебля. При интенсивном фотосинтезе углеводы могут полимеризоваться и при этом в хлоропластах формируются крахмальные зёрна. Газообмен (поступление углекислого газа и выделение кислорода) осуществляется путём диффузии через устьица, некоторая часть газов движется через кутикулу.

Поскольку дефицит углекислого газа значительно увеличивает потери ассимилятов при фотодыхании , необходимо поддерживать высокую концентрацию углекислоты в межклеточном пространстве, что возможно при открытых устьицах . Однако, поддержание устьиц в открытом состоянии при высокой температуре приводит к увеличению транспирационных потерь воды - потерь воды испарением, что приводит к водному дефициту и также снижает продуктивность фотосинтеза. Данный конфликт решается в соответствии с принципом адаптивного компромисса . Кроме того, первичное поглощения углекислого газа ночью, при низкой температуре, у растений с CAM-фотосинтезом позволяет избежать высоких транспирационных потерь воды.

Фотосинтез на тканевом уровне

На тканевом уровне, фотосинтез у высших растений обеспечивается специализированной тканью - хлоренхи мой . Хлоренхима располагается близ поверхности тела растения, где получает достаточное количество световой энергии. Обычно хлоренхима располагается непосредственно под эпидермой. У растений, растущих в условиях повышенной инсоляции, между эпидермой и хлоренхимой может располагаться один или два слоя прозрачных клеток (гиподерма), обеспечивающих рассеивание света. У некоторых тенелюбивых растений хлоропластами богата и эпидерма (например кислица). Часто хлоренхима мезофила листа дифференцирована на палисадную (столбчатую) и губчатую, но может состоять и из однородных клеток. При условии дифференцировки, наиболее богата хлоропластами палисадная хлоренхима.

Хлоропласты

Внутреннее пространство хлоропласта заполнено бесцветным содержимым (стромой) и пронизано мембранами (ламеллами), которые, соединяясь друг с другом, образуют тилакоиды , которые, в свою очередь, группируются в стопки, называемые гранами . Внутритилакоидное пространство отделено и не сообщается с остальной стромой, предполагается также, что внутреннее пространство всех тилакоидов сообщается между собой. Световые стадии фотосинтеза приурочены к мембранам, автотрофная фиксация CO 2 происходит в строме.

В хлоропластах имеются свои ДНК , РНК , рибосомы (70s типа), идёт синтез белка (хотя этот процесс и контролируется из ядра). Они не синтезируются вновь, а образуются путём деления предшествующих. Всё это позволило считать их потомками свободных цианобактерий, вошедших в состав эукариотической клетки в процессе симбиогенеза .

Фотосинтетические мембраны прокариот

Фотохимическая суть процесса

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П 700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин , который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П 700 .

Циклический и псевдоциклический транспорт электрона

Помимо полного нециклического пути электрона, описанного выше, обнаружены циклический и псевдоциклический.

Суть циклического пути заключается в том, что ферредоксин вместо НАДФ восстанавливает пластохинон, который переносит его назад на b 6 f комплекс. В результате образуется больший протонный градиент и больше АТФ, но не возникает НАДФН.

При псевдоциклическом пути ферредоксин восстанавливает кислород, который в дальнейшем превращается в воду и может быть использован в фотосистеме II. При этом также не образуется НАДФН.

Темновая фаза

В темновой стадии с участием АТФ и НАДФ происходит восстановление CO 2 до глюкозы (C 6 H 12 O 6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

С 3 -фотосинтез, цикл Кальвина

Во второй стадии ФГК в два этапа восстанавливается. Сначала она фосфорилируется АТФ под действием фосфороглицерокиназы с образованием 1,3-дифосфоглицериновой кислоты (ДФГК), затем при воздействии триозофосфатдегидрогеназы и НАДФН ацил-фосфатная группа ДФГК дефосфорилируется и восстанавливается до альдегидной и образуется глицеральдегид-3-фосфат - фосфорилированный углевод (ФГА).

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосфата, для чего необходимы 3АТФ.

Наконец, две ФГА необходимы для синтеза глюкозы . Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO 2 , 12 НАДФН и 18 АТФ.

С 4 -фотосинтез

Отличие этого механизма фотосинтеза от обычного заключается в том, что фиксация углекислого газа и его использование разделены в пространстве, между различными клетками растения .

При низкой концентрации растворённого в строме CO 2 рибулозобифосфаткарбоксилаза катализирует реакцию окисления рибулозо-1,5-бифосфата и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания .

Для увеличения концентрации CO 2 растения С 4 типа изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты, которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата , возвращаемого в клетки мезофилла.

С 4 фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфата из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO 2 в лист, а также при рудеральной жизненной стратегии.

Фотосинтез по С4 пути проводят около 7600 видов растений, все относятся к цветковым : многие Злаковые (61 % видов, в том числе культурные - кукуруза, сахарный тростник и сорго и др. ), Гвоздичноцветные (наибольшая доля в семействах Маревые - 40 % видов, Амарантовые - 25 %), некоторые Осоковые , Астровые , Капустные , Молочайные .

САМ фотосинтез

Энергия, получаемая человечеством при сжигании ископаемого топлива (уголь , нефть , природный газ , торф), также является запасённой в процессе фотосинтеза.

Фотосинтез служит главным входом неорганического углерода в биогеохимический цикл.

Фотосинтез является основой продуктивности сельско-хозяйственно важных растений.

Большая часть свободного кислорода атмосферы - биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя , позволило жизни существовать на суше.

История изучения

Первые опыты по изучению фотосинтеза были проведены Джозефом Пристли в -1780-х годах, когда он обратил внимание на «порчу» воздуха в герметичном сосуде горящей свечой (воздух переставал поддерживать горение, а помещённые в него животные задыхались) и «исправление» его растениями. Пристли сделал вывод, что растения выделяют кислород, который необходим для дыхания и горения, однако не заметил, что для этого растениям нужен свет. Это показал вскоре Ян Ингенхауз .

Позже было установлено, что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В г. Роберт Майер на основании закона сохранения энергии постулировал, что растения преобразуют энергию солнечного света в энергию химических связей. В г. В. Пфеффер назвал этот процесс фотосинтезом.

Хлорофиллы были впервые выделены в г. П. Ж. Пельтье и Ж. Кавенту. Разделить пигменты и изучить их по отдельности удалось М. С. Цвету с помощью созданного им метода хроматографии . Спектры поглощения хлорофилла были изучены К. А. Тимирязевым , он же, развивая положения Майера, показал, что именно поглощённые лучи позволяют повысить энергию системы, создав вместо слабых связей С-О и О-Н высокоэнергетические С-С (до этого считалось что в фотосинтезе используются жёлтые лучи, не поглощаемые пигментами листа). Сделано это было благодаря созданному им методу учёта фотосинтеза по поглощённому CO 2: в ходе экспериментов по освещению растения светом разных длин волн (разного цвета) оказалось, что интенсивность фотосинтеза совпадает со спектром поглощения хлорофилла.

Окислительно-восстановительную сущность фотосинтеза (как оксигенного, так и аноксигенного) постулировал Корнелис ван Ниль , он же в 1931 году доказал, что пурпурные бактерии и зелёные серобактерии осуществляют аноксигенный фотосинтез . Окислительно-восстановительный характер фотосинтеза означал, что кислород в оксигенном фотосинтезе образуется полностью из воды, что экспериментально подтвердил в г. А. П. Виноградов в опытах с изотопной меткой. В г. Роберт Хилл установил, что процесс окисления воды (и выделения кислорода), а также ассимиляции CO 2 можно разобщить. В - гг.

Вопрос 1. Что такое фотосинтез? Назовите вещества, необходимые для его осуществления.

Фотосинтез – это процесс образования органических веществ и кислорода из углекислого газа и воды в листьях зеленых растений на солнечном свету.

Вопрос 2. Закончите предложения.

Фотосинтез происходит в растительных клетках, которые содержат органоиды хлоропласты. В них содержится зелёный пигмент хлорофилл, который придает растению окраску и обеспечивает фотосинтез.

У большинства растений основным органом, обеспечивающим осуществление фотосинтеза, является лист, еще фотосинтез может протекать в стеблях и зеленых плодах.

Вопрос 3. Известно, что наземные растения ежегодно образуют столько листьев, что ими можно было бы покрыть земной шар в несколько слоёв. Объясните, почему у растений образуется так много листьев.

Процесс образования органических веществ идет в листьях зеленых астений на солнечном свету. Поэтому, чтобы прокормить растение листьев должно быть очень много.

Вопрос 4. Рассмотрите рисунок «Образование органических веществ в процессе фотосинтеза». Подпишите на нем названия веществ, поступающих в лист и выводящихся из него.

Углекислый газ

Кислород

Ответьте на вопросы:

1) Каковы необходимые условия осуществления фотосинтеза?

Для фотосинтеза необходим солнечный свет, углекислый газ и хлоропласты.

2) Какие органические вещества образуются в процессе фотосинтеза и каково их значение для растения?

В хлоропластах под воздействием света в процессе фотосинтеза у растений образуется крахмал. Это вещество является углеводом и служит источником энергии для растений.

Вопрос 5*. Прочитайте в учебнике описание опыта по изучению влияния света на образование органических веществ в зеленых растениях и рассмотрите рисунок 61. Как вы думаете, почему в листьях зеленых растений нельзя обнаружить крахмал, после того как их выдерживают в темноте в течение 2-3 дней? Куда он исчезает?

Для преобразования крахмала в листьях необходим солнечный свет. Крахмал образуется в процессе фотосинтеза. Этот процесс произойдет с использованием энергии света. Без света нет процесса фотосинтеза, без процесса нет в листьях крахмала.

Работаем в лаборатории

Вопрос 6. Рассмотрите рисунок, на котором изображен опыт.

Ответьте на вопросы:

1) Почему свеча в первом и третьем случаях гаснет?

В первом и третьем сосудах семена и корнеплоды в процессе дыхания истратили весь кислород и выделили углекислый газ. Свеча погасла.

2) Почему свеча во втором случае горит?

Во втором сосуде растение не только дышит, но и при помощи фотосинтеза выделяет кислород, поэтому свеча горит.

Фотосинтез представляет собой совокупность процессов формирования световой энергии в энергию химических связей органических веществ с участием фотосинтетических красящих веществ.

Такой тип питания характерен для растений, прокариот и некоторых видов одноклеточных эукариот.

При природном синтезе углерод и вода во взаимодействии со светом преобразуются в глюкозу и свободный кислород:

6CO2 + 6H2O + световая энергия → C6H12O6 + 6O2

Современная физиология растений под понятием фотосинтеза понимает фотоавтотрофную функцию, которая является совокупностью процессов поглощения, превращения и применения квантов световой энергии в разных несамопроизвольных реакциях, включая преобразование углекислого газа в органику.

Фазы

Фотосинтез у растений происходит в листьях через хлоропласты - полуавтономные двухмембранные органеллы, относящиеся к классу пластид. С плоской формой листовых пластин обеспечивается качественное поглощение и полное использование световой энергии и углекислого газа. Вода, необходимая для природного синтеза, поступает от корней через водопроводящую ткань. Газообмен происходит с помощью диффузии через устьица и частично через кутикулу.

Хлоропласты заполнены бесцветной стромой и пронизаны ламеллами, которые при соединении друг с другом образуют тилакоиды. Именно в них и происходит фотосинтез. Цианобактерии сами собой представляют хлоропласты, поэтому аппарат для природного синтеза в них не выделен в отдельную органеллу.

Фотосинтез протекает при участии пигментов , которыми обычно выступают хлорофиллы. Некоторые организмы содержат другой пигмент - каротиноид или фикобилин. Прокариоты обладают пигментом бактериохлорофиллом, причем данные организмы не выделяют кислород по завершении природного синтеза.

Фотосинтез проходит две фазы - световую и темновую. Каждая из них характеризуется определенными реакциями и взаимодействующими веществами. Рассмотрим подробнее процесс фаз фотосинтеза.

Световая

Первая фаза фотосинтеза характеризуется образованием высокоэнергетических продуктов, которыми являются АТФ, клеточный источник энергии, и НАДФ, восстановитель. В конце стадии в качестве побочного продукта образуется кислород. Световая стадия происходит обязательно с солнечным светом.

Процесс фотосинтеза протекает в мембранах тилакоидов при участии белков-переносчиков электронов, АТФ-синтетазы и хлорофилла (или другого пигмента).

Функционирование электрохимических цепей, по которым происходит передача электронов и частично протонов водорода, образуется в сложных комплексах, формирующихся пигментами и ферментами.

Описание процесса световой фазы:

  1. При попадании солнечного света на листовые пластины растительных организмов происходит возбуждение электронов хлорофилла в структуре пластин;
  2. В активном состоянии частицы выходят из пигментной молекулы и попадают на внешнюю сторону тилакоида, заряженную отрицательно. Это происходит одновременно с окислением и последующим восстановлением молекул хлорофилла, которые отбирают очередные электроны у поступившей в листья воды;
  3. Затем происходит фотолиз воды с образованием ионов, которые отдают электроны и преобразуются в радикалы OH, способные участвовать в реакциях и в дальнейшем;
  4. Затем эти радикалы соединяются, образуя молекулы воды и свободный кислород, выходящий в атмосферу;
  5. Тилакоидная мембрана приобретает с одной стороны положительный заряд за счет иона водорода, а с другой - отрицательный за счет электронов;
  6. С достижением разницы в 200 мВ между сторонами мембраны протоны проходят через фермент АТФ-синтетазу, что приводит к превращению АДФ в АТФ (процесс фосфорилирования);
  7. С освободившимся из воды атомным водородом происходит восстановление НАДФ + в НАДФ·Н2;

Тогда как свободный кислород в процессе реакций выходит в атмосферу, АТФ и НАДФ·Н2 участвуют в темновой фазе природного синтеза.

Темновая

Обязательный компонент для этой стадии - углекислый газ , который растения постоянно поглощают из внешней среды через устьица в листьях. Процессы темновой фазы проходят в строме хлоропласта. Поскольку на данном этапе не требуется много солнечной энергии и будет достаточно получившихся в ходе световой фазы АТФ и НАДФ·Н2, реакции в организмах могут протекать и днем, и ночью. Процессы на этой стадии происходят быстрее, чем на предыдущей.

Совокупность всех процессов, происходящих в темновой фазе, представлена в виде своеобразной цепочки последовательных преобразований углекислоты, поступившей из внешней среды:

  1. Первой реакцией в такой цепочке является фиксация углекислого газа. Наличие фермента РиБФ-карбоксилаза способствует быстрому и плавному протеканию реакции, в результате которой происходит образование шестиуглеродного соединения, распадающегося на 2 молекулы фосфоглицериновой кислоты;
  2. Затем происходит довольно сложный цикл, включающий еще определенное число реакций, по завершении которых фосфоглицериновая кислота преобразуется в природный сахар - глюкозу. Этот процесс называют циклом Кальвина;

Вместе с сахаром также происходит формирование жирных кислот, аминокислот, глицерина и нуклеотидов.

Суть фотосинтеза

Из таблицы сравнений световой и темновой фаз природного синтеза можно вкратце описать суть каждой из них. Световая фаза происходит в гранах хлоропласта с обязательным включением в реакции световой энергии. В реакциях задействованы такие компоненты как белки, переносящие электроны, АТФ-синтетаза и хлорофилл, которые при взаимодействии с водой образуют свободный кислород, АТФ и НАДФ·Н2. Для темновой фазы, происходящей в строме хлоропласта, солнечный свет не является обязательным. Получившиеся на прошлом этапе АТФ и НАДФ·Н2 при взаимодействии с углекислотой формируют природный сахар (глюкозу).

Как видно из вышеизложенного, фотосинтез предстает довольно сложным и многоступенчатым явлением, включающим множество реакций, в которых задействуются разные вещества. В итоге природного синтеза получается кислород, необходимый для дыхания живых организмов и защиты их от ультрафиолетовой радиации с помощью образования озонового слоя.

Пластиды бывают трех видов:

  • хлоропласты - зеленые, функция - фотосинтез
  • хромопласты - красные и желтые, являются полуразрушенными хлоропластами, могут придавать яркую окраску лепесткам и плодам.
  • лейкопласты - бесцветные, функция - запас веществ.

Строение хлоропластов

Покрыты двумя мембранами. Наружная мембрана гладкая, внутренняя имеет выросты внутрь - тилакоиды. Стопки коротких тилакоидов называются граны , они увеличивают площадь внутренней мембраны, чтобы расположить на ней как можно больше ферментов фотосинтеза.


Внутренняя среда хлоропласта называется строма. В ней находятся кольцевая ДНК и рибосомы, за счет них хлоропласты самостоятельно делают для себя часть белков, поэтому их называют полуавтономными органоидами. (Считается, что раньше и пластиды были свободными бактериями, которые были поглощены крупной клеткой, но не переварены.)

Фотосинтез (простой)

В зеленых листьях на свету
В хлоропластах с помощью хлорофилла
Из углекислого газа и воды
Синтезируется глюкоза и кислород.

Фотосинтез (средняя сложность)

1. Световая фаза.
Происходит на свету в гранах хлоропластов. Под действием света происходит разложение (фотолиз) воды, получается кислород, который выбрасывается, а так же атомы водорода (НАДФ-Н) и энергия АТФ, которые используются в следующей стадии.


2. Темновая фаза.
Происходит как на свету, так и в темноте (свет не нужен), в строме хлоропластов. Из углекислого газа, полученного из окружающей среды и атомов водорода, полученных в предыдущей стадии, за счет энергии АТФ, полученной в предыдущей стадии, синтезируется глюкоза.

1. Установите соответствие между процессом фотосинтеза и фазой, в которой он происходит: 1) световая, 2) темновая. Запишите цифры 1 и 2 в правильном порядке.
А) образование молекул НАДФ-2Н
Б) выделение кислорода
В) синтез моносахарида
Г) синтез молекул АТФ
Д) присоединение углекислого газа к углеводу

Ответ


2. Установите соответствие между характеристикой и фазой фотосинтеза: 1) световая, 2) темновая. Запишите цифры 1 и 2 в правильном порядке.
А) фотолиз воды
Б) фиксация углекислого газа
В) расщепление молекул АТФ
Г) возбуждение хлорофилла квантами света
Д) синтез глюкозы

Ответ


3. Установите соответствие между процессом фотосинтеза и фазой, в которой он происходит: 1) световая, 2) темновая. Запишите цифры 1 и 2 в правильной последовательности.
А) образование молекул НАДФ*2Н
Б) выделение кислорода
В) синтез глюкозы
Г) синтез молекул АТФ
Д) восстановление углекислого газа

Ответ


4. Установите соответствие между процессами и фазой фотосинтеза: 1) световая, 2) темновая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) полимеризация глюкозы
Б) связывание углекислого газа
В) синтез АТФ
Г) фотолиз воды
Д) образование атомов водорода
Е) синтез глюкозы

Ответ


5. Установите соответствие между фазами фотосинтеза и их характеристиками: 1) световая, 2) темновая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) осуществляется фотолиз воды
Б) образуется АТФ
В) кислород выделяется в атмосферу
Г) протекает с затратами энергии АТФ
Д) реакции могут протекать как на свету, так и в темноте

Ответ

ФОРМИРУЕМ 6:
А) восстановление НАДФ+
Б) транспорт ионов водорода через мембрану
В) преобразование НАДФ-2Р в НАДФ+

Г) перемещение возбужденных электронов

Проанализируйте таблицу. Заполните пустые ячейки таблицы, используя понятия и термины, приведенные в списке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) мембраны тилакоидов
2) световая фаза
3) фиксация неорганического углерода
4) фотосинтез воды
5) темновая фаза
6) цитоплазма клетки

Ответ


Выберите три варианта. Темновая фаза фотосинтеза характеризуется
1) протеканием процессов на внутренних мембранах хлоропластов
2) синтезом глюкозы
3) фиксацией углекислого газа
4) протеканием процессов в строме хлоропластов
5) наличием фотолиза воды
6) образованием АТФ

Ответ


1. Перечисленные ниже признаки, кроме двух, используются для описания строения и функций изображенного органоида клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

2) накапливает молекулы АТФ
3) обеспечивает фотосинтез

5) обладает полуавтономностью

Ответ


2. Все перечисленные ниже признаки, кроме двух, можно использовать для описания изображённого на рисунке органоида клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) одномембранный органоид
2) состоит из крист и хроматина
3) содержит кольцевую ДНК
4) синтезирует собственный белок
5) способен к делению

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для описания строения и функций хлоропласта. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) является двумембранным органоидом
2) имеет собственную замкнутую молекулу ДНК
3) является полуавтономным органоидом
4) формирует веретено деления
5) заполнен клеточным соком с сахарозой

Ответ


Выберите один, наиболее правильный вариант. Клеточный органоид, содержащий молекулу ДНК
1) рибосома
2) хлоропласт
3) клеточный центр
4) комплекс Гольджи

Ответ


Выберите один, наиболее правильный вариант. В синтезе какого вещества участвуют атомы водорода в темновой фазе фотосинтеза?
1) НАДФ-2Н
2) глюкозы
3) АТФ
4) воды

Ответ


Все приведенные ниже признаки, кроме двух, можно использовать для определения процессов световой фазы фотосинтеза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) фотолиз воды


4) образование молекулярного кислорода

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В световую фазу фотосинтеза в клетке
1) образуется кислород в результате разложения молекул воды
2) происходит синтез углеводов из углекислого газа и воды
3) происходит полимеризация молекул глюкозы с образованием крахмала
4) осуществляется синтез молекул АТФ
5) энергия молекул АТФ расходуется на синтез углеводов

Ответ


Выберите один, наиболее правильный вариант. Какой клеточный органоид содержит ДНК
1) вакуоль
2) рибосома
3) хлоропласт
4) лизосома

Ответ


Вставьте в текст «Синтез органических веществ в растении» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите выбранные цифры в порядке, соответствующем буквам. Энергию, необходимую для своего существования, растения запасают в виде органических веществ. Эти вещества синтезируются в ходе __________ (А). Этот процесс протекает в клетках листа в __________ (Б) – особых пластидах зелёного цвета. Они содержат особое вещество зелёного цвета – __________ (В). Обязательным условием образования органических веществ помимо воды и углекислого газа является __________ (Г).
Список терминов:
1) дыхание
2) испарение
3) лейкопласт
4) питание
5) свет
6) фотосинтез
7) хлоропласт
8) хлорофилл

Ответ


Выберите один, наиболее правильный вариант. В клетках первичный синтез глюкозы происходит в
1) митохондриях
2) эндоплазматической сети
3) комплексе Гольджи
4) хлоропластах

Ответ


Выберите один, наиболее правильный вариант. Молекулы кислорода в процессе фотосинтеза образуются за счет разложения молекул
1) углекислого газа
2) глюкозы
3) АТФ
4) воды

Ответ


Выберите один, наиболее правильный вариант. Верны ли следующие суждения о фотосинтезе? А) В световой фазе происходит преобразование энергии света в энергию химических связей глюкозы. Б) Реакции темновой фазы протекают на мембранах тилакоидов, в которые поступают молекулы углекислого газа.
1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

Ответ


1. Установите правильную последовательность процессов, протекающих при фотосинтезе. Запишите в таблицу цифры, под которыми они указаны.
1) Использование углекислого газа
2) Образование кислорода
3) Синтез углеводов
4) Синтез молекул АТФ
5) Возбуждение хлорофилла

Ответ


2. Установите правильную последовательность процессов фотосинтеза.
1) преобразование солнечной энергии в энергию АТФ
2) образование возбуждённых электронов хлорофилла
3) фиксация углекислого газа
4) образование крахмала
5) преобразование энергии АТФ в энергию глюкозы

Ответ


3. Установите последовательность процессов, протекающих при фотосинтезе. Запишите соответствующую последовательность цифр.

2) расщепление АТФ и выделение энергии
3) синтез глюкозы
4) синтез молекул АТФ
5) возбуждение хлорофилла

Ответ


Выберите три особенности строения и функций хлоропластов
1) внутренние мембраны образуют кристы
2) многие реакции протекают в гранах
3) в них происходит синтез глюкозы
4) являются местом синтеза липидов
5) состоят из двух разных частиц
6) двумембранные органоиды

Ответ


Определите три верных утверждения из общего списка, и запишите в таблицу цифры, под которыми они указаны. В световую фазу фотосинтеза происходит
1) фотолиз воды
2) восстановление углекислого газа до глюкозы
3) синтез молекул АТФ за счет энергии солнечного света
4) соединение водорода с переносчиком НАДФ+
5) использование энергии молекул АТФ на синтез углеводов

Ответ


Все перечисленные ниже признаки, кроме двух, можно использовать для описания световой фазы фотосинтеза. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образуется побочный продукт – кислород
2) происходит в строме хлоропласта
3) связывание углекислого газа
4) синтез АТФ
5) фотолиз воды

Ответ


Выберите один, наиболее правильный вариант. Процесс фотосинтеза следует рассматривать как одно из важных звеньев круговорота углерода в биосфере, так как в ходе его
1) растения вовлекают углерод из неживой природы в живую
2) растения выделяют в атмосферу кислород
3) организмы выделяют углекислый газ в процессе дыхания
4) промышленные производства пополняют атмосферу углекислым газом

Ответ


Установите соответствие между этапами процесса и процессами: 1) фотосинтез, 2) биосинтез белка. Запишите цифры 1 и 2 в правильном порядке.
А) выделение свободного кислорода
Б) образование пептидных связей между аминокислотами
В) синтез иРНК на ДНК
Г) процесс трансляции
Д) восстановление углеводов
Е) преобразование НАДФ+ в НАДФ 2Н

Ответ


Выберите органоиды клетки и их структуры, участвующие в процессе фотосинтеза.
1) лизосомы
2) хлоропласты
3) тилакоиды
4) граны
5) вакуоли
6) рибосомы

Ответ


Перечисленные ниже термины, кроме двух, используются для описания пластид. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) пигмент
2) гликокаликс
3) грана
4) криста
5) тилакоид

Ответ







Ответ


Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса фотосинтеза. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) Для протекания процесса используется энергия света.
2) Процесс происходит при наличии ферментов.
3) Центральная роль в процессе принадлежит молекуле хлорофилла.
4) Процесс сопровождается расщеплением молекулы глюкозы.
5) Процесс не может происходить в клетках прокариот.

Ответ


Перечисленные ниже понятия, кроме двух, используются для описания темновой фазы фотосинтеза. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) фиксация углекислого газа
2) фотолиз
3) окисление НАДФ·2Н
4) грана
5) строма

Ответ


Перечисленные ниже признаки, кроме двух, используются для описания строения и функций изображенного органоида клетки. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) расщепляет биополимеры на мономеры
2) накапливает молекулы АТФ
3) обеспечивает фотосинтез
4) относится к двумембранным органоидам
5) обладает полуавтономностью

Ответ

© Д.В.Поздняков, 2009-2019

Loading...Loading...