Значение и роль фотосинтеза. Значение фотосинтеза для жизни на земле

4 июня 2012

Значение фотосинтеза в природе долгое время оценивалось не совсем точно. На первоначальном этапе изучения многие ученые считали, что растения выделяют столько же кислорода, сколько поглощают. На самом деле тщательные исследования показали, что работа, проделываемая растениями, носит грандиозный размах. При своих относительно небольших размерах зеленые насаждения выполняют ряд полезных функций, которые направлены на поддержание жизни на Земле.

Самое главное значение фотосинтеза - это обеспечение энергией всех живых существ на планете, включая человека. В процессе фотосинтеза в зеленых частях растений под воздействием солнечных лучей начинает образовываться кислород и огромное количество энергии. Данная энергия используется растениями для собственных нужд только частично, а неизрасходованный потенциал накапливается. Потом растения идут на корм травоядным животным, получающим за счет этого необходимые питательные вещества, без которых их развитие будет невозможным. Затем травоядные животные становятся пищей для хищников, им также необходима энергия, без которой жизнь просто остановится.

Немного в стороне от этой пищевой цепочки находится человек, поэтому для него истинное значение фотосинтеза проявляется не сразу. Просто многие люди пытаются доказать себе, что они не являются частью животного мира нашей планеты. К сожалению, подобное отрицание ни к чему не приведет, так как все живые организмы зависят в той или иной мере друг от друга. Стоит исчезнуть нескольким видам животных или растений - и равновесие в природе сильно нарушится. Чтобы приспособиться к новым условиям жизни, другие живые организмы будут вынуждены искать альтернативные источники питания. Правда, бывают случаи, когда исчезновение одних видов приводит к вымиранию других.

Значение фотосинтеза кроется не только в производстве энергии, но и в защите озонового слоя от разрушения. Ученые долго пытались выяснить, как зародилась жизнь на нашей планете - и создали довольно правдоподобную теорию. Оказалось, что разнообразие живых организмов стало возможным только благодаря наличию защитной атмосферы, которая сформировалась за счет интенсивной работы огромного количества растений. Конечно, при размерах современных лесов и отдельных растений не верится в такое чудо, но древние растения были гигантской величины.

Старые гиганты растительного мира погибли, но даже после гибели они приносят пользу всему человечеству. Энергия, которая в них накопилась, теперь поступает в наши дома в виде угля. Сегодня роль данного вида топлива значительно снизилась, но долгое время человечество спасалось от холодов именно с его помощью.

Также не стоит забывать о том, что древние растения передали свою эстафету современным деревьям и цветам, которые поддерживают сохранность атмосферы. Чем больше зеленых насаждений на нашей планете, тем чище воздух, которым мы дышим. Уничтожение тропических лесов и увеличение вредных выбросов в атмосферу привело к тому, что в озоновом слое появились дыры. Если человечество не осознает истинную роль фотосинтеза, оно приведет себя к самоуничтожению. Просто без кислорода и защиты мы не выживем, а количество тропических лесов продолжает стремительно уменьшаться.

Если люди действительно хотят сохранить жизнь на своей планете, они должны полностью понять значение фотосинтеза. Когда каждый отдельный человек признает важность растений, когда мы перестанем бездумно вырубать леса, тогда жизнь на Земле станет лучше и чище. В противном случае людям придется научиться выдерживать палящие лучи солнца, дышать смогом, вредными выбросами и получать энергию из альтернативных источников.

Только от нас завит то, каким будет наше будущее - и хочется верить, что люди сделают правильный выбор.

Источник: fb.ru

Актуально

Фотосинтез - процесс жизнедеятельности зелёных растений, единственный в биосфере, связанный с накоплением энергии солнца. Его значение - в разностороннем обеспечении жизни на Земле.

Образование биомассы

Живые существа, - растения, грибы, бактерии и животные, состоят из органических веществ. Вся масса органики изначально образуется в процессе фотосинтеза, идущего в автотрофных организмах - растениях и некоторых бактериях.

Рис. 1. Авто- и гетеротрофные организмы.

Гетеротрофные организмы, потребляя в пищу растения, лишь видоизменяют органические вещества, не увеличивая общую биомассу планеты. Уникальность фотосинтеза в том, что при синтезе органических веществ происходит запасание в их химических связях энергии солнца. Фактически, фотосинтезирующие организмы «привязывают» солнечную энергию к Земле.

Поддержание жизни

Фотосинтез постоянно образует из углекислого газа и воды органические вещества, которые являются пищей и средой обитания для различных животных и человека.

Вся энергия, используемая в жизни живых организмов, изначально - солнечная. Фотосинтез фиксирует эту энергию на Земле и передаёт всем обитателям планеты.

Вещество и энергия, запасённые при фотосинтезе, широко используются человеком:

ТОП-3 статьи которые читают вместе с этой

  • ископаемые энергоресурсы;
  • древесина;
  • дикорастущие растения как сырьё и эстетический ресурс;
  • продукция пищевого и технического растениеводства.

1 гектар леса или парка поглощает летом за 1 час 8 кг углекислого газа. Такое количество выделяется за то же время двумястами человек.

Атмосфера

Состав атмосферы менялся именно благодаря процессу фотосинтеза. Количество кислорода постепенно росло, повышая возможности организмов к выживанию. Изначально первая роль в образовании кислорода принадлежала зелёным водорослям, а теперь лесам.

Рис. 2. График изменения содержания О₂ в атмосфере в процессе эволюции.

Одним из следствий повышения содержания кислорода в атмосфере является образование озонового слоя, защищающего живые организмы от вредного солнечного излучения.

Считается, что именно после образования слоя озона стала возможной жизнь на суше.

Фотосинтез является одновременно и первоисточником, и фактором развития жизни на Земле.

Значение фотосинтеза на современном этапе приобрело новый аспект. Фотосинтез сдерживает рост концентрации СО₂ в воздухе, идущий за счёт сжигания топлива на транспорте и в промышленности. Этим ослабляется парниковый эффект. Интенсивность фотосинтеза повышается с возрастанием концентрации СО₂ до определённого предела.

Рис. 3. График зависимости фотосинтеза от содержания СО₂ в воздухе.

Значение фотосинтеза в природе . Отметим следствия фотосинтеза, важные для существования жизни на Земле и для человека: «консервирование» солнечной энергии; образование свободного кислорода; образование разнообразных органических соединений; извлечение из атмосферы углекислого газа.

Солнечный луч — «мимолетный гость нашей планеты» (В. Л. Комаров) - производит какую-то работу только в момент падения, затем рассеивается бесследно и бесполезно для живых существ. Однако часть энергии солнечного луча, упавшего на зеленое растение, усваивается хлорофиллом и используется в процессе фотосинтеза. При этом световая энергия превращается в потенциальную химическую энергию органических веществ — продуктов фотосинтеза. Такая форма энергии устойчива и относительно неподвижна. Она сохраняется до момента распада органических соединений, т. е. неопределенно долго. При полном окислении одной граммолекулы глюкозы выделяется столько же энергии, сколько поглощается при ее образовании — 690 ккал. Таким образом, зеленые растения, используя солнечную энергию в процессе фотосинтеза, запасают ее «впрок». Сущность этого явления хорошо вскрывает образное выражение К.А. Тимирязева, назвавшего растения «консервами солнечных лучей».

Органические вещества сохраняются при некоторых условиях очень долго, иногда многие миллионы лет. При их окислении выделяется и может быть использована энергия солнечных лучей, падавших на Землю в те далекие времена. Тепловая энергия, выделяющаяся при сгорании нефти, угля, торфа, древесины, - все это энергия солнца, усвоенная и преобразованная зелеными растениями.

Источником энергии в животном организме служит пища, которая также содержит в себе «консервированную» энергию Солнца. Жизнь на Земле только от Солнца. А растения — «это те каналы, по которым энергия Солнца вливается в органический мир Земли» (К. А, Тимирязев).

В изучении фотосинтеза, именно его энергетической стороны, огромную роль сыграл выдающийся русский ученый К.А. Тимирязев (1843—1920). Он первым показал, что закон сохранения энергии имеет место и в органическом мире. В те времена это утверждение имело огромное философское и практическое значение. Тимирязеву принадлежит лучшее в мировой литературе популярное изложение вопроса о космической роли зеленых растений.

Один из продуктов фотосинтеза — свободный кислород, необходимый для дыхания почти всех живых существ, В природе имеется и бескислородный (анаэробный) тип дыхания, но намного менее продуктивный: при использовании равных количеств дыхательного материала свободной энергии получается в несколько раз меньше, так как органическое вещество окисляется не до конца. Поэтому понятно, что кислородное (аэробное) дыхание обеспечивает более высокий жизненный уровень, быстрый рост, интенсивное размножение, широкое расселение вида, т. е. все те явления, которые характеризуют биологический прогресс.

Предполагается, что почти весь кислород в атмосфере биологического происхождения. В ранние периоды существования Земли атмосфера планеты имела восстановленный характер. Она состояла из водорода, сероводорода, аммиака, метана. С появлением растений и, следовательно, кислорода и кислородного дыхания органический мир поднялся на новую, более высокую ступень и его эволюция пошла гораздо быстрее. Следовательно, зеленые растения имеют не только сиюминутное значение: выделяя кислород, поддерживают жизнь. Они в известной мере определили характер эволюции органического мира.

Важным следствием фотосинтеза является образование органических соединений. Растения синтезируют углеводы, белки, жиры в огромном разнообразии видов. Эти вещества служат пищей для человека и животных и сырьем для промышленности. Растения образуют каучук, гуттаперчу, эфирные масла, смолы, дубильные вещества, алкалоиды и т, п. Продукты переработки растительного сырья — это ткани, бумага, красители, лекарственные и взрывчатые вещества, искусственное волокно, строительные материалы и многое другое.

Масштаб фотосинтеза огромен. Ежегодно поглощается растениями 15,6-10 10 тонн углекислого газа (1/16 часть мирового запаса) и 220 млрд. тонн воды. Количество органического вещества на Земле составляет 10 14 тонн, причем масса растений относится к массе животных как 2200:1. В этом смысле (как созидатели органического вещества) имеют значение и водные растения, водоросли, населяющие океан, органическая продукция которых в десятки раз превышает продукцию наземных растений.

Синтезируемые в процессе фотосинтеза сахара почти сразу преобразуются в высокополимерные соединения - крахмал, накопленный в виде крахмальных зерен в хлоропластах и лейкопластах; одновременно часть сахаров выделяется из пластид и перемещается по растению в другие места. Сахар, преобразовавшийся в крахмал, тем самым на некоторое время выходит из дальнейших метаболических реакций; однако крахмал может вновь расщепляться до сахара, который окисляется и при этом обеспечивает клетку необходимой энергией

Когда лучи соответствующей длины волны поглощаются хлоропластом, двуокись углерода химически восстанавливается до сахаров, а газоподобный кислород выделяется в объеме, равным восстановленному СО2. Эти изменения противоположны по направлению изменениям, которые происходят в процессе дыхания. Таким образом, важная роль растений в балансе природы связана и с тем, что они возвращают кислород в атмосферу, который необходим для других организмов.

Обозначивши формулой (СН2О) элементарную единицу молекулы углевода (молекула глюкозы С6Н12О6 построена из шести таких единиц), мы можем записать общее выражение фотосинтеза:

Суммарное уравнение фотосинтеза в свое время предложил Ж-Б. Буссенго. Этот процесс В. Пфеффер в 1887 году назвал фотосинтезом.

В 1842 году Ю. Майер сформулировал закон сохранения и преобразования энергии. Не забыл он и зеленые растения. Он писал, что природа поставила своей задачей перехватить приходящий на Землю свет и преобразовать эту подвижнейшую из сил в твердую форму, сложив ее в запас. Для достижения этой цели она покрыла земную кору растениями. Однако ученые того времени не обратили внимания на это высказывание.

Экспериментальное доказательство о том, что процесс фотосинтеза подчиняется закону сохранения и преобразования энергии сделал К. А. Тимирязев в 1867 г. Он показал, что интенсивней всего фотосинтез происходит в тех лучах, которые максимально поглощаются специальным пигментом - хлорофиллом. Поглощенная хлорофиллом энергия света дальше используется на образование органического вещества в растении и выделении О2.

Следовательно, фотосинтез - это процесс, связанный с накоплением света в растении, который собирается в органических веществах. Одновременно К. А. Тимирязев доказал ошибочность взглядов В. Пфеффера, Ю. Сакса и Г. Дрепера. Последние считали, что фотосинтез интенсивней всего идет в самых ярких для человеческого глаза желтых лучах, а не в тех, которые поглощаются хлорофиллом.

Таким образом, суммарное выражение фотосинтеза отражает суть процесса, который сводится к тому, что на свету в зеленом растении из очень окисленных веществ - углекислого газа и воды - синтезируются органические вещества и выделяется молекулярный О2. В ходе этого синтеза происходит преобразование лучистой энергии в энергию химических связей органических веществ.

Все компоненты системы, принимающие участие в фотосинтезе, содержат кислород, поэтому приведенное уравнение не говорит откуда берется выделяемый при фотосинтезе кислород: из СО2 или Н2О. На протяжении многих лет биологи считали, что световая энергия тратится на расщепление молекулы СО2 и перенос атома С на Н2О с образованием (СН2О). Однако наблюдение за фотосинтезирующими организмами пошатнули эти представления.

Биохимический путь у фотосинтезирующих микроорганизмах аналогичен соответствующим процессам у высших растений, но все же немного отличается от них. Так у бактерий имеется только одна пигментная система, а не две. Кроме того, бактерии отличаются от зеленых растений и по природе своих хлорофиллов. Они содержат бактериохлорофилл и (или) хлоробиумхлорофилл (chlorobium - хлорофилл). Фотосинтез у бактерий отличается и по природе световой стадии. У некоторых бактерий восстановитель образуется за счет части молекул АТФ, синтезируемых в световой фазе, при этом запускается обратный перенос электронов по дыхательной цепи (или по фотосинтетической цепи переноса электронов, в которой включены некоторые компоненты дыхательной цепи). У других бактерий восстановитель восстанавливается аналогично растениям, с той только разницей, что в качестве конечного источника электронов используется не вода, а другие доноры электронов. Кроме того, фотосинтезирующие бактерии не выделяют О2 в качестве конечного продукта.

Например, фотосинтезирующие пурпурные бактерии используют при фотосинтезе не Н2О, а Н2S, и в качестве побочного продукта фотосинтеза, выделяют не кислород, а серу.

Во многих местах зеленого шара важным природным источником серы служат отложения серы, образовавшиеся именно таким путем. Как видно, эта сера может происходить только с Н2S, разлагаемого в процессе фотосинтеза. Аналогичным путем ведут себя некоторые водоросли, которых можно «приучить» использовать вместо воды газоподобный водород Н2 для восстановления СО2 до (СН2О), т. е. до уровня углевода:

Известно, что в обоих случаях световая энергия растрачивается на разложение (фотолиз) донора водорода, а восстановительная сила, генерируемая таким путем, используется для преобразования СО2 в (СН2О).

Фотосинтез происходит и в тех многочисленных организмах, которые хоть и содержат хлорофилл, но не имеют зеленого цвета, потому что их цвет определяется присутствием других пигментов, маскирующих хлорофилл, например, бурые или красные водоросли.

Если у разных организмов существует какой либо общий механизм, то приведенные данные позволяют предполагать, что у высших растений световая энергия расходуется на разложение воды. Убедится в том, что мысль верна смогли тогда, когда биохимики начали использовать для изучения фотосинтеза Н2О или СО2, меченные тяжелыми изотопами кислорода (18О). В этих опытах было показано, что выделяющийся О2 всегда соответствует по своему изотопному состоянию кислороду, который содержится в воде, а не а СО2. Вообще, фотолиз воды - это ключ ко всему процессу фотосинтеза, так как на этом этапе световая энергия используется для выполнения химической работы.

В молекуле кислорода, выделяемой при фотосинтезе у высших растений, содержится два атома О, а в молекуле воды - только один, а это значит, что в реакции должны участвовать две молекулы воды. Чтобы получить сбалансированное уравнение, которое бы правильно отражало механизм суммарной реакции, мы должны ввести в обе части этого уравнения еще по одной молекуле воды. Когда вода будет содержать 18О, то мы получим

Если мы пометили при помощи 18О СО2, тогда уравнение принимает следующий вид

Выделяемый при фотосинтезе кислород образуется из вступающей в реакцию воды, образующиеся же молекулы воды, отличаются от тех двух молекул, которые принимают участие в фотосинтезе.

Световая энергия используется на разложение воды. При этом выделяется кислород и образуется «водород» (или восстановительная сила), которая тратится

  • 1) на восстановление СО2 до конечного продукта фотосинтеза (СН2О).
  • 2) на образование новой молекулы воды.

Суммарное выражение фотосинтеза сыграло большую роль в развитии физиологии растений. Оно помогло ученым определить место фотосинтеза в жизни самих растений и существовании жизни на всей планете. Фотосинтез имеет большое значение и для самого растения. Образование органов, их рост тесно связаны с фотосинтезом. В периоды наиболее активного роста дневные приросты сухого вещества достигают от 100 до 500 кг на 1 га. При этом растение должно ассимилировать от 200 до 500 кг СО2, 1-2 кг азота, 0,25-0,5 кг фосфора, 2-4 кг калия, 2-4 кг других элементов и испарить до 1 000 л воды.

Лучистая энергия от солнца до Земли доходит в форме электромагнитных колебаний разной длинной волны. Около 40-45 % излучаемой солнцем энергии приходится на область от 380 до 720 нм. Эта часть спектра воспринимается как видимый свет. Тут располагаются известные цвета: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный.

Пигменты хлоропластов поглощают видимый свет, поэтому эта область была названа физиологически активной радиацией (ФАР). К ФАР со стороны более коротких волн прилегает ультрафиолетовая радиация, а со стороны более длинных - инфракрасная. Инфракрасные лучи не принимают участия в фотосинтезе, но принимают участие в регулировании других процессов жизнедеятельности растений. Коротковолновая радиация (ультрафиолетовая, г-лучи, космические лучи), как показано, играют большую роль в мутагенезе растений, в изменении их наследственности.

Энергия, запасенная в процессе фотосинтеза за год, приблизительно в 100 раз больше энергии, образуемой при сгорании каменного угля, который добывается во всем мире за это время. Эта энергия используется для образования органического вещества из неорганического. Каждый год в процессе фотосинтеза растения образуют 155 млрд. т сухого органического вещества.

Органические вещества, которые используют люди, животные, сначала образуются в зеленом листе. Большая часть той энергии, которая используется человеком в различных областях производства - это энергия солнца, преобразованная в зеленом листе и запасенная в каменном угле, нефти, древесине.

Для образования такого большого количества органического вещества растения поглощают на протяжении года 200 млрд. т СО2 и выделяют 145 млрд. т кислорода. Весь кислород атмосферы образовался в процессе фотосинтеза. Таким образом, процессы дыхания и горения смогли произойти только после возникновения фотосинтезирующих организмов.

Изучение фотосинтеза и раскрытие его механизмов является одной из наиболее важных и интересных задач физиологии растений. Во-первых, детальное изучение синтеза органических веществ в зеленом растении - один из путей решения проблемы питания в мире. Так как 95 % массы растения образуется в процессе фотосинтеза, то необходима теоретическая основа для увеличения урожая. Во-вторых, детальное изучение химизма фотосинтеза и строения фотосинтетического аппарата на молекулярном уровне открывают путь для моделирования фотосинтеза, и организации производства органических веществ в искусственных условиях. В-третьих, изучение процесса разложения воды зелеными растениями с помощью света и моделирование этого процесса в искусственных условиях позволит человечеству получать водород и использовать его в качестве экологически чистого топлива, что поможет решить энергетическую проблему.

Особая роль в этом отношении принадлежит зеленым растениям, роль, которую К. А. Тимирязев назвал Космической. Она заключается в том, что «зеленое зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия солнца, а с другого берут начало все проявления жизни на Земле»

Ежегодно на Землю поступает огромное количество энергии солнца (1,26- 1024 кал) , 42% которой отражается в мировое пространство. Используя часть энергии солнечных лучей, зеленые растения утилизируют углекислый газ воздуха в качестве источника углерода в процессе синтеза органических веществ. Но зеленое растение не только получает для себя пищу из неорганической природы, оно, по словам Тимирязева, является посредником между небом и Землей. Энергия, полу­ченная от солнечного луча, аккумулируется в растении и в этом виде вместе с накопленным в его теле органическим веществом поступает в организм других растений или животных, питающихся растительной пищей. Последние в свою очередь служат пищей для других гетеротрофных организмов.

Выделяемый в процессе фотосинтеза кислород оказывается необходимым для жизни всех аэробных организмов, которые в процессе дыхания поглощают его из воздуха, одновременно выделяя углекислый газ. Такое постоянное поступление углекислого газа в атмосферу имеет колоссальное значение в круговороте веществ. По приблизительным подсчетам, растительный покров земного шара ежегодно ассимилирует из углекислого газа свыше 140 млрд. т углерода, что примерно составляет 3 г на гектар. Всего в атмосфере содержится около двух тысяч биллионов килограммов углекислого газа, которого не хватило бы и на100 лет, если бы он не поступал в атмосферу и гидросферу в процессе жизнедеятельности организмов.

История открытия удивительного и такого жизненного важного явления, как фотосинтез уходит корнями глубоко в прошлое. Более четырех веков назад в 1600 году бельгийский ученый Ян Ван - Гельмонт поставил простейший эксперимент. Он поместил веточку ивы в мешок, где находилось 80 кг земли. Ученый зафиксировал первоначальный вес ивы, и затем на протяжении пяти лет поливал растение исключительно дождевой водой. Каково же было удивление Яна Ван - Гельмонта, когда он повторно взвесил иву. Вес растения увеличился на 65 кг, причем масса земли уменьшился всего на 50 гр! Откуда растение взяло 64 кг 950 гр питательных веществ для ученого осталось загадкой!

Следующий значимый эксперимент на пути открытия фотосинтеза принадлежал английскому химику Джозефу Пристли. Ученый посадил под колпак мышь, и через пять часов грызун умер. Когда же Пристли поместил с мышью веточку мяты и также накрыл грызуна колпаком, мышь осталась живой. Этот эксперимент навел ученого на мысль о том, что существует процесс, противоположный дыханию. Ян Ингенхауз в 1779 году установил тот факт, что только зеленые части растений способны выделять кислород. Через три года швейцарский ученый Жан Сенебье доказал, что углекислый газ, под воздействием солнечных лучей, разлагается в зеленых органоидах растений. Спустя всего пять лет французский ученый Жак Буссенго, проводя лабораторные исследования, обнаружил тот факт, что поглощение растениями воды также происходит и при синтезе органических веществ. Эпохальное открытие в 1864 году совершил немецкий ботаник Юлиус Сакс. Ему удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции1:1.

Фотосинтез - один из самых значимых биологических процессов

Говоря научным языком, фотосинтез (от др.-греч. φῶς — свет и σύνθεσις — соединение, связывание) — это процесс, при котором из углекислого газа и воды на свету образуются органические вещества. Заглавная роль в этом процессе принадлежит фотосинтетическим сегментам.

Если говорить образно, то лист растения можно сравнить лабораторией, окна которой выходят на солнечную сторону. Именно в ней происходит образование органических веществ. Этот процесс является основой существования всего живого на Земле.

Многие резонно зададут вопрос: чем дышат люди, живущие в городе, где не то что дерева, и травинки днем с огнем не сыщешь. Ответ очень прост. Дело в том, что на долю наземных растений приходится всего 20% выделяемого растениями кислорода. Главенствующую роль в выработке кислорода в атмосферу играют морские водоросли. На их долю приходится 80% от вырабатываемого кислорода. Говоря языком цифр, и растения, и водоросли ежегодно выделяют в атмосферу 145 млрд. тонн (!) кислорода! Недаром мировой океан называют «легкими планеты».

Общая формула фотосинтеза выглядит следующим образом:

Вода + Углекислый газ + Свет → Углеводы + Кислород

Для чего нужен фотосинтез растениям?

Как мы уяснили, фотосинтез - это необходимое условие существования человека на Земле. Однако это не единственная причина, по которой фотосинтезирующие организмы производят активную выработку кислорода в атмосферу. Дело в том, что и водоросли, и растения ежегодно образуют более 100 млрд. органических веществ (!), которые составляют основу их жизнедеятельности. Вспоминая эксперимент Яна Ван-Гельмонта мы понимаем, что фотосинтез - это основа питания растений. Научно доказано, что 95% урожая определяют органические вещества, полученные растением в процессе фотосинтеза, и 5% - те минеральные удобрения, которые садовод вносит в почву.

Современные дачники основное внимание уделяют почвенному питанию растений, забывая о его воздушном питании. Неизвестно, какой урожай могли бы получить садоводы, если бы они внимательно относились к процессу фотосинтеза.

Однако ни растения, ни водоросли не могли бы так активно производить кислород и углеводы, не будь у них удивительного зеленого пигмента - хлорофилла.

Тайна зеленого пигмента

Главное отличие клеток растения от клеток иных живых организмов - это наличие хлорофилла. К слову сказать, именно он является виновником того, что листья растений окрашены именно в зеленый цвет. Это сложное органическое соединение обладает одним удивительным свойством: оно способно поглощать солнечный свет! Благодаря хлорофиллу становится возможны и процесс фотосинтеза.

Две стадии фотосинтеза

Говоря простым языком, фотосинтез представляет собой процесс, при котором поглощенные растением вода и углекислый газ на свету при помощи хлорофилла образуют сахар и кислород. Таким образом, неорганические вещества удивительным образом превращаются в органические. Полученный в результате преобразования сахар является источником энергии растений.

Фотосинтез имеет две стадии: световую и темновую.

Световая фаза фотосинтеза

Осуществляется на мембранах тилакойдов.

Тилакойд - это структуры, ограниченные мембраной. Они располагаются в строме хлоропласта.

Порядок событий световой стадии фотосинтеза:

  1. На молекулу хлорофилла попадает свет, который затем поглощается зеленым пигментом и приводит его в возбужденное состояние. Входящий в состав молекулы электрон переходит на более высокий уровень, участвует в процессе синтеза.
  2. Происходит расщепление воды, в ходе которого протоны под воздействием электронов превращаются в атомы водорода. Впоследствии они расходуются на синтез углеводов.
  3. На завершающем этапе световой стадии происходит синтез АТФ (Аденозинтрифосфат). Это органическое вещество, которое играет роль универсального аккумулятора энергии в биологических системах.

Темновая фаза фотосинтеза

Местом протекания темновой фазы являются строму хлоропластов. Именно в ходе темновой фазы происходит выделение кислорода и синтез глюкозы. Многие подумают, что такое название эта фаза получила потому что процесс, происходящие в рамках этого этапа осуществляются исключительно в ночное время. На самом деле, это не совсем верно. Синтез глюкозы происходит круглосуточно. Дело в том, что именно на данном этапе световая энергия больше не расходуется, а значит, она попросту не нужна.

Значение фотосинтеза для растений

Мы уже определили тот факт, что фотоинтез нужен растениям ничем не меньше, чем нам. О масштабах фотосинтеза очень просто говорить языком цифр. Ученые рассчитали, что только растения суши запасают столько солнечной энергии, сколько могли бы израсходовать 100 мегаполисов в течение 100 лет!

Дыхание растений - это процесс, противоположный фотосинтезу. Смысл дыхания растений заключается в освобождении энергии в процессе фотосинтеза и направление ее на нужды растений. Говоря простым языком, урожай - это разница между фотосинтезом и дыханием. Чем больше фотосинтез и ниже дыхание, тем больше урожай, и наоборот!

Фотосинтез - это удивительный процесс, который делает возможной жизнь на Земле!

Loading...Loading...