Какое напряжение в линии электропередач. Воздушные линии электропередачи ЛЭП: конструкция, разновидности, параметры. Воздушные линии электропередачи

Какие линии электропередач бывают

Сеть линий электропередач необходима для перемещения и распределения электрической энергии: от ее источников, между населенными пунктами и конечными объектами потребления. Данные линии отличаются большим разнообразием и разделяются:

  • по типу размещения проводов – воздушные (расположенные на открытом воздухе) и кабельные (закрытые в изоляцию);
  • по назначению – сверхдальние, магистральные, распределительные.

Воздушные и кабельные линии электропередач обладают определенной классификацией, которая зависят от потребителя, рода тока, мощности, используемых материалов.

Воздушные линии электропередач (ВЛ)


К ним относятся линии, которые прокладываются на открытом воздухе над землей с использованием различных опор. Разделение линий электропередач важно для их выбора и обслуживания.

Различают линии:

  • по роду перемещаемого тока – переменный и постоянный;
  • по уровню напряжения – низковольтные (до 1000 В) и высоковольтные (более 1000 В) линии электропередач;
  • по нейтрале – сети с глухозаземленной, изолированной, эффективно-заземленной нейтралью.

Переменный ток

Электрические линии, использующие для передачи переменный ток, внедряются российскими компаниями чаще всего. С их помощью происходит питание систем и перемещение энергии на различные расстояния.

Постоянный ток

Воздушные линии электропередач, обеспечивающие передачу постоянного тока, используются в России редко. Главная причина этого – высокая стоимость монтажа. Кроме опор, проводов и различных элементов для них требуется покупка дополнительного оборудования – выпрямителей и инверторов.

Поскольку большинство потребителей использует переменный ток, при обустройстве таких линий, приходится тратить дополнительный ресурс на преобразование энергии.

Устройство воздушных ЛЭП

Устройство воздушных линий электропередач включают в себя следующие элементы:

  • Системы опоры или электрические столбы . Они размещаются на земле или других поверхностях и могут быть анкерными (принимают основную нагрузку), промежуточными (обычно используются для поддержания проводов в пролетах), угловыми (размещаются в местах, где линии проводов меняют направление).
  • Провода. Имеют свои разновидности, могут быть выполнены из алюминия, меди.
  • Траверсы. Они крепятся на опоры линий и служат основой для монтажа проводов.
  • Изоляторы. С их помощью монтируются провода и изолируются друг от друга.
  • Системы заземления. Наличие такой защиты необходимо в соответствии с нормами ПУЭ (правилами устройства электроустановок).
  • Молниезащита. Ее использование обеспечивает защиту воздушной линии электропередач от напряжения, которое может возникнуть при попадании разряда.

Каждый элемент электрической сети играет важную роль, принимая на себя определенную нагрузку. В некоторых случаях в ней может использоваться дополнительное оборудование.

Кабельные линии электропередач


Кабельные линии электропередач под напряжением в отличие от воздушных не требуют большой свободной площади для размещения. Благодаря наличию изоляционный защиты они могут быть проложены: на территории различных предприятий, в населенных пунктах с плотной застройкой. Единственный недостаток в сравнении с ВЛ – более высокая стоимость монтажа.

Подземные и подводные

Закрытий способ позволяет размещать линии даже в самых сложных условиях – под землей и под водной поверхностью. Для их прокладки могут использоваться специальные тоннели или другие способы. При этом можно применять несколько кабелей, а также различные крепежные детали.

Около электрических сетей устанавливаются специальные охранные зоны. Согласно правилам ПУЭ они должны обеспечить безопасность и нормальные условия эксплуатации.

Прокладка по сооружениям

Прокладка высоковольтных линий электропередач с различным напряжением возможна внутри сооружений. К наиболее часто используемым конструкциям относятся:

  • Тоннели. Они представляют собой отдельные помещения, внутри которых кабели располагаются по стенам или на специальных конструкциях. Такие пространства хорошо защищены и обеспечивают легкий доступ к монтажу и обслуживанию линий.
  • Каналы. Это готовые конструкции из пластика, железобетонных плит и других материалов, внутри которых располагаются провода.
  • Этаж или шахта. Помещения, специально приспособленные для размещения ЛЭП и возможности нахождения там человека.
  • Эстакада. Они представляют собой открытые сооружения, которые прокладываются на земле, фундаменте, опорных конструкциях с прикрепленными внутри проводами. Закрытые эстакады называются галереями.
  • Размещение в свободном пространстве зданий – зазоры, место под полом.
  • Кабельные блок. Кабели прокладываются под землей в специальных трубах и выводятся на поверхность с помощью специальных пластиковых или бетонных колодцев.

Изоляция кабельных ЛЭП


Главным условием при выборе материалов для изоляции ЛЭП является то, что они не должны проводить ток. Обычно в устройстве кабельных линий электропередач используются следующие материалы:

  • резина синтетического или природного происхождения (она отличается хорошей гибкостью, поэтому линии из такого материала легко прокладывать даже в труднодоступных местах);
  • полиэтилен (достаточно устойчив к воздействию химической или другой агрессивной среды);
  • ПВХ (главным преимуществом такой изоляции является доступность, хотя материал по стойкости и различным защитным свойствам уступает другим);
  • фторопластовые (отличаются высокой устойчивостью к различным воздействиям);
  • материалы на бумажной основе (малоустойчивы к химическим и природным воздействиям, даже при наличии пропитки защитным составом).

Кроме традиционных твердых материалов для таких линий могут применяться жидкостные изоляторы, а также специальные газы.

Классификация по назначению

Еще одной характеристикой, по которой происходит классификация линий электропередач с учетом напряжения, является их назначение. ВЛ принято делить на: сверхдальние, магистральные, распределительные. Они различаются в зависимости от мощности, типа получателя и отправителя энергии. Это могут быть крупные станции или потребители – заводы, населенные пункты.

Сверхдальние

Основным назначением данных линий является связь между различными энергетическими системами. Напряжение в данных воздушных линиях начинается от 500 кВ.

Магистральные

Данный формат ЛЭП предполагает напряжение в сети 220 и 330 кВ. Магистральные линии обеспечивают передачу энергии от электростанций до пунктов распределения. Также они могут использоваться для связи различных электростанций.

Распределительные

К виду распределительных линий относятся сети под напряжением 35, 110 и 150 кВ. С их помощью происходит перемещение электрической энергии от распределительных сетей к населенным пунктам, а также крупным предприятиям. Линии с напряжением менее 20 кВ используются, чтобы обеспечить поставку энергии конечным потребителям, в том числе для подключения электричества к участку .

Строительство и ремонт линий электропередач


Прокладка сетей высоковольтных кабельных линий электропередач и ВЛ – необходимый способ обеспечения энергией любых объектов. С их помощью осуществляется передача электроэнергии на любые расстояния.

Строительство сетей любого назначения представляет собой сложный процесс, который включает в себя несколько этапов:

  • Обследование местности.
  • Проектирование линий, составление сметы, технической документации.
  • Подготовку территории, подбор и закупка материалов.
  • Сборку опорных элементов или подготовка к установке кабеля.
  • Монтаж или закладывание проводов, подвесных устройств, укрепление ЛЭП.
  • Благоустройство территории и подготовка линии к запуску.
  • Ввод в эксплуатацию, официальное оформление документации.

Для обеспечения эффективной работы линии требуется ее грамотное техническое обслуживание, своевременный ремонт и при необходимости реконструкция. Все подобные мероприятия должны проводиться в соответствии с ПУЭ (правилами технических установок).

Ремонт электрических линий делится на текущий и капитальный. Во время первого производится контроль за состоянием работы системы, выполняются работы по замене различных элементов. Капитальный ремонт предполагает проведение более серьезных работ, которые могут включать замену опор, перетяжку линий, замену целых участков. Все виды работ определяются в зависимости от состояния ЛЭП.

Содержание:

Один из столпов современной цивилизации – это электроснабжение. Ключевую роль в нем выполняют линии электропередачи – ЛЭП. Независимо от удаленности генерирующих мощностей от конечных потребителей, нужны протяженные проводники, которые их соединяют. Далее расскажем более детально о том, что из себя представляют эти проводники, именуемые как ЛЭП.

Какими бывают воздушные ЛЭП

Провода, прикрепленные к опорам, – это и есть воздушные ЛЭП. Сегодня освоены два способа передачи электроэнергии на большие расстояния. Они основаны на переменном и постоянном напряжениях. Передача электроэнергии при постоянном напряжении пока еще менее распространена в сравнении с переменным напряжением. Это объясняется тем, что постоянный ток сам по себе не генерируется, а получается из переменного тока.

По этой причине необходимы дополнительные электрические машины. А они стали появляться относительно недавно, поскольку в их основе используются мощные полупроводниковые приборы. Такие полупроводники появились лишь 20–30 лет тому назад, то есть примерно в 90-е годы ХХ века. Следовательно, до этого времени уже были построены в большом количестве ЛЭП переменного тока. Отличия линий электропередачи показаны далее на схематическом изображении.

Наибольшие потери вызывает активное сопротивление материала проводов. При этом не имеет значения, какой ток – постоянный или переменный. Для их преодоления напряжение в начале передачи повышается как можно больше. Уже преодолен уровень в один миллион вольт. Генератор Г питает ЛЭП переменного тока через трансформатор Т1. А в конце передачи напряжение понижается. ЛЭП питает нагрузку Н через трансформатор Т2. Трансформатор является самым простым и надежным инструментом преобразования напряжений.

У читателя, мало знакомого с электроснабжением, скорее всего, появится вопрос о смысле передачи электроэнергии на постоянном токе. А причины чисто экономические – передача электроэнергии на постоянном токе именно в самой ЛЭП дает большую экономию:

  1. Генератор вырабатывает трехфазное напряжение. Следовательно, три провода для электроснабжения на переменном токе нужны всегда. А на постоянном токе всю мощность трех фаз можно передать по двум проводам. А при использовании земли как проводника – по одному проводу. Следовательно, экономия лишь на материалах получается трехкратной в пользу ЛЭП на постоянном токе.
  2. Электрические сети переменного тока при объединении в одну общую систему должны иметь одинаковую фазировку (синхронизацию). Это значит, что мгновенное значение напряжения в соединяемых электросетях должно быть одинаковым. Иначе между соединяемыми фазами электросетей будет разность потенциалов. Как следствие соединения без фазировки – авария, сопоставимая с коротким замыканием. Для электросетей постоянного тока вообще не характерна. Для них имеет значение лишь действующее напряжение на момент соединения.
  3. Для электрических цепей, работающих на переменном токе, характерен импеданс, который связан с индуктивностью и емкостью. Импеданс имеется также и у ЛЭП переменного тока. Чем протяженнее линия, тем больше импеданс и потери, с ним связанные. Для электрических цепей постоянного тока понятия импеданса не существует, как и потерь, связанных с изменением направления движения электрического тока.
  4. Как уже упоминалось в п. 2, для стабильности в энергосистеме нужна синхронизация генераторов. Но чем больше система, работающая на переменном токе, и, соответственно, число электрогенераторов, тем сложнее их синхронизировать. А для энергосистем постоянного тока любое число генераторов будет нормально работать.

Из-за того, что сегодня нет достаточно мощных полупроводниковых или иных систем для преобразования напряжения, достаточно эффективного и надежного, большинство ЛЭП по-прежнему работает на переменном токе. По этой причине далее остановимся только на них.

Еще один пункт в классификации линий электропередачи – это их назначение. В связи с этим линии разделяются на

  • сверхдальние,
  • магистральные,
  • распределительные.

Их конструкция принципиально отличается из-за разных величин напряжения. Так, в сверхдальних ЛЭП, являющихся системообразующими, применяются самые высокие напряжения, которые только существуют на нынешнем этапе развития техники. Величина в 500 кВ для них является минимальной. Это объясняется значительным удалением друг от друга мощных электростанций, каждая из которых – это основа отдельной энергосистемы.

Внутри нее существует своя распределительная сеть, задача которой – обеспечение больших групп конечных потребителей. Они присоединены к распределительным подстанциям с напряжением 220 или 330 кВ на высокой стороне. Эти подстанции являются конечными потребителями для магистральных ЛЭП. Поскольку энергетический поток уже вплотную приблизился к поселениям, напряжение необходимо уменьшить.

Распределение электроэнергии выполняют ЛЭП, напряжение которых 20 и 35 кВ для жилого сектора, а также 110 и 150 кВ – для мощных промышленных объектов. Следующий пункт классификации линий электропередачи – по классу напряжения. По этому признаку ЛЭП можно опознать визуально. Для каждого класса напряжения характерны соответствующие изоляторы. Их конструкция – это своего рода удостоверение линии электропередачи. Изоляторы изготавливаются увеличением числа керамических чашек соответственно увеличению напряжения. А его классы в киловольтах (включая напряжения между фазами, принятые для стран СНГ) такие:

  • 1 (380 В);
  • 35 (6, 10, 20);
  • 110…220;
  • 330…750 (500);
  • 750 (1150).

Помимо изоляторов, отличительными признаками являются провода. С увеличением напряжения все больше проявляется эффект электрического коронного разряда. Это явление отбирает энергию и уменьшает эффективность электроснабжения. Поэтому для ослабления коронного разряда с увеличением напряжения, начиная с 220 кВ, используются параллельные провода – по одному на каждые примерно 100 кВ. Некоторые из воздушных линий (ВЛ) разных классов напряжения показаны далее на изображениях:

Опоры ЛЭП и другие заметные элементы

Для того чтобы провод надежно удерживался, применяются опоры. В простейшем случае это деревянные столбы. Но такая конструкция применима лишь к линиям до 35 кВ. А с увеличением ценности древесины в этом классе напряжений все больше используются опоры из железобетона. По мере увеличения напряжения провода необходимо поднимать выше, а расстояние между фазами делать больше. В сравнении опоры выглядят так:

В общем, опоры – это отдельная тема, которая довольно-таки обширна. По этой причине в детали темы опор линий электропередачи здесь углубляться не будем. Но чтобы кратко и емко показать читателю ее основу, продемонстрируем изображение:

В заключение информации о воздушных ЛЭП упомянем те дополнительные элементы, которые встречаются на опорах и хорошо заметны. Это

  • системы защиты от молнии,
  • а также реакторы.

Кроме перечисленных элементов, в линиях электропередачи применяется еще несколько. Но оставим их за рамками статьи и перейдем к кабелям.

Кабельные линии

Воздух – это изолятор. На этом его свойстве основаны воздушные линии. Но существуют и другие более эффективные материалы-изоляторы. Их применение позволяет намного уменьшить расстояния между фазными проводниками. Но цена такого кабеля получается настолько велика, что не может быть и речи о его использовании вместо воздушных ЛЭП. По этой причине кабели прокладывают там, где есть трудности с воздушными линиями.

Линия электропередач

Линии электропередачи

Линия электропередачи (ЛЭП) - один из компонентов электрической сети , система энергетического оборудования, предназначенная для передачи электроэнергии .

Согласно МПТЭЭП (Межотраслевые правила технической эксплуатации электроустановок потребителей) Линия электропередачи - Электрическая линия, выходящая за пределы электростанции или подстанции и предназначенная для передачи электрической энергии.

Различают воздушные и кабельные линии электропередачи .

По ЛЭП также передают информацию при помощи высокочастотных сигналов, по оценкам в России используется порядка 60 тыс. ВЧ-каналов по ЛЭП. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Воздушные линии электропередачи

Воздушная линия электропередачи (ВЛ) - устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам , путепроводам).

Состав ВЛ

  • Секционирующие устройства
  • Волоконно-оптические линии связи (в виде отдельных самонесущих кабелей, либо встроенные в грозозащитный трос, силовой провод)
  • Вспомогательное оборудование для нужд эксплуатации (аппаратура высокочастотной связи, ёмкостного отбора мощности и др.)

Документы, регулирующие ВЛ

Классификация ВЛ

По роду тока

  • ВЛ переменного тока
  • ВЛ постоянного тока

В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (напр., для связи энергосистем, питания контактной сети и др.) используют линии постоянного тока.

Для ВЛ переменного тока принята следующая шкала классов напряжений: переменное - 0.4, 6, 10, (20), 35, 110, 150, 220, 330, 400 (Выборгская ПС - Финляндия), 500 , 750 и 1150 кВ; постоянное - 400 кВ.

По назначению

  • сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем)
  • магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций , а также для связи энергосистем и объединения электростанций внутри энергосистем - к примеру, соединяют электростанции с распределительными пунктами)
  • распределительные ВЛ напряжением 35, 110 и 150 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов - соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям

По напряжению

  • ВЛ до 1 кВ (ВЛ низшего класса напряжений)
  • ВЛ выше 1 кВ
    • ВЛ 1-35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 110-220 кВ (ВЛ высокого класса напряжений)
    • ВЛ 330-500 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ 750 кВ и выше (ВЛ ультравысокого класса напряжений)

Это группы существенно различаются в основном требованиями в части расчётных условий и конструкций.

По режиму работы нейтралей в электроустановках

  • Трехфазные сети с незаземленными (изолированными) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с большим сопротивлением). В России такой режим нейтрали используется в сетях напряжением 3-35кВ с малыми токами однофазных замыканий на землю.
  • Трехфазные сети с резонансно-заземлёнными (компенсированными) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В России используется в сетях напряжением 3-35кВ с большими токами однофазных замыканий на землю.
  • Трехфазные сети с эффективно-заземленными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землей непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220кВ, т.е. сети в которых применяются трансформаторы, а не автотрансформаторы, требующие обязательного глухого заземления нейтрали по режиму работы.
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1кВ, а так же сети напряжением 220кВ и выше.

По режиму работы в зависимости от механического состояния

  • ВЛ нормального режима работы (провода и тросы не оборваны)
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов)
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов)

Основные элементы ВЛ

  • Трасса - положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) - отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак обозначает центр расположения опоры в натуре на трассе строящейся ВЛ.
  • Производственный пикетаж - установка пикетных и центровых знаков на трассе в соответствие с ведомостью расстановки опор.
  • Фундамент опоры - конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузки от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента - грунт нижней части котлована, воспринимающий нагрузку.
  • Пролёт (длина пролёта) - расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный (между двумя соседними промежуточными опорами) и анкерный (между анкерными опорами) пролёты . Переходный пролёт - пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии - угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса - вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода - вертикальное расстояние от низшей точки провода в пролёте до пересекаемых инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля ) - отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Кабельные линии электропередачи

Кабельная линия электропередачи (КЛ) -называется линия для передачи электроэнергии или отдельных импульсов ее, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

По классификации кабельные линии аналогичны воздушным линиям

Кабельные линии делят по условиям прохождения

  • Подземные
  • По сооружениям
  • Подводные

к кабельным сооружениям относятся

  • Кабельный туннель - закрытое сооружение (коридор) с расположенными в нем опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонты и осмотры кабельных линий.
  • Кабельный канал - закрытое и заглубленное (частично или полностью) в грунт, пол, перекрытие и т. п. непроходное сооружение, предназначенное для размещения в нем кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта - вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабженное скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съемной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж - часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол - полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съемными плитами (на всей или части площади).
  • Кабельный блок - кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера - подземное кабельное сооружение, закрываемое глухой съемной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в нее, называется кабельным колодцем.
  • Кабельная эстакада - надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея - надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение.

По типу изоляции

Изоляция кабельных линий делится на два основных типа:

  • жидкостная
    • кабельным нефтяным маслом
  • твёрдая
    • бумажно-маслянная
    • поливинилхлоридная (ПВХ)
    • резино-бумажная (RIP)
    • сшитый полиэтилен (XLPE)
    • этилен-пропиленовая резина (EPR)

Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи.

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока , поэтому при передаче ее на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора , что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различного рода разрядные явления.

Другой важной величиной, влияющей на экономичность ЛЭП, является cos(f) - величина, характеризующая отношение активной и реактивной мощности.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Эти потери зависят во многом от погодных условий (в сухую погоду потери меньше, соответственно в дождь, изморось, снег эти потери возрастают) и расщепления провода в фазах линии. Потери на корону для линий различных напряжений имеют свои значения (для линии ВЛ 500кВ среднегодовые потери на корону составляют около ΔР=9,0 -11,0 кВт/км). Так как коронный разряд зависит от напряжённости на поверхности провода, то для уменьшения этой напряжённости в воздушных линиях свервысокого напряжения применяют расщепление фаз. То есть в место одного провода применяют от трёх и более проводов в фазе. Распологаются эти провода на равном расстоянии друг от друга. Получается эквивалентный радиус расщеплённой фазы, этим уменьшается напряжённость на отдельном проводе, что в свою очередь уменьшает потери на корону.

Литература

  • Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ. / Магидин Ф. А.; Под ред. А. Н. Трифонова. - М.: Высшая школа, 1991. - 208 с ISBN 5-06-001074-0
  • Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. - 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1987. - 648 с.: ил. ББК 31.277.1 Р63
  • Проектирование электрической части станций и подстанций: Учеб. пособие / Петрова С.С.; Под ред. С.А. Мартынова. - Л.: ЛПИ им. М.И. Калашникова, 1980. - 76 с. УДК 621.311.2(0.75.8)

Трансформаторы осуществляют непосредственное преобразование электроэнергии - изменение величины напряжения. Распределительные устройства служат для приема электроэнергии со стороны питания трансформаторов (приемные распределительные устройства) и для распределения электроэнергии на стороне потребителей.

В последующих главах рассматривается конструктивное выполнение основных элементов систем электроснабжения, приводятся основные типы и схемы подстанций, даются основы механического расчета воздушных линий электропередачи и шинных конструкций.

1. Конструкции воздушных линий электропередачи

1.1. Общие сведения

Воздушной линией (ВЛ) называется устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к опорам.

На рис. 1.1 показан фрагмент ВЛ. Расстояние l между соседними опорами называется пролетом . Расстояние по вертикали между прямой линией, соединяющей точки подвеса провода, и низшей точкой его провисания называется стрелой провеса провода f п . Расстояние от низшей точки провисания провода до поверхности земли называется габаритом воздушной линии h г . В верхней части опор закрепляется грозозащитный трос.

Величина габарита линии h г регламентируется ПУЭ в зависимости от напряжения ВЛ и вида местности (населенная, ненаселенная, труднодоступная). Длина гирлянды изоляторов λ и расстояние между проводами соседних фаз h п-п определяются номинальным напряжением ВЛ. Расстояние между точками подвеса верхнего провода и троса h п-т регламентируется ПУЭ исходя из требования надежной защиты проводов ВЛ от прямых ударов молнии.

Для обеспечения экономичной и надежной передачи электроэнергии необходимы проводниковые материалы, обладающие высокой электрической проводимостью (низким сопротивлением) и высокой механической прочностью. В конструктивных элементах систем электроснабжения в качестве таких материалов используются медь, алюминий, сплавы на их основе, сталь.

Рис. 1.1. Фрагмент воздушной линии электропередачи

Медь имеет низкое сопротивление и достаточно высокую прочность. Ее удельное активное сопротивление ρ = 0,018 Ом. мм2 /м, а предельное сопротивление на разрыв - 360 МПа. Однако это дорогой и дефицитный металл. Поэтому медь применяется, как правило, для выполнения обмоток трансформаторов, реже - для жил кабелей и практически не применяется для проводов воздушных линий.

Удельное сопротивление алюминия в 1,6 раза больше, предельное сопротивление на разрыв в 2,5 раза меньше, чем у меди. Большая распространенность алюминия в природе и меньшая, чем у меди, стоимость обусловили его широкое применение для проводов ВЛ.

Сталь обладает большим сопротивлением и высокой механической прочностью. Ее удельное активное сопротивление ρ = 0,13 Ом. мм2 /м, а предельное сопротивление на разрыв - 540 МПа. Поэтому в системах электроснабжения сталь используется, в частности, для увеличения механической прочности алюминиевых проводов, изготовления опор и грозозащитных тросов воздушных линий электропередачи.

1.2. Провода и тросы воздушных линий

Провода ВЛ служат непосредственно для передачи электроэнергии и различаются по конструкции и используемому проводниковому материалу. Наиболее экономически целесообразным

материалом для проводов ВЛ является алюминий и сплавы на его основе.

Медные провода для ВЛ применяются исключительно редко и при соответствующем технико-экономическом обосновании. Медные провода используются в контактных сетях подвижного транспорта, в сетях специальных производств (шахт, рудников), иногда при прохождении ВЛ вблизи морей и некоторых химических производств.

Стальные провода для ВЛ не применяются, поскольку имеют большое активное сопротивление и подвержены коррозии. Применение стальных проводов оправдывается при выполнении особенно больших пролетов ВЛ, например при переходе ВЛ через широкие судоходные реки.

Сечения проводов соответствуют ГОСТ 839-74. Шкала номинальных сечений проводов ВЛ составляет следующий ряд, мм2 :

1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 600; 700; 800; 1000.

По конструктивному выполнению провода ВЛ делятся: на однопроволочные;

многопроволочные из одного металла (монометаллические); многопроволочные из двух металлов; самонесущие изолированные.

Однопроволочные провода , как следует из названия, выполняют из одной проволоки (рис. 1.2,а). Такие провода выполняются небольших сечений до 10 мм2 и используются иногда для ВЛ напряжением до 1 кВ.

Многопроволочные монометаллические провода выполняются сечением более 10 мм 2 . Эти провода изготовляются свитыми из отдельных проволок. Вокруг центральной проволоки выполняется повив (ряд) из шести проволок такого же диаметра (рис. 1.2,б). Каждый последующий повив имеет на шесть проволок больше, чем предыдущий. Скрутку соседних повивов выполняют в разные стороны для предотвращения раскручивания проволок и придания проводу более круглой формы.

Количество повивов определяется сечением провода. Провода сечением до 95 мм2 выполняются с одним повивом, сечением 120… 300 мм2 - с двумя повивами, сечением 400 мм2 и более - с тремя и более повивами. Многопроволочные провода по сравнению с однопроволочными более гибкие, удобные для монтажа, надежные в эксплуатации.

Рис. 1.2. Конструкции неизолированных проводов ВЛ

Для придания проводу большей механической прочности многопроволочные провода изготовляют со стальным сердечником 1 (рис. 1.2,в,г,д). Такие провода называются сталеалюминиевыми. Сердечник выполняется из стальной оцинкованной проволоки и может быть однопроволочным (рис.1.2,в) и многопроволочным (рис. 1.2,г). Общий вид сталеалюминиевого провода большого сечения с многопроволочным стальным сердечником показан на рис. 1.2,д.

Сталеалюминиевые провода широко применяются для ВЛ напряжением выше 1 кВ. Эти провода выпускаются различных конструкций, отличающихся соотношением сечений алюминиевой и стальной частей. Для обычных сталеалюминиевых проводов это соотношение приблизительно равно шести, для проводов облегченной конструкции - восьми, для проводов усиленной конструкции - четырем. При выборе того или иного сталеалюминиевого провода учитывают внешние механические нагрузки на провод такие, как гололед и ветер.

Провода, в зависимости от используемого материала, маркируются следующим образом:

М - медный, А - алюминиевый,

АН, АЖ - из сплавов алюминия (имеют большую механическую прочность, чем провод марки А);

АС - сталеалюминиевый; АСО - сталеалюминиевый облегченной конструкции;

АСУ - сталеалюминиевый усиленной конструкции.

В цифровом обозначении провода указывается его номинальное сечение. Например, А95 это алюминиевый провод с номинальным сечением 95 мм2 . В обозначении сталеалюминиевых проводов может дополнительно указываться сечение стального сердечника. Например,

АСО240/32 - сталеалюминиевый провод облегченной конструкции с номинальным сечением алюминиевой части 240 мм2 и сечением стального сердечника 32 мм2 .

Стойкие к коррозии алюминиевые провода марки АКП и сталеалюминиевые провода марок АСКП, АСКС, АСК имеют межпроволочное пространство, заполненное нейтральной смазкой повышенной термостойкости, противодействующей появлению коррозии. У проводов АКП и АСКП такой смазкой заполнено все межпроволочное пространство, у провода АСКС - только стальной сердечник, у провода АСК стальной сердечник заполнен нейтральной смазкой и изолирован от алюминиевой части двумя полиэтиленовыми лентами. Провода АКП, АСКП, АСКС, АСК применяются для ВЛ, проходящих вблизи морей, соленых озер и химических предприятий.

Самонесущие изолированные провода (СИП) применяются для ВЛ напряжением до 20 кВ. При напряжениях до 1 кВ (рис. 1.3,а) такой провод состоит из трех фазных многопроволочных алюминиевых жил 1. Четвертая жила 2 является несущей и одновременно нулевой. Фазные жилы скручены вокруг несущей таким образом, чтобы вся механическая нагрузка воспринималась несущей жилой, изготовляемой из прочного алюминиевого сплава АВЕ.

Рис. 1.3. Самонесущие изолированные провода

Фазная изоляция 3 выполняется из термопластичного светостабилизированного или сшитого светостабилизированного полиэтилена . Благодаря своей молекулярной структуре, такая изоляция обладает очень высокими термомеханическими свойствами и большой стойкостью к воздействию солнечной радиации и атмосферы. В некоторых конструкциях СИП нулевая несущая жила выполняется с изоляцией.

Конструкция СИП для напряжений выше 1 кВ приведена на рис. 1.3,б. Такой провод выполняется однофазным и состоит из

токоведущей сталеалюминиевой жилы 1 и изоляции 2, выполненной из сшитого светостабилизированного полиэтилена.

ВЛ с СИП по сравнению с традиционными ВЛ имеют следующие преимущества:

меньшие потери напряжения (улучшение качества электроэнергии), благодаря меньшему, приблизительно в три раза, реактивному сопротивлению трехфазных СИП;

не требуют изоляторов; практически отсутствует гололедообразование;

допускают подвеску на одной опоре нескольких линий различного напряжения;

меньшие расходы на эксплуатацию, благодаря сокращению, приблизительно на 80%, объемов аварийно-восстановительных работ; возможность использования более коротких опор благодаря

меньшему допустимому расстоянию от СИП до земли; уменьшение охранной зоны, допустимых расстояний до зданий и

сооружений, ширины просеки в лесистой местности; практическое отсутствие возможности возникновения пожара в

лесистой местности при падении провода на землю; высокая надежность (5-кратное снижение числа аварий по

сравнению с традиционными ВЛ); полная защищенность проводника от воздействия влаги и

коррозии.

Стоимость ВЛ с самонесущими изолированными проводами выше, чем традиционных ВЛ.

Провода ВЛ напряжением 35 кВ и выше защищаются от прямого удара молнии грозозащитным тросом , закрепляемым в верхней части опоры (см. рис. 1.1). Грозозащитные тросы являются элементами ВЛ, аналогичными по своей конструкции многопроволочным монометаллическим проводам. Тросы выполняют из стальных оцинкованных проволок. Номинальные сечения тросов соответствуют шкале номинальных сечений проводов. Минимальное сечение грозозащитного троса 35 мм2 .

При использовании грозозащитных тросов в качестве высокочастотных каналов связи вместо стального троса используется сталеалюминиевый провод с мощным стальным сердечником, сечение которого соизмеримо или больше сечения алюминиевой части.

1.3. Опоры воздушных линий

Основное назначение опор - поддержка проводов на требуемой высоте над землей и наземными сооружениями. Опоры состоят из вертикальных стоек, траверс и фундаментов. Основными материалами, из которых изготавливаются опоры, являются древесина хвойных пород, железобетон и металл.

Опоры из древесины простые в изготовлении, транспортировке и эксплуатации, применяются для ВЛ напряжением до 220 кВ включительно в районах лесоразработок или близких к ним. Основной недостаток таких опор - подверженность древесины загниванию. Для увеличения срока службы опор древесину просушивают и пропитывают антисептиками, препятствующими развитию процесса гниения.

Вследствие ограниченной строительной длины древесины, опоры выполняют составными (рис 1.4,а). Деревянную стойку 1 сочленяют металлическими бандажами 2 с железобетонной приставкой 3. Нижняя часть приставки заглубляется в грунте. Опоры, соответствующие рис. 1.4,а, применяются на напряжение до 10 кВ включительно. На более высокие напряжения опоры из древесины выполняют П-образными (портальными). Такая опора показана на рис. 1.4,б.

Следует отметить, что в современных условиях необходимости сохранения лесов целесообразно сокращение применения опор из древесины.

Железобетонные опоры состоят из железобетонной стойки 1 и траверс 2 (рис. 1.4,в). Стойка представляет собой пустотелую конусную трубу с малым наклоном образующих конуса. Нижняя часть стойки заглубляется в грунте. Траверсы изготавливаются из стального оцинкованного проката. Эти опоры долговечнее опор из древесины, просты в обслуживании, требуют меньше металла, чем стальные опоры.

Основные недостатки опор из железобетона: большой вес, затрудняющий транспортировку опор в труднодоступные места трассы ВЛ, и относительно малая прочность бетона на изгиб.

Для увеличения прочности опор на изгиб при изготовлении железобетонной стойки используется предварительно напряженная (растянутая) стальная арматура.

Для обеспечения высокой плотности бетона при изготовлении стоек опор применяют виброуплотнение и центрифугирование бетона.

Стойки опор ВЛ напряжением до 35 кВ выполняют из вибробетона, при более высоких напряжениях - из центрифугированного бетона.

Рис. 1.4. Промежуточные опоры ВЛ

Стальные опоры обладают высокой механической прочностью и большим сроком службы. Эти опоры с помощью сварки и болтовых соединений собираются из отдельных элементов, поэтому имеется возможность создания опор практически любой конструкции (рис. 1.4,г). В отличие от опор из древесины и железобетона металлические опоры устанавливаются на железобетонных фундаментах 1.

Стальные опоры являются дорогими. Кроме того, сталь подвержена коррозии. Для увеличения срока службы опор их покрывают антикоррозийными составами и окрашивают. Очень эффективной против коррозии является горячая оцинковка стальных опор.

Опоры из алюминиевых сплавов эффективны при сооружении ВЛ в условиях труднодоступных трасс. Вследствие стойкости алюминия к коррозии, эти опоры не нуждаются в антикоррозийном покрытии. Однако высокая стоимость алюминия существенно ограничивает возможности использования таких опор.

При прохождении по определенной территории воздушная линия может менять направление, пересекать различные инженерные

сооружения и естественные преграды, подключаться к шинам распределительных устройств подстанций. На рис. 1.5 показан вид сверху фрагмента трассы ВЛ. Из этого рисунка видно, что разные опоры работают в разных условиях и, следовательно, должны иметь отличающуюся конструкцию. По конструктивному исполнению опоры делятся:

на промежуточные (опоры 2, 3, 7), устанавливаемые на прямом участке ВЛ;

угловые (опора 4), устанавливаемые на поворотах трассы ВЛ; концевые (опоры 1 и 8), устанавливаемые в начале и конце ВЛ; переходные (опоры 5 и 6), устанавливаемые в пролете

пересечения воздушной линией какого-либо инженерного сооружения, например железной дороги.

Рис. 1.5. Фрагмент трассы ВЛ

Промежуточные опоры предназначены для поддерживания проводов на прямом участке ВЛ. Провода с этими опорами не имеют жесткого соединения, так как крепятся с помощью поддерживающих гирлянд изоляторов. На эти опоры действуют силы тяжести проводов, тросов, гирлянд изоляторов, гололеда, а также ветровые нагрузки. Примеры промежуточных опор приведены на рис. 1.4.

На концевые опоры дополнительно воздействует сила тяжения Т проводов и тросов, направленная вдоль линии (рис. 1.5). На угловые опоры дополнительно воздействует сила тяжения Т проводов и тросов, направленная по биссектрисе угла поворота ВЛ.

Переходные опоры в нормальном режиме ВЛ выполняют роль промежуточных опор. Эти опоры принимают на себя тяжение проводов и тросов при их обрыве в соседних пролетах и исключают недопустимое провисание проводов в пролете пересечения.

Концевые, угловые и переходные опоры должны быть достаточно жесткими и не должны отклоняться от вертикального

положения при воздействии на них силы тяжения проводов и тросов. Такие опоры выполняются в виде жестких пространственных ферм или с применением специальных тросовых растяжек и называются анкерными опорами . Провода с анкерными опорами имеют жесткое соединение, так как крепятся с помощью натяжных гирлянд изоляторов.

Рис. 1.6. Анкерные угловые опоры ВЛ

Анкерные опоры из древесины выполняются А-образными при напряжениях до 10 кВ и АП-образными при более высоких напряжениях. Железобетонные анкерные опоры имеют специальные тросовые растяжки (рис. 1.6,а). Металлические анкерные опоры имеют более широкую базу (нижнюю часть), чем промежуточные опоры (рис. 1.6,б).

По количеству проводов, подвешиваемых на одной опоре, различают одноцепные и двухцепные опоры . На одноцепных опорах подвешивается три провода (одна трехфазная цепь), на двухцепных - шесть проводов (две трехфазных цепи). Одноцепные опоры приведены на рис. 1.4,а,б,г и рис. 1.6,а; двухцепные - на рис. 1.4,в и рис. 1.6,б.

Двухцепная опора по сравнению с двумя одноцепными является более дешевой. Надежность передачи электроэнергии по двухцепной линии несколько ниже, чем по двум одноцепным.

Опоры из древесины в двухцепном исполнении не изготовляются. Опоры ВЛ напряжением 330 кВ и выше изготовляются только в одноцепном исполнении с горизонтальным расположением проводов (рис. 1.7). Такие опоры изготовляются П- образными (портальными) или V-образными с тросовыми растяжками.

Рис. 1.7. Опоры ВЛ напряжением 330 кВ и выше

Среди опор ВЛ отдельно выделяются опоры, имеющие специальную конструкцию. Это ответвительные, повышенные и транспозиционные опоры. Ответвительные опоры предназначены для промежуточного отбора мощности от ВЛ. Повышенные опоры устанавливаются в больших пролетах, например, при переходе через широкие судоходные реки. На транспозиционных опорах осуществляется транспозиция проводов.

Несимметричное расположение проводов на опорах при большой длине ВЛ приводит к несимметрии напряжений фаз. Симметрирование фаз за счет изменения взаимного расположения проводов на опоре называется транспозицией. Транспозиция предусматривается на ВЛ напряжением 110 кВ и выше длиной более 100 км и осуществляется на специальных транспозиционных опорах. Провод каждой фазы проходит первую треть длины ВЛ на одном, вторую треть - на другом и третью - на третьем месте. Такое перемещение проводов называется полным циклом транспозиции

Воздушные линии (ВЛ) служат для передачи электроэнергии по проводам, проложенным на открытом воздухе и закрепленным на специальных опорах или кронштейнах инженерных сооружений с помощью изоляторов и арматуры. Основными конструктивными элементами ВЛ являются провода, защитные тросы, опоры, изоляторы и линейная арматура. В городских условиях ВЛ получили наибольшее распространение на окраинах, а также в районах застройки до пяти этажей. Элементы ВЛ должны обладать достаточной механической прочностью, поэтому при их проектировании, кроме электрических, делают и механические расчеты для определения не только материала и сечения проводов, но и типа изоляторов и опор, расстояния между проводами и опорами и т. д.

В зависимости от назначения и места установки различают следующие виды опор:

промежуточные, предназначенные для поддержания проводов на прямых участках линий. Расстояние между опорами (пролеты) составляет 35-45 м для напряжения до 1000 В и около 60 м для напряжения 6-10 кВ. Крепление проводов здесь производится с помощью штыревых изоляторов (не наглухо);

анкерные, имеющие более жесткую и прочную конструкцию, чтобы воспринимать продольные усилия от разности тяжения по проводам и поддерживать (в случае обрыва) все оставшиеся в анкерном пролете провода. Эти опоры устанавливаются также на прямых участках трассы (с пролетом около 250 м для напряжения 6-10 кВ) и на пересечениях с различными сооружениями. Крепление проводов на анкерных опорах производится наглухо к подвесным или штыревым изоляторам;

концевые, устанавливаемые в начале и в конце линии. Они являются разновидностью анкерных опор и должны выдерживать постоянно действующее одностороннее тяжение проводов;

угловые, устанавливаемые в местах изменения направления трассы. Эти опоры укрепляются подкосами или металлическими оттяжками;

специальные или переходные, устанавливаемые в местах пересечений ВЛ с сооружениями или препятствиями (реками, железными дорогами и т. п.). Они отличаются от других опор данной линии по высоте или конструкции.

Для изготовления опор применяют дерево, металл или железобетон.

Деревянные опоры в зависимости от конструкции могут быть:

одинарными;

А-образными, состоящими из двух стоек, сходящихся у вершины и расходящихся у основания;

трехногими, состоящими из трех сходящихся к вершине и расходящихся у основания стоек;

П-образными, состоящими из двух стоек, соединенных вверху горизонтальной траверсой;

АП-образными, состоящими из двух А-образных опор, соединенных горизонтальной траверсой;

составными, состоящими из стойки и приставки (пасынка), присоединяемой к ней бандажом из стальной проволоки.

Для увеличения срока службы деревянные опоры пропитывают антисептиками, значительно замедляющими процесс гниения древесины. В эксплуатации антисептирование проводится путем наложения антисептического бандажа в местах, подверженных гниению, с промазыванием антисептической пастой всех трещин, мест сопряжений и врубок.

Металлические опоры изготавливают из труб или профильной стали, железобетонные - в виде полых круглых или прямоугольных стоек с уменьшающимся сечением к вершине опоры.

Для крепления проводов ВЛ к опорам применяются изоляторы и крюки, а для крепления к траверсе - изоляторы и штыри. Изоляторы могут быть фарфоровыми или стеклянными штыревого или подвесного (в местах анкерного крепления) исполнения (рис. 1, а-в). Их прочно навертывают на крюки или штыри с помощью специальных полиэтиленовых колпачков или пакли, пропитанной суриком или олифой.

Рисунок 1. а - штыревой 6-10 кВ; б - штыревой 35 кВ; в - подвесной; г, д - стержневые полимерные

Изоляторы воздушных линий изготавливаются из фарфора или закаленного стекла - материалов, обладающих высокой механической и электрической прочностью и стойкостью к атмосферным воздействиям. Существенным достоинством стеклянных изоляторов является то, что при повреждении закаленное стекло рассылается. Это облегчает нахождение поврежденных изоляторов на линии.

По конструкции изоляторы разделяют на штыревые и подвесные.

Штыревые изоляторы применяются на линиях напряжением до 1 кВ, 6-10 кВ и, редко, 35 кВ (рис. 1, а, б). Они крепятся к опорам при помощи крюков или штырей.

Подвесные изоляторы (рис. 1, в) используются на ВЛ напряжением 35 кВ и выше. Они состоят из фарфоровой или стеклянной изолирующей части 1, шапки из ковкого чугуна 2, металлического стержня 3 и цементной связки 4. Подвесные изоляторы собирают в гирлянды, которые бывают поддерживающими (на промежуточных опорах) и натяжными (на анкерных опорах). Число изоляторов в гирлянде определяется напряжением линии; 35 кВ - 3-4 изолятора, 110 кВ - 6-8.

Применяются также полимерные изоляторы (рис. 1, г). Они представляют собой стержневой элемент из стеклопластика, на котором размещено защитное покрытие с ребрами из фторопласта или кремнийорганической резины:

К проводам ВЛ предъявляются требования достаточной механической прочности. Они могут быть одно- или многопроволочными. Однопроволочные провода из стали применяются исключительно для линий напряжением до 1000 В; многопроволочные провода из стали, биметалла, алюминия и его сплавов получили преимущественное распространение благодаря повышенной механической прочности и гибкости. Чаще всего на ВЛ напряжением до 6-10 кВ используются алюминиевые многопроволочные провода марки А и стальные оцинкованные провода марки ПС.

Сталеалюминевые провода (рис. 2, в) применяют на ВЛ напряжением выше 1 кВ. Они выпускаются с разным соотношением сечений алюминиевой и стальной частей. Чем меньше это соотношение, тем более высокую механическую прочность имеет провод и поэтому используется на территориях с более тяжелыми климатическими условиями (с большей толщиной стенки гололеда). В марке сталеалюминевых проводов указываются сечения алюминиевой и стальной частей, например, АС 95/16.

Рисунок 2. а - общий вид многопроволочного провода; б - сечение алюминиевого провода; в - сечение сталеалюминевого провода

Провода из сплавов алюминия (АН - не термообработанный, АЖ - термообработанный) имеют большую, по сравнению с алюминиевыми, механическую прочность и практически такую же электрическую проводимость. Они используются на ВЛ напряжением выше 1 кВ в районах с толщиной стенки гололеда до 20 мм.

Провода располагают различными способами. На одноцепных линиях их, как правило, располагают треугольником.

В настоящее время широко используются так называемые самонесущие изолированные провода (СИП) напряжением до 10 кВ. В линии напряжением 380 В провода состоят из несущего неизолированного провода, являющегося нулевым, трех изолированных линейных проводов, одного изолированного провода наружного освещения. Линейные изолированные провода навиты вокруг несущего нулевого провода. Несущий провод является сталеалюминевым, а линейные - алюминиевыми. Последние покрыты светостойким термостабилизированным (сшитым) полиэтиленом (провод типа АПВ). К преимуществам ВЛ с изолированными проводами перед линиями с голыми проводами можно отнести отсутствие изоляторов на опорах, максимальное использование высоты опоры для подвески проводов; нет необходимости в обрезке деревьев в зоне прохождения линии.

Для ответвлений от линий напряжением до 1000 В к вводам в здания используются изолированные провода марки АПР или АВТ. Они имеют несущий стальной трос и изоляцию, стойкую к атмосферным воздействиям.

Крепление проводов к опорам производится различными способами, в зависимости от места их расположения на изоляторе. На промежуточных опорах провода крепят к штыревым изоляторам зажимами или вязальной проволокой из того же материала, что и провод, причем последний в месте крепления не должен иметь изгибов. Провода, расположенные на головке изолятора, крепятся головной вязкой, на шейке изолятора - боковой вязкой.

На анкерных, угловых и концевых опорах провода напряжением до 1000 В крепят закручиванием проводов так называемой «заглушкой», провода напряжением 6-10 кВ - петлей. На анкерных и угловых опорах, в местах перехода через железные дороги, проезды, трамвайные пути и на пересечениях с различными силовыми линиями и линиями связи применяют двойной подвес проводов.

Соединение проводов производят плашечными зажимами, обжатым овальным соединителем, овальным соединителем, скрученным специальным приспособлением. В некоторых случаях применяют сварку с помощью термитных патронов и специального аппарата. Для однопроволочных стальных проводов можно применять сварку внахлестку с использованием небольших трансформаторов. В пролетах между опорами не допускается иметь более двух соединений проводов, а в пролетах пересечений ВЛ с различными сооружениями соединение проводов не допускается. На опорах соединение должно быть выполнено так, чтобы оно не испытывало механических усилий.

Линейная арматура применяется для крепления проводов к изоляторам и изоляторов к опорам и делится на следующие основные виды: зажимы, сцепная арматура, соединители и др.

Зажимы служат для закрепления проводов и тросов и прикрепления их к гирляндам изоляторов и подразделяются на поддерживающие, подвешиваемые на промежуточных опорах, и натяжные, применяемые на опорах анкерного типа (рис. 3, а, б, в).

Рисунок 3. а - поддерживающий зажим; б - болтовой натяжной зажим; в - прессуемый натяжной зажим; г - поддерживающая гирлянда изоляторов; д - дистанционная распорка; е - овальный соединитель; ж - прессуемый соединитель

Сцепная арматура предназначена для подвески гирлянд на опорах и соединения многоцепных гирлянд друг с другом и включает скобы, серьги, ушки, коромысла. Скоба служит для присоединения гирлянды к траверсе опоры. Поддерживающая гирлянда (рис. 3, г) закрепляется на траверсе промежуточной опоры при помощи серьги 1, которая другой стороной вставляется в шапку верхнего подвесного изолятора 2. Ушко 3 используется для прикрепления к нижнему изолятору гирлянды поддерживающего зажима 4.

Соединители применяются для соединения отдельных участков провода. Они бывают овальные и прессуемые. В овальных соединителях провода либо обжимаются, либо скручиваются (рис. 3, е). Прессуемые соединители (рис. 3, ж) применяются для соединения проводов больших сечений. В сталеалюминевых проводах стальная и алюминиевая части опрессовываются раздельно.

Тросы наряду с искровыми промежутками, разрядниками и устройствами заземления служат для защиты линий от грозовых перенапряжений. Их подвешивают над фазными проводами на ВЛ напряжением 35 кВ и выше, в зависимости от района по грозовой деятельности и материала опор, что регламентируется «Правилами устройства электроустановок». Грозозащитные тросы обычно выполняют из стали, но при использовании их в качестве высокочастотных каналов связи - из стали и алюминия. На линиях 35-110 кВ крепление троса к металлическим и железобетонным промежуточным опорам осуществляется без изоляции троса.

Для защиты от грозовых перенапряжений участков ВЛ с пониженным по сравнению с остальной линией уровнем изоляции применяют трубчатые разрядники.

На ВЛ заземляются все металлические и железобетонные опоры, на которых подвешены грозозащитные тросы или установлены другие средства грозозащиты (разрядники, искровые промежутки) линий напряжением 6-35 кВ. На линиях до 1 кВ с глухозаземленной нейтралью крюки и штыри фазных проводов, устанавливаемые на железобетонных опорах, а также арматура этих опор должны быть присоединены к нулевому проводу.

Loading...Loading...