Расчет потерь теплоты и кпд-брутто котельном агрегате. Тепловой баланс парового котла. КПД котла

Коэффициент полезного действия (КПД) котельного агрегата определяют как отношение полезной теплоты, пошедшей на выработку пара (или горячей воды), к располагаемой теплоте (теплоте, поступившей в котельный агрегат). На практике не вся полезная теплота, выбранная котлоагрегатом, направляется потребителям. Часть теплоты расходуется на собственные нужды. В зависимости от этого различают КПД агрегата по теплоте, отпущенной потребителю (КПД нетто).

Разность выработанной и отпущенной теплоты представляет собой расход на собственные нужды котельной. На собственные нужды расходуется не только теплота, но и электрическая энергия (например, на привод дымососа, вентилятора, питательных насосов, механизмов топливоподачи и пылеприготовления и т.д.), поэтому расход на собственные нужды включает в себя расход всех видов энергии, затраченных на производство пара или горячей воды.

КПД брутто котельного агрегата характеризует степень его технического совершенства, а КПД нетто - коммерческую экономичность.

КПД брутто котельного агрегата ŋ бр , %, можно определить по уравнению прямого баланса

ŋ бр = 100(Q пол /Q р р)

или по уравнению обратного баланса

ŋ бр = 100-(q у.г +q х.н +q м.н +q н.о +q ф.ш) ,

где Q пол полезно используемая теплота, затраченная на выработку пара (или горячей воды); Q р р - располагаемая котельным агрегатом теплота; q у.г +q х.н +q м.н +q н.о +q ф.ш - относительные потери теплоты по статьям расхода теплоты.

КПД нетто по уравнению обратного баланса определяется как разность

ŋ нетто = ŋ бр -q с.н,

где q с.н - относительный расход энергии на собственные нужды, %.

КПД по уравнению прямого баланса применяется преимущественно при составлении отчетности за отдельный период (декада, месяц), а КПД по уравнению обратного баланса - при испытании котельных агрегатов. Определение КПД по обратному балансу значительно точнее, так как погрешности при измерении потерь теплоты меньше, чем при определении расхода топлива, особенно при сжигании твердого топлива.

Таким образом, для повышения эффективности котельных агрегатов недостаточно стремиться к снижению тепловых потерь; необходимо также всемерно сокращать расходы тепловой и электрической энергии на собственные нужды. Поэтому сравнение экономичности работы различных котельных агрегатов в конечном счете следует проводить по их КПД нетто.

В целом КПД котельного агрегата изменяется в зависимости от его нагрузки. Для построения этой зависимости нужно от 100% вычесть последовательно все потери котельного агрегата S q пот = q у.г +q х.н +q м.н +q н.о , которые зависят от нагрузки.

Как видно из рисунка 1.14, КПД котельного агрегата при определенной нагрузке имеет максимальное значение, т. е. работа котла на этой нагрузке наиболее экономична.

Рисунок 1.14 - Зависимость КПД котла от его нагрузки: q у.г, q х.н , q м.н, q н.о, S q пот - потери теплоты с уходящими газами, от химической неполноты сгорания, от механической неполноты сгорания, от наружного охлаждения и суммарные потери

Курсовая работа

на тему: «Определение КПД котельного агрегата нетто»

Задание на курсовую работу (проект)

1. Определение КПД котельного агрегата брутто
по данным испытаний

Коэффициент полезного действия котельного агрегата брутто определяется по обратному балансу, %.

а) Потери тепла от механического недожога определяются по формуле , %

где
=0,1% – зольность топлива на рабочую массу;

– доля золы топлива в шлаке и провале;

– доля золы топлива в уносе;

Содержание горючих в шлаке;

-содержание горючих в уносе;

Для мазута
;

– располагаемое тепло на 1 кг твердого или жидкого топлива, кДж/кг

Для технических расчетов определяется как
=38799,4+209,34=39008,74 кДж/кг

где
=38799,4 кДж/кг – низшая теплота сгорания топлива

– физическое тепло топлива, кДж/кг,

=2,326*90=209,34 кДж/кг,

где
– теплоемкость топлива

– температура топлива, о С.

=
кДж/кгּК

где
=3,0% – влажность топлива на рабочую массу

– теплоемкость сухой массы топлива, Дж/кгּК.

Теплоемкость мазута при температуре t определяется

при t1,89+0,0053t, кДж/кгּК

при t1,3+0,0112t, кДж/кгּК

Температура подогретого мазута принимается равной

Следовательно, при
,
1,89+0,0053*90=2,367 кДж/кгּК

б) Потери тепла с уходящими газами определяется, %

= %

где = 39008,74 – кДж/кг – располагаемое тепло на 1 кг твердого топлива,

- энтальпия уходящих газов при соответствующем коэффициенте избытка воздуха
и температуре
, кДж/кг,

2620,47 + (1,3167–1)*2321,97 = 3355,84 кДж/кг

Значения = 2620,47 кДж/кг, = 2321,97 кДж/кг

КДж/кг кДж/кг

=1,1667+0,15=1,3167 кДж/кг

где
;

=
коэффициент избытка воздуха на выходе из топки;

3,0% – содержание кислорода на выходе из топки

=
кДж/кг

в) Потери тепла от химического недожога, %

,
,
- содержание в уходящих газах продуктов неполного сгорания топлива, %

где – объем сухих газов

=14,296–1,408=12,888 м 3 /кг

где - объем дымовых газов

1,563+8,09+1,408+(1,3167–1)*10,214=14,296 м 3 /кг

где
- объем трехатомных газов

0,0186*(83,0+0,375*2,8)=1,563м 3 /кг

где теоретический объем азота

0,79*10,214+0,08*0,3=8,09 м 3 /кг

где
– теоретически необходимый для полного сгорания топлива объем воздуха,

0,0889 (83,0+0,375*2,8)+0,265*10,4–0,0333*0,4=10,214 м 3 /кг

где
– объем водяных паров

1,356+0,016 (1,3167–1)*10,214=1,408 м 3 /кг

где
– теоретический объем водяных паров

0,111*10,4+0,0124*3,0+0,0161*10,214=1,356 м 3 /кг

г) Потери тепла от наружного охлаждения q 5 определяем по рис. 1.

Рис. 1. Потери тепла от наружного охлаждения

1 – котельный агрегат (с хвостовыми поверхностями); 2 – собственно котел (без хвостовых поверхностей).

д) Потери с физическим теплом шлаков для твердого топлива, %

Для мазута

Коэффициент полезного действия котельного агрегата брутто

100 – (5,186+0,596+0,02+0,65+0)=93,548%

2. Определяем часовой расход топлива, подаваемого в топку котельного агрегата, кг/ч

=
кг/ч =3,8 кг/с

где - тепло полезно-использованное в котельном агрегате

160000 (3476,9–924,24)+0,05*160000 (1491,3–924,24)=499155200 кДж/час

где =160000 кг/час – паропроизводительность котельного агрегата

– величина непрерывной продувки, принимаем
;

=1491,3 кДж/кг – энтальпия продувочной воды

=3476,9 кДж/кг-энтальпия перегретого пара

=924,24 кДж/кг – энтальпия питательной воды

Энтальпия перегретого пара i 0 определяется по давлению Р 0 =10 МПа и температуре t 0 =540С

Энтальпия питательной воды определяется по температуре питательной воды =215 о С и давлению
=13 МПа.

Для барабанных котельных агрегатов
=1,3*10=13 МПа

Энтальпия продувочной воды определяется по давлению в барабане
=1,2*10=12 МПа

3. Определение удельного расхода условного топлива на выработанный ГДж (Гкал) тепла

Удельный расход условного топлива на выработанный ГДж (Гкал) тепла определяется по формуле:

где – расход условного топлива, кгут/ч:

где – теплотворная способность топлива, кДж/кг;

– тепло полезно использованное в котельном агрегате, кДж/ч.

4. Температура точки росы определяется по формуле:

где
=
– приведенная сернистость в рабочей массе топлива

- температура, при которой происходит конденсация водяных паров, находящихся в составе дымовых газов, 0 С.

Парциальное давление водяных паров:

=
атм=0,0098 МПа

5. Определение мощности электродвигателя тягодутьевых машин (дутьевого вентилятора и дымососа)

Мощность электродвигателя дутьевого вентилятора и дымососа определяется по формуле, кВт

где = 1,2 – коэффициент запаса мощности;

= 68% – коэффициент полезного действия электродвигателя;

Q – расчетная подача тягодутьевой машины, м 3 /c.

– напор, развиваемый тягодутьевой машиной.

а) Расчетная подача дутьевого вентилятора

1,1*3,799*10,214 (1,1667–0,02+0,03–0,03)
65,87 м 3 /с

где
- коэффициент запаса;

=718*13,6*9,8=95695 Па – барометрическое давление

- расчетный расход топлива

= 3,8 (1–0,01*0,02)=3,799 кг/с

=1,1667 – коэффициент избытка воздуха на выходе из топки;

0,02,
=0,03,
=0,03 – присосы воздуха в газоходах котельного агрегата

Напор дутьевого вентилятора
1,6кПа

=

б) Расчетная подача дымососа

где = 1,1 – коэффициент запаса;

- коэффициент избытка воздуха за дымососом

Для мазута

- температура дымовых газов за дымососом

Для мазута

Напор дымососа
1,4кПа

=
238,3 кВт

6. Определяем мощность электродвигателя питательного насоса

Расчетная подача питательного насоса

=1,2*0,053 м 3 /с

где =44,44 – паропроизводительность котельного агрегата

1,2 – коэффициент запаса по производительности котельного агрегата

ρ – плотность воды, кг/м 3 ,
=833,33 кг/
; =0,0012/кг

Мощность электродвигателя питательного насоса, КВт:

=
=861,25 КВт

где

=13 МПа. – напор питательного насоса.

7. КПД котельного агрегата нетто
, который учитывает затраты электроэнергии на собственные нужды определяется по формуле:

=
%

где В=3,8 кг/с=13,68 т/ч – расход топлива

Q 1 =138654,2 Дж/с – тепло полезно использованное в котельном агрегате

W сн – расход электроэнергии на собственный нужды в котельном цехе

W сн = N дв + N дс + N пн + W р + W пл +W зу = 186+238,3+861,25=1285,55 кВт

где N дв =186 кВт – мощность дутьевого вентилятора;

N дс =238,3 кВт – мощность дымососа;

N пн =861,25 кВт – мощность питательного насоса;

8. Определим на сколько не точно определен расход топлива, подаваемого в топку котельного агрегата, если термопара показывает температуру острого пара (t o ) за котлом на 10 0 С выше

По условию задания изменим температуру острого пара:), точки измерения давления (Р), разряжения (S), отбора проб топлива (ОПТ), уноса (ОПУ), золы (ОПЗ) и т.д. и т.п.

Рис. 2. Типовая схема размещения точек измерений при балансовых испытаниях барабанного газомазутного котла:

Q рц – расход газообразных продуктов сгорания на рециркуляцию; G np – расход продувочной воды, С с – солесодержание питательной, котловой воды и насыщенного пара; К ф – калорифер; ДРГдымосос рециркуляции газов; t в, t пв, t п, t вп – температура воздуха, питательной воды, пара, воды на впрыск; υ – температура газообразных продуктов сгорания; р – давление; s – разряжение; Q – расход воздуха; G пв, G вп, D п – расходы питательной воды, воды на впрыск и свежего пара; R x анализ газов; ОПТ, ОПУ – отборы проб топлива, уноса; Э сн – расход электроэнергии на собственные нужды; Д – дымосос; ДВ – дутьевой вентилятор.

Список литературы

    Трембовля В.И., Фигнер Е.Я., Авдеева А.А. Тепломеханические испытания котельных установок. – М.: Энергия, 1991. -416 с.

    Тепловой расчет котельных агрегатов. Нормативный метод / Под. ред. А.В. Кузнецова и др. – М.: Энергия, 1973. – 296 с.

    Парилов В.А., Ушаков С.Г. Испытания и наладка паровых котлов. – М.: Энергоатомиздат, 1986. – 320 с.

    Кемельман Д.Н., Эскин Н.Б. Наладка котельных установок. Справочник. – М.: Энергоатомиздат. 1989. -320 с.

    Справочное пособие теплоэнергетика электрических станций./ Под. ред. А.М. Леонкова, Б.В. Яковлева. – Минск, Беларусь, 1974. – 368 с.

  1. Перевод на природный газ котла ДКВР 20/13 котельной Речицкого пивзавода

    Дипломная работа >> Физика

    Теплового баланса котельного агрегата служит для определения часового расхода топлива на котельный агрегат . В настоящем разделе... и т. п. К экономическим показателям работы котельной установки относятся КПД брутто и нетто , удельный расход условного топлива...

  2. Общая энергетика. Энергетические ресурсы земли и их использование

    Книга >> Промышленность, производство

    Ее под определенным давлением (см. т.4 на рис. 2.1) в нагревательные трубы котельного агрегата КА. В... расхода на собственные нужды) и КПД КЭС нетто (с учётом расходов на собственные... турбиной, МПа 4,32 5,88 6,46 КПД (нетто ), % 29,7 31,7 31,3 Реакторы с...

  3. Индивидуальное задание по изучению оборудования и процессов теплоэнергетических установок

    Реферат >> Физика

    Работающего на неперегретом паре. 2. Определение КПД котла Мгновенный КПД котла – это соотношение полезной... степень его технического совершенства, а КПД -нетто - коммерческую экономичность. Для котельного агрегата

Существует 2 метода определения КПД:

По прямому балансу;

По обратному балансу.

Определение КПД котла как отношение полезно затраченной теплоты к располагаемой теплоте топлива – это определение его по прямому балансу:

КПД котла можно определить и по обратному балансу – через тепловые потери. Для установившегося теплового состояния получаем

. (4.2)

КПД котла, определяемый по формулам (1) или (2), не учитывает электрической энергии и теплоты на собственные нужды. Такой КПД котла называют КПД брутто и обозначают или .

Если потребление энергии в единицу времени на указанное вспомогательное оборудование составляет , МДж, а удельные затраты топлива на выработку электроэнергии в, кг/МДж, то КПД котельной установки с учетом потребления энергии вспомогательным оборудованием (КПД нетто), %,

. (4.3)

Иногда называют энергетическим КПД котельной установки.

Для котельных установок промышленных предприятий затраты энергии на собственные нужды составляют около 4% вырабатываемой энергии.

Расход топлива определяется:

Определение расхода топлива связано с большой погрешностью, поэтому КПД по прямому балансу характеризуется низкой точностью. Данный метод используется для испытаний существующего котла.

Метод по обратному балансу характеризуется большей точностью, используется при эксплуатации и проектировании котла. При этом Q 3 и Q 4 определяется по рекомендации и из справочников. Q 5 определяется по графику. Q 6 – рассчитывается (редко учитывается), и по существу определение по обратному балансу сводится к определению Q 2 , которое зависит от температуры уходящих газов.

КПД брутто зависит от типа и мощности котла, т.е. производительности, вида сжигаемого топлива, конструкции топки. На КПД влияет также режим работы котла и чистота поверхностей нагрева.

При наличии механического недожога часть топлива не сгорает (q 4), а значит не расходует воздуха, не образует продуктов сгорания и не выделяет теплоты, поэтому при расчете котла пользуются расчетным расходом топлива

. (4.5)

КПД брутто учитывает только тепловые потери.


Рисунок 4.1 - Изменение КПД котла с изменением нагрузки

5 ОПРЕДЕЛЕНИЕ ПОТЕРЬ ТЕПЛОТЫ В КОТЕЛЬНОМ АГРЕГАТЕ.

СПОСОБЫ СНИЖЕНИЯ ПОТЕРЬ ТЕПЛОТЫ

5.1 Потеря теплоты с уходящими газами

Потеря теплоты с уходящими газами Q у.г возникает из-за того, что физическая теплота (энтальпия) газов, покидающих котел, превышает физическую теплоту поступающих в котел воздуха и топлива.

Если пренебречь малым значением энтальпии топлива, а также теплотой золы, содержащейся в уходящих газах, потеря теплоты с уходящими газами, МДж/кг, подсчитывается по формуле:

Q 2 = J ч.г - J в; (5.8)

где – энтальпия холодного воздуха при a=1;

100-q 4 – доля сгоревшего топлива;

a у.г – коэффициент избытка воздуха в уходящих газах.

Если температура окружающей среды равна нулю (t х.в =0), то потеря теплоты с уходящими газами равна энтальпии уходящих газов Q у.г =J у.г.

Потеря теплоты с уходящими газами занимает обычно основное место среди тепловых потерь котла, составляя 5-12 % располагаемой теплоты топлива, и определяется объемом и составом продуктов сгорания, существенно зависящих от балластных составляющих топлива и от температуры уходящих газов:

Отношение , характеризующее качество топлива, показывает относительный выход газообразных продуктов сгорания (при a=1) на единицу теплоты сгорания топлива и зависит от содержания в нем балластных составляющих:

– для твердого и жидкого топлива: влаги W Р и золы А Р;

– для газообразного топлива: N 2 , CO 2 , O 2 .

C увеличением содержания в топливе балластных составляющих и, следовательно, , потеря теплоты с уходящими газами соответственно возрастает.

Одним из возможных направлений снижения потери теплоты с уходящими газами является уменьшение коэффициента избытка воздуха в уходящих газах a у.г, который зависит от коэффициента расхода воздуха в топке a Т и балластного воздуха, присосанного в газоходы котла, находящиеся обычно под разрежением

a у.г = a Т + Da . (5.10)

В котлах, работающих под давлением, присосы воздуха отсутствуют.

С уменьшением a Т потеря теплоты Q у.г снижается, однако при этом в связи с уменьшением количества воздуха, подаваемого в топочную камеру, возможно появление другой потери – от химической неполноты сгорания Q 3 .

Оптимальное значение a Т выбирается с учетом достижения минимального значения q у.г + q 3 .

Уменьшение a Т зависит от рода сжигаемого топлива и типа топочного устройства. При более благоприятных условиях контактирования топлива и воздуха избыток воздуха a Т, необходимый для достижения наиболее полного горения, может быть уменьшен.

Балластный воздух в продуктах сгорания помимо увеличения потери теплоты Q у.г приводит также к дополнительным затратам электроэнергии на дымосос.

Важнейшим фактором, влияющим на Q у.г, является температура уходящих газов t у.г. Её снижение достигается установкой в хвостовой части котла теплоиспользующих элементов (экономайзера, воздухоподогревателя). Чем ниже температура уходящих газов и соответственно меньше температурный напор Dt между газами и нагреваемым рабочим телом, тем большая площадь поверхности Н требуется для такого же охлаждения газа. Повышение t у.г приводит к увеличению потери с Q у.г и к дополнительным затратам топлива DB. В связи с этим оптимальная t у.г определяется на основе технико-экономических расчетов при сопоставлении годовых затрат для теплоиспользующих элементов и топлива для различных значений t х.г.

На рис.4 можно выделить область температур (от до ), в которой расчетные затраты отличаются незначительно. Это дает основание для выбора в качестве наиболее целесообразной температуры , при которой начальные капитальные затраты будут меньше.

Существуют ограничительные факторы при выборе оптимальной :

а) низкотемпературная коррозия хвостовых поверхностей;

б) при 0 C возможна конденсации водяных паров и соединение их с окислами серы;

в) выбор зависит от температуры питательной воды, температуры воздуха на входе в воздушный подогреватель и других факторов;

г) загрязнение поверхности нагрева. Это приводит к снижению коэффициента теплопередачи и к повышению .

При определении потери теплоты с уходящими газами учитывают уменьшение объема газов

. (5.11)

5.2 Потеря теплоты от химической неполноты сгорания

Потеря теплоты от химической неполноты сгорания Q 3 возникает при неполном сгорании топлива в пределах топочной камеры котла и появления в продуктах сгорания горючих газообразных составляющих CO, H 2 , CH 4 , C m H n … Догорание же этих горючих газов за пределами топки практически невозможно из-за относительно низкой их температуры.

Химическая неполнота сгорания топлива может явиться следствием:

общего недостатка воздуха;

– плохого смесеобразования;

– малых размеров топочной камеры;

– низкой температуры в топочной камере;

– высокой температуры.

При достаточном для полного сгорания топлива качестве воздуха и хорошем смесеобразовании q 3 зависит от объемной плотности тепловыделения в топке

Оптимальное отношение , при котором потеря q 3 имеет минимальное значение, зависит от вида топлива, способа его сжигания и конструкции топки. Для современных топочных устройств потеря теплоты от q 3 составляет 0÷2 % при q v =0,1÷0,3 МВт/м 3 .

Для снижения потери теплоты от q 3 в топочной камере стремятся повысить температурный уровень, применяя, в частности, подогрев воздуха, а также всемерно улучшая перемешивание компонентов горения.

Теплота, выделяемая топливом, не полностью исполь­зуется для нагрева рабочего тела котла. Часть теплоты теряется. Эффективность использования энергии в котле определяет его КПД. Различают КПД брутто и нетто. КПД котла (брутто) назы­вают выраженное в процентах отношение полезно использованной теплоты к количеству располагаемой теплоты вводимого в котел топлива.

Полезно использованная теплота слагается из теплоты нагрева питательной воды до состояния перегретого пара и теплоты допол­нительного нагрева пара промежуточного перегрева. Теплота может быть затрачена на подогрев части рабочего тела, впоследст­вии выводимого из котла (например, продувочная вода). Полное количество полезно использованной (воспринятой рабочим телом) в котле теплоты

Qn - D (І - і"пв) + Dim (І"пп - inn) 4~ Dnp (t"np - in»)»

Где D, D„n и Dnp - расход соответственно свежего пара, пара промежуточного перегрева и продувочной воды, кг/с; і, і„в, inn и /Пр - энтальпия соответственно свежего пара, питательной

2* 35 воды, пара промежуточного перегрева на выходе и входе в котел и продувочной воды, МДж/кг.

Энтальпия рабочего тела і ~ ct, где с - массовая теплоемкость, МДж/(кг-°С). Количество теплоты, поступившее в котел в расчете на единицу массы (или объема для газообразного топлива) исход­ного топлива, называют располагаемой теплотой топлива;

Qp = Qk ~Ь QВ. ВИ + ЇТЛ + Сф ----- Qk>

Где QB. вн - теплота, внесенная в топку с воздухом (при его на­греве вне котла); ітл - физическая теплота топлива, численно равная произведению теплоемкости топлива на его температуру; Фф ~ Оф (г"ф - 2,5) - теплота, вносимая в топку с паром, ис­пользуемым для распыливания жидкого топлива (вводится лишь при установке паровых форсунок при сжигании жидкого топлива); Сф и і"ф - соответственно расход (на 1 кг топлива) и энтальпия пара; QK - 0,0406 k (С02)к - теплота, затраченная на разложе­ние карбонатов топлива; (СОг)к- содержание углекислоты кар­бонатов.

Для газообразного топлива два последних члена отсутствуют.

Полное количество"вносимой в котел теплоты

Где В - расход топлива в котле, кг/с.

В соответствии с определением КПД брутто

Вследствие тепловых потерь в котле Qn < Qp.

При определении КПД нетто дополнительно учитываются (вычитаются из Qn) затраты энергии на работу основного и вспо­могательного оборудования (насосы, вентиляторы, дымососы, мельницы и т. д.), т. е. затраты энергии на собственные нужды .

Тепловые потери в котле зависят от эффективности процесса горения топлива в топке и передачи теплоты от продуктов сгора­ния к рабочему телу в поверхностях нагрева. Рассмотрим состав­ляющие потерь теплоты в котле.

Продукты сгорания выходят из последней поверхности нагрева котла при температуре #ух, значительно превышающей темпера­туру воздуха, поступающего из атмосферы в котел. Потери теп­лоты с уходящими газами равны разности энтальпий конечного состояния газов и воздуха, входящего в котел.

Если в уходящих газах содержатся горючие газообразные элементы (Н2, СН4 и др.) или продукты неполного сгорания СО, то имеют место потери с химическим недожогом топлива. Вели­чина этих потерь определяется количеством и теплотой сгорания указанных горючих элементов.

Поскольку частицы твердого топлива могут совсем не участ­вовать в химической реакции, потери теплоты с твердым непро - реагировавшим топливом называют потерями с механическим недожогом.

Наружная поверхность стен котла имеет более высокую тем­пературу, чем окружающая среда. Потери теплоты вследствие теплоотдачи от стен котла к окружающему воздуху называют по­терями в окружающую среду. И, наконец, в котлах имеют место потери теплоты со шлаком, выводимым из топки с высокой темпе­ратурой.

Потери теплоты с химическим и механическим недожогом, а также со шлаком относят к топочным потерям; потери теплоты в окружающую среду и с уходящими газами являются общими для котла. Равенство количества располагаемой теплоты сумме количества теплоты, полезно использованной в котле, и тепловых потерь называют тепловым балансом котла Обычно принято тепловой баланс котла составлять для единицы массы (твердого," жидкого) или объема (газообразного) сжигаемого топлива, В этом случае

■QS-=Qi + Q2 + Qa + Q4 + Qe + Qe, (20)

Где Qa - полезно использованная теплота; Q2, Qs, Q4, Q5 и Q, - потери теплоты соответственно с уходящими газами, с химиче­ским и механическим недожогом, в окружающую среду и со шла­ком.

Наиболее распространен тепловой бала не котла в относитель­ном виде. Если располагаемую теплоту принять за 100%, то зави­симость (20) примет вид

100 « qv + Яг + Чг + <7* + Чь + Я«>

Где qx = 100 = Т]бр - относительное количество полезно

Использованной теплоты,%; q2 = 100, qs = 100 и т. д. -

Относительные потери теплоты соответственно с уходящими га­зами, с химической и механической неполнотой горения (с недо­жогом), в окружающую среду и со шлаком.

При организации работы котла необходимо стремиться к сни­жению тепловых потерь. Рассмотрим факторы, от которых зави­сят тепловые потери, и возможности снижения потерь.

Потери теплоты с уходящими газами можно представить в еле-, дующем виде:

Где сг и сХЙ - теплоемкость соответственно газа и холодного воздуха, МДж/(м:1К); Фух и tXB - температура соответственно уходящих из котла газов (после последней поверхности нагрева) и холодного воздуха, 0 С; Vr - объем уходящих газов в расчете на 1 кг топлива, м3/кг; а? х - коэффициент избытка воздуха в уходящих газах; qt - относительные потери теплоты с меха­ническим недожогом.

Объем уходящих газов

Если принять коэффициент теплоотдачи" конвекцией ah{ = = idem = ак и ts, CTi = idem = tH. ст, то

BQS = aK(tH. рт - tXB)2 F, = q£Ft..

Тепловой поток q меняется незначительно с изменением мощ­ности котла, так как температуру стенки поддерживают на постоян­ном безопасном для человека уровне ст < 55 °С) при помощи изоляции. В то же время увеличение площади поверхности стен Fj котла с ростом его мощности происходит медленнее и hFi/BQp уменьшается, т. е. величина

Дь = - ЩL 100 BQI

Также снижается.

При изменении нагрузки котла температура ст, а следо­вательно, тепловые потоки меняются незначительно. В то же время вносимая с топливом теплота линейно зависит от нагрузки. Потери q& при отклонении нагрузки D от номинальной £)„ (%)

. (24)

Потери с физической теплотой шлака

<76 - атлА* (сОшл/Qj, (25)

Где /шл = 600 °С для ТШУ и *шл == ta +100 °С для ЖШУ; 6ШЯ - теплоемкость шлака.

Теплоэлектроцентраль вырабатывала электроэнергии Э выр =56∙10 10 кДж/год и отпустила тепла внешним потребителям Q отп =5,48∙10 11 кДж/год. Определить удельные расходы условного топлива на выработку 1 МДж электроэнергии и 1 МДж тепла, если расход пара из котла Д=77,4∙10кг/год, испарительность топлива Н=8,6 кг/кг, КПД котельной установки η ку =0,885 и тепловой эквивалент сжигаемого топлива Э=0,88.

Определить расход пара на конденсационную турбину, без учета расхода пара в регенеративные отборы, если электрическая мощность Nэ=100 МВт, начальные параметры Р 1 =13 МПа, t 1 =540 °С, конечное давление Р 2 =0,005 МПа, степень сухости в конце политропного процесса расширения пара в турбине х=0,9 и η эм =0,98.

На сколько процентов увеличится термический КПД регенеративного цикла, если температура воды после ПВД поддет повышена с 200 °С до260°С? Начальные параметры пара за котлом Р 0 =14МПа, t 0 =540. Энтальпия пара в конденсаторе h к =2350 кДж/кг. Давление, создаваемое питательными насосами, Р пн =18 МПа.

Для турбины мощностью Р э =1200 МВт приняты параметры пара Р 0 =30 МПа, t 0 =650°С, Р к =5,5кПа. Турбинная установка проектируется с двумя промежуточными перегревателями до t пп =565°С. Температура питательной воды t пв =280°С. Частота вращения турбоагрегата n=50 1/с. Оценив КПД и выбрав давление пара на линиях промежуточного перегрева, построить процесс расширения пара в h,s диаграмме. Определить КПД турбоустановки с учетом регенеративного подогрева питательной воды, приняв, что число подогревателей z=10. Определить расходы пара через турбину G 1 и в конденсаторе G к.

Определить удельный расход теплоты на выработку 1 МДж электроэнергии (для условного топлива) для КЭС с тремя турбогенераторами мощностью N=75*10 3 кВт, Каждый с коэффициентом использования установленной мощности k н =0,64, если станция израсходовала В= 670*10 6 кг/ггод каменного угля с низшей теплотой сгорания Q н р =20500 кДж/кг.

Теплоэлектроцентраль израсходовала В тэц =92*10 6 кг/год каменного угля с низшей теплотой сгорания Q н р =27500 кДж/кг, выработав при этом электроэнергии Эвыр=64*10 10 кДж/год и отпустив тепла внешним потребителям Q отп =4,55*10 11 кДж/год. Определить КПД ТЭЦ брутто и нетто по выработке электроэнергии и тепла, если расход на собственные нужды 6% от выработанной энергии, КПД котельной установки η ку =0,87 и расход топлива на выработку электроэнергии для собственных нужд В сн =4,5*10 6 кг/год.

Определить выработку э/э на базе внешнего теплового потребления для турбина ПТ за сутки, если начальные параметры пара Р 0 = 13МПа, t 0 =540°С. Расход пара в промышленный отбор Д п =100т/ч с энтальпией 3000 кДж/кг. Расход пара в теплофикационный отбор 80 т/ч с энтальпией 2680 кДж/кг. Электромеханический КПД η эм =0,97.



При испытании конденсационной турбины малой мощности, работающей без отборов пара были измерены мощность на зажимах генератора Р э = 3940 кВт, расход пара G=4,65 кг/с, параметры свежего пара р к =4,5 кПа. Чему равны удельные расходы пара d э и теплоты q э, электрические КПД: относительный (турбоагрегата) η ол и абсолютный(турбоустановки) η э?

Определить теоретический (термический) КПД паротурбинных циклов при следующих параметрах пара:

1. р 0 =9,0 МПа, t 0 =520°С,p к =5,0 кПа;

2. р 0 =3,0 МПа, сухой насыщенный пар,p к =5,0 кПа;

3. р 0 =13,0 МПа, t 0 =540°С,с промежуточным перегревом пара при р п.п =2,5 МПа; до t пп =540°С;p к =5,0 кПа;

4. р 0 =6,0 МПа, сухой насыщенный пар с внешней сепарацией и промежуточным перегревом свежим паром при рразд=1,0 МПа; до t пп =260°С;p к =5,0 кПа;

Определить, на сколько увеличится термический КПД в результате понижения конечного давления. Начальные параметры пара р 0 =13 МПа, t 0 =540 °С, давление отработавшего пара Р к =0,1 МПа. В результате понижения давления располагаемый перепад тепла увеличился на 200 кДж/кг. Найти так же новое значение конечного давления.

Конденсационная эл.станция работает при начальных параметрах пара перед турбинами Р 0 =8,8 МПа, t 0 =535°С и давлением пара в конденсаторе Р к = 4*103 Па. Определить на сколько повысится КПД станции брутто (без учета работы питательных насосов) с увеличением начальных параметров пара до Р0=10 МПа и t0=560°С, если известно КПД котельной установки η ку =0,9 ; η тр =0,97; η о i =0,84; η м =0,98; ηг=0,98.

Определить термический КПД регенеративного цикла, если началны параметры пара Р 0 =14 МПа, t 0 =570°С, температура питательной воды t пв =235°С. Давление, создаваемое питательным насосом Р пн =18 МПа. Давление в конденсаторе Р к = 0,005 МПа. Относительный внутренний КПД η о i =0,8.

Определить термический КПД цикла Ренкина при нор­мальных параметрах р о =12,7 МПа, t o =56O°C и давлении в конденса­торе р к =3,4 кПа.

Определить внутренний абсолютный КПД турбоустановки, работающей по циклу Ренкина, при начальных параметрах 8,8 МПа, 500 °С и р к =3,4 кПа. Принять io =0,8.

ЗАДАНИЯ ДЛЯ КОНТРОЛЬНЫХ РАБОТ

Каждый учащийся выполняет вариант контрольной работы в завимости от последней цифры присвоенного ему шифра в соответствии с таблицей.

Работа, выполненная не по своему варианту.

ОБЩИЕ УКАЗАНИЯ

Для выполнения контрольной работы необходимо сначала прорабо­тать соответствующий материал предмета по учебнику, разобрать реше­ние типовых задач и примеров по данному разделу, а также проверить свои знания, проработав вопросы и задачи для самоконтроля, имеющие­ся по каждой теме предмета в методических указаниях.

При выполнении контрольной работы необходимо соблюдать следующие требования:

В контрольную работу обязательно выписывать контрольные вопросы и условия задач.

Решение задач сопровождать краткими пояснениями и, по воз­можности, графиками и схемами. В пояснениях указывать, какая величина определяется и по какой формуле, какие величины подставляются в формулу и откуда они берутся(из условий задачи, из справочника, определены ранее и т.д.).

Вычисления должны даваться в подробном развернутом виде.

Решение задач должно выполняться только в единицах СИ. При всех исходных и вычисленных величинах обязательно должны называться единицы измерения.

Вычисления производить с точностью до третьего знака.

Ответы на контрольные вопросы надо давать сжато, конкретно, объясняя выводы и обосновывая их схемами и графиками.

В тетради должны быть оставлены поля, а также свободное место после каждого ответа на вопрос или решения задачи для замечаний, а в конце работы - место для рецензии.

В конце работы необходимо привести список литературы, которым пользовались при выполнении контрольных работ, с обязательным указанием года издания учебника.

Вариант I

Контрольная работа 1

1.Каковы основные направления развития энергетики Казахстана?

2.Принципиальная тепловая схема ТЭЦ при отпуске тепла с техно­логическим паром отопительной нагрузкой.

3. Задача I (см. табл.1).

4. Задача:2 (см. табл.2).

Контрольная работа 2

1. Требования, предъявляемые к размещению зданий и сооружений на площадке ТЭС.

2. Оборотная система водоснабжения. Достоинства и недостатки таких схем.

3. Задача 3 (см.табл.3).

4. Задача 4 (см.табл.4).

Вариант 2

Контрольная работа I

1. Технологическая схема ТЭС на твердом топливе. Назначение и краткая характеристика технологического оборудования ТЭС.

2. Схемы включения питательных насосов. Дать сравнительную ха­рактеристику электропривода и турбопривода питательных насосов.

3.Задача I (см.табл.1).

4.Задача 2 (см.табл.2).

Контрольная работа 2

1. Каковы пути повышения экономичности современных ТЭС?

2. Энергетическая сущность коэффициента недовыработки мощности паром отбора.

3. Задача 3 (см.табл.3).

4. Задача 4 (см.табл.4).

Вариант 3

Контрольная работа I

1. Какие механизмы относятся к наиболее ответственным меха­низмам собственных нужд? Почему с повышением начальных параметров пара расход электроэнергии на собственные нужды увеличивается?

2.Теплофикационная установка для подогрева сетевой воды на ТЭЦ и ее оборудование.

3. Задача I (см.табл.1).

4. Задача 2 (см.табл.2).

Контрольная работа 2

1.Перечислить и описать существующие типы компоновок главного корпуса электростанции.

2. Какие компоненты органического топлива при его сжигании приводят
к образованию токсичных веществ?

3.Задача 3 (см.табл.3).

4.Задача 4 (см.табл.4).

Вариант 4

Контрольная работа I

1.Какие типы регенеративных подогревателей вы знаете? Каковы их конструктивные особенности? В чем отличие смешивающих подогревателей от поверхностных, какой из этих типов обеспечивает более высокую тепловую экономичность цикла и почему?

2. В каком виде находится сера в твердом и жидком топливе? Какой вид органического топлива экологически самый чистый? Почему?

3. Задача 1(см.табл.1).

4. Задача 2(см.табл.2).

Контрольная работа 2

1. Каковы основные типы охладительных оборотных систем водоснабжения? Каковы преимущества и недостатки каждой из них?

2. В чем заключается принцип действия ПГУ?

3. Задача 3 (см.табл.3).

4. Задача 4 (см.табл.4).

Вариант 5

Контрольная работа I

I. Какие виды деаэрации питательной воды на станциях вы знаете, в чем сущность термической деаэрации воды? Конструкции колонок тер­мических деаэраторов. Схемы включения деаэраторов повышенного дав­ления в тепловую схему станции.

2. Схемы отвода дренажей регенеративных подогревателей.

3. Задача 1 (см.табл.1)

4. Задача 2 (см.табл.2).

Контрольная работа 2

1.От каких факторов зависит связывание диоксида серы в уходящих
газах котлов?

2. Назначение и состав испарительной установки ТЭС. Конструк­ция испарителя.

3. Задача 3 (см.табл.3).

4. Задача 4 (см.табл.4).

Вариант 6

Контрольная работа 1

1.Какие потери пара и конденсата на ТЭС существуют? Способы восполнения потерь пара и конденсата на КЭС и ТЭЦ.

2.Блочная схема КЭС. Требования, предъявляемые к маневреннос­ти блоков.

3. Задача I (см.табл.1).

4. Задача 2 (см.табл.2).

Контрольная работа. 2

1.Влияние начального давления пара на тепловую экономичность станции.

2.Основные типы станций, использующих возобновляемые энерге­тические ресурсы.

3. Задача 3 (см.табл.3).

4. Задача 4 (см.табл.4).

Вариант 7

Контрольная работа 1

1.Какие виды потребителей электрической энергии вы знаете и каково их влияние на график электрической нагрузки? Какие методы используются для покрытия провалов нагрузки в энергетике?

2.Влияние конечного давления на тепловую экономичность станции.

3. Задача I (см.табл.1).

4. Задача 2 (см.табл.2).

Контрольная работа 2

1. Что называется генеральным планом тепловой электростанции? Основные требования, предъявляемые к компоновке генплана ТЭС.

2. Что такое локальное и глобальное загрязнение атмосферного воздуха?

Какие деревья наиболее чувствительны к SO 2 ? Что такое ПДК?

3. Задача 3 (см.табл.3).

4. Задача 4 (см.табл.4).

Вариант 8

Контрольная работа 1

1.Назвать условия, соблюдение которых обеспечит экономию топлива при повышении начальных параметров пара. Чем определяются технические пределы повышения начальных параметров пара?

2.Каковы основные принципы конструирования ПВД и ПНД? Основные схемы возврата дренажей ПНД и ПВД в цикл.

3. Задача 1 (см.табл.1).

4. Задача 2 (см..табл.2).

Контрольная работа 2

1. В чем состоят особенности компоновок машинного и котельного делений блочных ТЭС?

2.Каковы основные технико-экономические показатели тепловых
электростанций?

3. Задача 3 (см.табл.3).

4. Задача 4 (см.табл.4).

Вариант 9

Контрольная работа 1

1.Как влияет применение промперегрева пара на величину начального давления пара, термического КПД цикла? Принципиальные схемы установок с промежуточным перегревом пара.

2.Принцип вакуумной деаэрации.

3. Задача I (см.табл.1).

4. Задача 2 (см.табл.2).

Контрольная работа 2

1. Как классифицируются золоулавливающие установки? Каковы их КПД?

2. Станционные трубопроводы. Требования, предъявляемые к тру­бопроводам электростанции.

3. Задача 3 (см.табл.3).

4. Задача 4 (см.табл.4).

Вариант 10

Контрольная работа 1

1. Регенеративный подогрев как способ повышения тепловой эко­номичности ТЭС. Оптимальная температура подогрева питательной воды

2. Каковы назначение системы технического водоснабжения и ее основные потребители? Какие существуют системы водоснабжения?

3. Задача I (см.табл.1).

4. Задача 2 (см.табл.2).

Контрольная работа_2

1. Какие помещения входят в состав главного корпуса ТЭС?

2.Каковы особенности нагрева сетевой воды на ТЭЦ с турбинами типа "Т" и "ПТ" ?

3. Задача 3 (см.табл.3).

4. Задача 4 (см.табл.4).

Loading...Loading...