Защитное действие стержневых и тросовых молниеотводов. Двойной тросовый молниеотвод. Размеры деревянных опор

Пятнадцатый вебинар из серии "Заземление и молниезащита: вопросы и проблемы, возникающие при проектировании"

Как это неудивительно, но тросовый молниеотвод - самый распространенный тип молниеотвода, а его эффективность обследована в наилучшей степени, потому что миллионы километров воздушных линий электропередачи защищены именно тросовыми молниеотводами, одиночными или двойными. Международная организация СИГРЭ в течение многих лет собирает мировой опыт эксплуатации тросовой молниезащиты. Надежность их действия в зависимости от высоты подвеса и угла защиты достоверно установлена по крайней мере до уровня 0,999. Следует отметить, что статистическая методика расчета вероятности прорыва, по которой определялись зоны защиты молниеотводов в национальных нормативах РД 34.21.122-87 и СО-153-34.21.122-2003, в основном калибровалась по опыту эксплуатации грозотросов.

Важным моментом является существенно большая эффективность тросовых молниеотводов по сравнению со стержневыми той же высоты. Если сравнить надежность защиты системы стержневых молниеотводов и грозотросов при равном числе опор, на которых установлены молниеприемники, то различие в числе ожижаемых прорывов молнии к защищаемым объектам окажется, как минимум, в пределах порядка величины.

При прочих равных условиях наибольшая надежность защиты обеспечивается организацией замкнутых тросовых молниеотводов или расположением грозотросов с отрицательными углами защиты. Это позволяет минимизировать высоту подвеса грозотросов и тем самым заметно сократить число ударов молнии в защищаемую территорию, а следовательно, и число опасных электромагнитных воздействий на цепи микроэлектроники, в т.ч. подземные.

Другим принципиальным преимуществом тросовой молниезащиты является возможность установки опор грозотросов за пределами защищаемой территории без сколько-нибудь существенных материальных затрат. Тем самым можно существенно ослабить кондуктивную связь между заземлителями этих опор и контуром заземления защищаемого объекта, что практически полностью ликвидирует проникновение тока молнии в его подземные коммуникации. Наконец, благодаря удалению опор грозотросов от защищаемой территории удается либо полностью подавить формирование скользящих искровых каналов от точки ввода в грунт тока молнии, либо ориентировать их в безопасном для объекта направлении.

Итог - замена стержневых молниеотводов грозотросами в ряде практически значимых ситуаций позволяет одновременно решить проблему электромагнитной совместимости.

Текст вебинара. Страница 1

Быстрая навигация по слайдам:

Примерное время чтения: 60 минут

— Приятно поздравить вас с первым сентября, потому что хоть сегодня и седьмое, но для нас все равно это первое сентября. Я когда готовился к этому семинару, я поймал себя на такой мысли. Вы знаете, что все мы к пожилым годам становимся маленько пижонами, и когда меня спрашивают о моей профессии, я с удовольствием говорю, что специалист по молниезащите, что я занимаюсь ультравысокими напряжениями и это вызывает некое уважение к моей персоне для меня приятной. Но на чем я себя поймал, что сегодня-то оказывается говорить об ультравысоких напряжениях особенно не приходится, потому что те вопросы, которые связаны сегодня с молниезащитой по уровню напряжения опускаются все ниже и ниже и наконец мы дошли до того, что занимаясь молниезащитой, мы начинаем говорить о единицах вольт, потому что главное несчастье, которое несет сегодня молния - это все-таки электромагнитные наводки в цепях управления автоматики, релейные защиты в каналах передачи информации этот вопрос будет важный, самый важный сегодня. И говоря о тросовых молниеотводах, я буду все-таки все время оглядываться на эту самую знаменитую проблему электромагнитной совместимости, потому что она сегодня для специалистов по молниезащите наиболее важная.

— Так вот, если говорить о тросовых молниеотводах, то надо обратиться к нормативному документу СО-153, где написано, что молниеприемники могут быть стержневыми, состоят из натянутых проводов, то бишь тросов и сеток. Так вот стержни проектировщики признают, сетки они тоже почему-то признают. Хотя эффективность этих сеток исключительно мала. А с тросами положение маленько натянутое.

— Почему-то проектировщики не очень любят тросовые молниеотводы, хотя тросовые молниеотводы - это наиболее распространенные молниеотводы в мире, потому что миллионы в буквальном смысле слова миллионы километров линий электропередач защищены тросовыми молниеотводами. И если говорить о том, что мы знаем, о молниеотводах, то больше всего нам известно о том, как ведут себя именно тросовые молниеотводы, как они защищают провода линий электропередачи и вся информация, которая у нас сегодня есть - это информация, которая притянута именно из тросовых молниеотводов. Еще в середине прошлого века два наших крупных специалиста по молниезащите Владимир Владимирович Бургсдорф и Михаил Владимирович Костенко обобщили ту информацию, которая набрала СИГРЭ - это международная комиссия по дальним электрическим сетям и эта самая комиссия обработала данные, которые дают возможность посчитать вероятность прорыва молнии сквозь тросовую молниезащиту. Так вот те расчетные формулы, которые были предложены нашими с вами специалистами Бургсдорфом и Костенко, они фигурируют до сих пор и эти формулы они в двух разных видах. В одном случае логарифм от вероятности прорыва молнии дается в обычной величине, а в другом случае в процентах, только этим и отличаются эти две формулы.

— Так вот если обобщить эти две формулы, то получается вот какая вещь. Получается, что в зависимости от угла защиты вероятность прорыва молнии сильно нарастает, то есть надежность защиты ухудшается, если же угол начать уменьшать и тем более перейти к отрицательным углам защиты, то надежность защиты становится исключительно высокой. Если брать эту теоретическую кривую, то посмотрите, только небольшой кусочек этой кривой дан сплошными линиями. Этот кусочек, который дан сплошными линиями, говорит, что здесь экспериментальных точек достаточно много и здесь можно рассчитывать на то, что данные, которые дают расчетные формулы, они действительно обоснованы большим опытом эксплуатации. Доходит эта сплошная кривая примерно до уровня 10-3, то есть из тысячи молний одна прорывается к защищаемому объекту. Это те предельные значения, которые сегодня можно использовать для тестирования любых расчетных методик, если говорить по совести, то те зоны стержневых молниеотводов, которые вы так любите, и которые приводятся в нормативных документах в РД-34 или в СО-153. Эти самые зоны получены калибровкой тех данных, которые даются тросовыми молниеотводами. Не было бы тросовых молниеотводов, не было бы, откровенно говоря, и зон защиты стержневых молниеотводов. Вот какова сегодня ситуация.

— Но дело не в этом, а в том, что если вы посмотрите на зоны защиты стрежневых молниеотводов. Вот я табличку просто скачал из СО-153. И зоны защиты тросовых молниеотводов, то вы увидите, что размеры этих зон практически одни и те же. Они если и отличаются для тросовых и стержневых молниеотводов, то они отличаются в пределах десятка, полутора десятка процентов. И на этом фоне я сейчас вам скажу такие крамольные слова, что надежность тросовых молниеотводов практически оказывается несоизмеримо выше привычных вам стрежневых молниеотводов. На фоне тех двух таблиц, которые скачены из руководящих указаний - это выглядит, может быть даже дико, но, тем не менее - это голый факт.

— И теперь для того, чтобы этот голый факт продемонстрировать, я хочу показать вам вот какую вещь. У меня есть объект. Объект такой - это большой предположим цех или большой склад размером 100 * 100 метров и высотой 20 метров. Я хочу применить для защиты этого склада стержневые молниеотводы и хочу предложить тросовые молниеотвод. Я беру 4 опоры, ставлю эти 4 опоры по углам складского помещения и смотрю, ставлю на них стержневые молниеприемники. И у меня есть кривая, которая показывает, как в зависимости от высоты стержневых молниеприемников меняется вероятность прорыва молнии. Я буду ориентировать на вероятность прорыва в 0,01, то есть на надежность защиты в 0,99 и смотреть какие стержни мне нужны. Оказывается, что мне нужны стержневые молниеотводы высотой примерно в 40 метров. Но если я возьму эти же самые опоры и натяну по этим опорам по периметру складского помещения трос, то тоже самое надежность защиты в 0,01, я получу при высоте подвеса троса 28 метров. Представляете, разница в 12 метров - это разница не только в деньгах, которая пойдет на стоимость опор.

— Из-за чего? Вот очень важно понять из-за чего это преимущество. Посмотрите, нарисованы примитивные картинки. Стержневой молниеотвод, рядом стоит условно какой-то объект. Эту картинку я уже показывал на каком-то из семинаров. Смотрите, Господь Бог посылает нам молнии с разных сторон. Посмотрим на молнию из точки А и молнию из точки Б. У этих молний разная вероятность прорыва к защищаемому объекту. Из точки А канал идет к объекту первоначально. Из точки Б он идет первоначально к молниеотводу. Разница в этих расстояниях и определяет надежность защиты. Стержневой молниеотвод хорошо защищает объекты только с одной стороны - с тыла. Если же говорить о молниях, которые идут с противоположной стороны, то здесь защита оказывается существенно более слабая и это подтверждается просто разностью одного и другого расстояния. А что теперь будет, если я буду отодвигаться в сторону от объекта или в сторону от молниеотвода? Оказывается, что если я буду отодвигаться от объекта горизонтально в бок, то у меня разность этих самых расстояний уменьшается, и надежность защиты у меня начинает очень сильно падать. А если я буду отодвигаться в сторону от молниеотвода, то разность этих расстояний будет увеличиваться и надежность защиты будет возрастать, так вот тросы хороши тем, что с какой стороны не шла бы молния, в первую очередь на ее пути будет вставать трос. И благодаря такой тросовой молниезащите, которая окружает защищаемую территорию, очень сильно возрастает надежность защиты.

— Этот момент отражен в нормативном документе. В нормативном документе в СО-153-34.21.122 хорошо вам известном есть раздел, в который мало кто из вас лазил - это раздел расчета замкнутого тросового молниеотвода. Смотрите, о чем идет речь. Вот у вас объект, это фронтальная проекция. Наверху стоят опоры и на этих опорах подвешен по внешнему периметру стержневой молниеотвод. Теперь, с какой бы стороны не шла молния: справа, слева, от сюда, от сюда, откуда бы она не шла, она первоначально натыкается на этот самый тросовый молниеотвод. И в результате этого дела очень сильно повышается надежность защиты. Например, если я размещу тросовые молниеотводы с выносом в сторону всего на 2 метра, то посмотрите, надежность защиты в 0,99, когда одна молния из ста только прорывается, обеспечивается для объекта высотой в 20 метров в том случае, когда высота молниеотвода составляет всего меньше 2-х метров над крышей защищаемого объекта. Тросы оказываются чрезвычайно перспективными в этом отношении они не просто перспективны, они еще кроме того почти не повышают высоту здания - это значит, они не стягивают на себя дополнительные молнии. И это значит, что надежность защиты электромагнитных наводок у вас становится более надежной. Вот в чем первое и самое главное преимущество тросовых молниеотводов. Тросовый молниеотводы при высокой надежности защиты обходится малым превышением над защищаемым объектом и это очень хорошее и очень благоприятное качество их, которое вы проектировщики почти не используете.

МОЛНИЕОТВОД - устройство для защиты зданий и сооружений от прямых ударов молнии. М. включает в себя четыре основные части: молниеприемник, непосредственно воспринимающий удар молнии; токоотвод, соединяющий молниеприемник с заземлителем; заземлитель, через который ток молнии стекает в землю; несущую часть (опору или опоры), предназначенную для закрепления молниеприемника и токоотвода.

В зависимости от конструкции молниеприемника различают стержневые, тросовые, сетчатые и комбинированные М.

По числу совместно действующих молниеприемников их делят на одиночные, двойные и многократные.

Кроме того, по месту расположения М. бывают отдельно стоящие, изолированные и не изолированные от защищаемого здания. Защитное действие М. основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. Благодаря этому свойству более низкое по высоте защищаемое здание практически не поражается молнией, если оно входит в зону защиты М. Зоной защиты М. называется часть пространства, примыкающая к нему и с достаточной степенью надежности (не менее 95%) обеспечивающая защиту сооружений от прямых ударов молнии. Наиболее часто для защиты зданий и сооружений применяют стержневые М.

Тросовые М. чаще всего применяют для защиты зданий большой длины и высоковольтных линий. Эти М. изготавливают в виде горизонтальных тросов, закрепленных на опорах, по каждой из которых прокладывают токоотвод. Стержневые и тросовые М. обеспечивают одинаковую степень надежности защиты.

В качестве молниеприемников можно использовать металлическую крышу, заземленную по углам и по периметру не реже чем через каждые 25 м, или наложенную на неметаллическую крышу сетку из стальной проволоки диаметром не менее 6 мм, имеющую площадь ячеек до 150 мм2, с узлами, закрепленными сваркой, и заземленную так же, как металлическая крыша. К сетке или токопроводяшей кровле присоединяют металлические колпаки над дымовыми и вентиляционными трубами, а в случае отсутствия колпаков - специально наложенные на трубы проволочные кольца.



М. стержневой - М. с вертикальным расположением молниеприемника.

М. тросовый (протяженный) - М. с горизонтальным расположением молниеприемника, закрепленного на двух заземленных опорах.

ЗОНЫ ЗАЩИТЫ МОЛНИЕОТВОДОВ

Обычно зону защиты обозначают по максимальной вероятности прорыва, соответствующей ее внешней границе, хотя в глубине зоны вероятность прорыва существенно уменьшается.

Расчетный метод позволяет построить для стержневых и тросовых молниеотводов зону защиты с произвольным значением вероятности прорыва, т.е. для любого молниеотвода (одиночного или двойного) можно построить произвольное количество зон защиты. Однако для большинства народнохозяйственных зданий достаточный уровень защиты можно обеспечить, пользуясь двумя зонами, с вероятностью прорыва 0,1 и 0,01.

В терминах теории надежности вероятность прорыва - это параметр, характеризующий отказ молниеотвода как защитного устройства. При таком подходе двум принятым зонам защиты соответствует степень надежности 0,9 и 0,99. Эта оценка надежности справедлива при расположении объекта вблизи границы зоны защиты, например объекта в виде кольца, соосного со стержневым молниеотводом. У реальных же объектов (обычных зданий) на границе зоны защиты, как правило, расположены лишь верхние элементы, а большая часть объекта помещается в глубине зоны. Оценка надежности зоны защиты по ее внешней границе приводит к чрезмерно заниженным значениям. Поэтому, чтобы учесть существующее на практике взаимное расположение молниеотводов и объектов, зонам защиты А и Б приписана в РД 34.21.122-87 ориентировочная степень надежности 0,995 и 0,95 соответственно.

Одиночный стержневой молниеотвод.

Зона защиты одиночного стержневого молниеотвода высотой h представляет собой круговой конус (рис. П3.1), вершина которого находится на высоте h0

1.1. Зоны защиты одиночных стержневых молниеотводов высотой h? 150 м имеют следующие габаритные размеры.

Зона A: h0 = 0,85h,

r0 = (1,1 - 0,002h)h,

rx = (1,1 - 0,002h)(h - hx/0,85).

Зона Б: h0 = 0,92h;

rx =1,5(h - hx/0,92).

Для зоны Б высота одиночного стержневого молниеотвода при известных значениях h и может быть определена по формуле

h = (rx + 1,63hx)/1,5.

Рис. П3.1. Зона защиты одиночного стержневого молниеотвода:

I - граница зоны защиты на уровне hx, 2 -то же на уровне земли

Одиночный тросовый молниеотвод.

Зона защиты одиночного тросового молниеотвода высотой h? 150 м приведена на рис. П3.5, где h - высота троса в середине пролета. С учетом стрелы провеса троса сечением 35-50 мм2 при известной высоте опор hоп и длине пролета а высота троса (в метрах) определяется:

h = hоп - 2 при а < 120 м;

h = hоп - 3 при 120 < а < 15Ом.

Рис. П3.5. Зона защиты одиночного тросового молниеотвода. Обозначения те же, что и на рис. П3.1

Зоны защиты одиночного тросового молниеотвода имеют следующие габаритные размеры.

Для зоны типа Б высота одиночного тросового молниеотвода при известных значениях hx и rx определяется по формуле

Вертикальный заземлитель выполняется путем последовательного механизированного погружения резьбовых электродов длиной 1,2-3 метра, соединяемых между собой латунными муфтами. Стальные электроды диаметром 14,2-17,2 мм, с электрохимическим медным покрытием (чистота 99,9%) толщиной 0,25 мм. гарантирует высокую коррозионную стойкость и срок службы заземлителя в грунте не менее 40 лет. Высокая механическая прочность заземлителя позволяет погружать его на глубину до 30 метров. Медное покрытие электродов обладает высокой адгезией и пластичностью, позволяющей погружать стержни в грунт без нарушения целостности и отслаивания медного слоя.

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ CCC Р

ГЛАВНОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ПО ЭКСПЛУАТАЦИИ ЭНЕРГОСИСТЕМ

РУКОВОДЯЩИЕ УКАЗАНИЯ
ПО РАСЧЕТУ ЗОН ЗАЩИТЫ СТЕРЖНЕВЫХ И ТРОСОВЫХ
МОЛНИЕОТВОДОВ

РД 34.21.121

МОСКВА 1974

Составлено ВЭИ, ГНИЭИ, Энергосетьпроектом

УТВЕРЖДАЮ:

Заместитель начальника

Главтехуправления

Ф. СИНЬЧУГОВ

ОБЩИЕ СВЕДЕНИЯ

Защитное действие молниеотводов основано на свойстве молнии с большей вероятностью поражать более высокие и хорошо заземленные металлические предметы по сравнению с рядом стоящими менее высокими. Молниеотвод, принимающий на себя разряд молнии, представляет собой возвышающееся над защищаемым сооружением металлическое устройство, состоящее из молниеприемника, токоотвода и заземлителя. Для защиты электротехнических установок от прямых разрядов молнии рекомендуется применять стержневые и тросовые молниеотводы. Стержневые молниеотводы выполняются в виде вертикальных металлических конструкций, установленных самостоятельно или на каких-либо сооружениях (например порталах, дымовых трубах), а тросовые - в виде горизонтально подвешенных проводов (тросов).

Степень защищенности сооружения молниеотводом определяется вероятностью прорыва молнии к защищаемому сооружению минуя молниеотвод. Вероятность прорыва молнии равна отношению числа разрядов молнии в защищаемое сооружение к общему числу разрядов молнии в молниеотвод и защищаемое сооружение.

Расчет молниезащиты ведется по зонам защиты. Вероятность прорыва молнии к любому объекту, расположенному внутри зоны защиты, не должна превышать допускаемой величины.

Очертания и размеры зоны защиты определяются числом, высотой и взаимным расположением молниеотводов и зависят от допускаемой вероятности прорыва молнии. Зона защиты тем меньше, чем меньшую вероятность прорыва молнии требуется обеспечить. Пространство между молниеотводами защищено более надежно, чем с внешней стороны молниеотводов. Защитное действие молниеотводов снижается с увеличением высоты защищаемого объекта.

Зоны защиты стержневых молниеотводов высотой до 60 м проверены многолетним опытом эксплуатации и обеспечивают достаточную надежность. Зоны защиты стержневых молниеотводов высотой более 60 м по методике настоящих Руководящих указаний определяются с расчетной вероятностью прорыва молний в объект не более 10 -2 , а тросовых молниеотводов - не более 10 -2 и 10 -3 . Указанная расчетная вероятность прорыва молнии установлена на основе лабораторных испытаний на модели, опыта эксплуатации и сведений о развитии разрядов молнии.

ЗОНЫ ЗАЩИТЫ СТЕРЖНЕВЫХ МОЛНИЕОТВОДОВ

1. Зона защиты одиночного стержневого молниеотвода высотой до 60 м имеет форму, показанную на рис. , размеры зоны определяются соотношением

Рис. 1. Зона защиты одиночного стержневого молниеотвода высотой до 60 м:

h - высота молниеотвода; h x - высота точки на границе защищаемой зоны; h a = h - h x - активная высота молниеотвода

Зона защиты одиночного стержневого молниеотвода высотой h от 60 до 250 м усечена на расстоянии D h от вершины (рис. ) и определяется соотношениями

Рис. 2. Зона защиты одиночного стержневого молниеотвода высотой более 60 м:

D h = 0,5(h - 60) при 60 < h £ 100 м; D h = 0,2 · h при h > 100 м

Рис. 3. Зависимость высоты одиночного стержневого молниеотвода высотой до 30 м от радиуса защиты на различных уровнях h x

Рис. 4. Номограмма для расчета зоны защиты одиночного стержневого молниеотвода высотой до 30 м

Для защищаемых объектов высотой 60 - 100 м высота молниеотвода h , определенная по номограмме рис. , сравнивается с критической высотой h кр , определяющей границу усечения зоны защиты,

Рис. 5. Номограмма для расчета зоны защиты одиночного стержневого молниеотвода высотой до 100 м

Вследствие усечения зон защиты при h меньше h кр высота молниеотвода выбирается равной критической.

При высоте молниеотводов h > 100 м построение зоны защиты производится непосредственно по формулам (), () и ().

2. Очертания зоны защиты двух стержневых молниеотводов (двойной молниеотвод) показаны на рис. для h £ 60 м и рис. для 60 £ h £ 250 м. Для каждого из молниеотводов высотой более 60 м зона защиты усекается на расстоянии D h от вершины, как и для одиночного молниеотвода.

Рис. 6. Зона защиты двух равновысоких стержневых молниеотводов высотой до 60 м:

а - расстояние между молниеотводами; в x - наименьшая ширина зоны защиты на уровне h x ; r x - радиус зоны защиты одиночного молниеотвода; R - радиус окружности, проходящей через вершины молниеотводов и точку 0 , находящуюся на уровне h 0

Рис. 7. Зона защиты двух стержневых молниеотводов высотой более 60 м:

D h = 0,5(h - 60) при 60 < h £ 100 м; D h = 0,2 h при h > 100 м

Построение внешней зоны молниеотводов производится аналогично построению зоны одиночного молниеотвода по формулам () или () в зависимости от высоты. Наименьшая ширина зоны защиты в х между молниеотводами на уровне h x определяется по кривым рис. и . Для молниеотводов высотой от 30 до 250 м значение обеих координат необходимо умножить на коэффициент .

Рис. 8. Значения наименьшей ширины зоны защиты в х двух стержневых молниеотводов высотой h £ 30 м для

Рис. 9. Значение наименьшей ширины зоны защиты в х двух стержневых молниеотводов для

Наименьшая высота зоны защиты h 0 для молниеотводов высотой до 30 м равна

(6)

для молниеотводов от 30 до 250 м

(7)

но не больше h кр , определяемой по формуле (), если h ³ 60 м.

3. Зона защиты трех и более молниеотводов значительно превышает сумму зон защиты одиночных молниеотводов.

Построение горизонтальных сечений зоны защиты на уровне h x показано на рис. - на примере трех и четырех стержневых молниеотводов. Размеры в х /2 определяются по кривым рис. и в зависимости от a / h a и высоты молниеотвода. Радиус защиты r x определяется так же, как и для одиночного молниеотвода. При произвольном расположении нескольких молниеотводов их зона защиты может быть определена суммированием зон любых трех соседних молниеотводов (рис. ).

Рис. 10. Зона защиты четырех стержневых молниеотводов одинаковой высоты; горизонтальное сечение зоны защиты на уровне h x

1, 2, 3, 4 - молниеотводы

Рис. 11. Зона защиты трех стержневых молниеотводов одинаковой высоты; горизонтальное сечение зоны защиты на уровне h x

1, 2, 3 - молниеотводы

Рис. 12. Зона защиты четырех стержневых произвольно расположенных молниеотводов одинаковой высоты; горизонтальное сечение зоны защиты на уровне h x

1, 2, 3, 4 - молниеотводы

Часть зоны защиты трех и более молниеотводов высотой выше 60 м, расположенная вне окружностей, проходящих через центры соседних трех молниеотводов, усекается на расстоянии D h от вершины. Часть зоны, расположенная внутри окружностей, не усекается. Величина D h определяется по формулам () и ().

Необходимым условием защищенности всей площади на уровне h x является:

для молниеотводов высотой h £ 30 м: D £ 8 · h a ;

для молниеотводов высотой 30 < h £ 250 м: D £ 8 · h a · p ,

где D - диаметр окружности, проведенной через три смежных молниеотвода.

ЗОНЫ ЗАЩИТЫ ТРОСОВЫХ МОЛНИЕОТВОДОВ

Зона защиты одиночного тросового молниеотвода (горизонтально подвешенного троса) имеет форму, показанную на рис. для молниеотводов высотой до 30 м и на рис. для молниеотводов высотой от 30 до 250 м. Зона защиты на уровне h x ограничивается двумя параллельными молниеотводу линиями, расположенными на расстоянии r x от вертикальной плоскости, проходящей через тросовый молниеотвод. Это расстояние r x , условно называемое по аналогии с одиночным стержневым молниеотводом радиусом защиты, определяются по формулам:

h < 30 м

(8)

для одиночного тросового молниеотвода высотой h от 30 до 250 м

Рис. 13. Зона защиты одиночного тросового молниеотвода высотой до 30 м:

A - горизонтальное сечение зоны защиты на уровне h x ; T - трос

Рис. 14. Зона защиты одиночного тросового молниеотвода высотой более 30 м

Зона защиты тросового молниеотвода высотой 30 < h < 250 м усекается сверху на величину

Рис. 15. Номограмма для расчета зоны защиты одиночного тросового молниеотвода высотой до 30 м

Рис. 16. Номограмма для расчета зоны защиты одиночного тросового молниеотвода высотой от 30 до 100 м

Высота молниеотвода h , определенная по номограмме (рис. ), сравнивается с критической высотой

при h < h кр высота молниеотвода выбирается равной h кр . Методика выбора тросовой защиты исходит из зависимости вероятности прорыва молнии от угла защиты троса (a ) и высоты опор ВЛ. Соответствие между изложенной здесь и в разделе грозозащиты ВЛ методикой устанавливается соотношением tg a = r x / h a .

4. Построение зоны защиты двух параллельных тросовых молниеотводов представлено на рис. и . Внешние области зоны защиты определяются как для одиночного тросового молниеотвода при h > 30 м и усекаются на расстоянии D h от вершины. Вертикальное сечение зоны защиты между двумя тросовыми молниеотводами ограничивается дугой окружности, проходящей через молниеотводы и среднюю точку между молниеотводами O , находящуюся на высоте

(11)

где a - расстояние между молниеотводами;

Рис. 17. Зона защиты двух тросовых молниеотводов 1 и 2 высотой до 30 м:

I - горизонтальное сечение на уровне h x ; II - вертикальное сечение зоны защиты

Рис. 18. Зона защиты двух тросовых молниеотводов высотой более 30 м

Р = 1 при h £ 30 м; 19 . Вокруг молниеотвода 1 большей высоты строится зона защиты, как для одиночного молниеотвода. Далее через вершину молниеотвода 2 меньшей высоты проводится горизонтальная линия до пересечения с зоной защиты молниеотвода 1. Принимая эту точку пересечения за вершину некоторого фиктивного молниеотвода 3 той же высоты, что и меньший молниеотвод, строится зона защиты для двух молниеотводов 2 и 3, очертания которой ограничивают внутренний участок суммарной зоны защиты.

Рис. 19. Зона защиты двух молниеотводов разной высоты:

1, 2 - молниеотводы; 3 - вершина фиктивного молниеотвода

Для стержневых молниеотводов высотой h > 60 м и тросовых h > 30 м зона защиты у их вершины усекается на расстоянии D h от вершины конкретно для каждого из молниеотводов и в соответствии с их типом.

Суммарная зона защиты тросового и стержневого молниеотводов определяется наложением их зон. Так же строится конфигурация зоны защиты у конца тросового молниеотвода. При этом конец троса следует рассматривать как стержневой молниеотвод соответствующей высоты.

Зоны защиты с вероятностью прорыва не более 10 -2 предназначены для открытых распределительных устройств станций и подстанций, а также для подсобных сооружений, нуждающихся в молниезащите. При этом вводы аппаратов и шинопроводы должны находиться по возможности в глубине зоны защиты, так как поражение их молнией представляет наибольшую опасность.

Зоны защиты с вероятностью прорыва не более 10 -3 предназначены для участков шинопроводов высокой ответственности, которые вследствие их большой высоты или длины могут подвергаться частым ударам молнии.

Надежность защиты повышается при размещении объектов во внутренней части зоны защиты многократных молниеотводов.

Вследствие вероятностного характера прорывов молнии выполнение молниезащиты, полностью исключающей поражение защищаемых объектов, не всегда целесообразно, а в ряде случаев технически не осуществимо. Оптимальная надежность молниезащиты определяется на основе сопоставления стоимости молниезащиты и возможного ущерба от поражения молнией.

Надежность молниезащиты характеризуется числом b прорывов молнии в год на защищаемое сооружение или числом лет, за которое ожидается один прорыв молнии в зону защиты

b = ψ · N ,

где ψ - вероятность прорыва в зону защиты (10 -2 или 10 -3 соответственно зоне);

N - суммарное число ударов в год в молниеотвод и защищаемое сооружение.

Ожидаемое число ударов молнии и год в одиночное возвышающееся сооружение (в том числе стержневой молниеотвод) высотой h метров:

N = п T π R 2 10 -6 , (12)

где n = 0,06 - число ударов молнии в землю площадью 1 км 2 на 1 ч грозы, ;

T - средняя интенсивность грозовой деятельности для данной местности, ч.

R = 3,5 · h - эквивалентный радиус окружности, описывающей площадь, с которой сооружение «собирает» молнии, м.

Число ударов молнии в год в группу возвышающихся сооружений (в том числе группу стержневых молниеотводов):

Т = nTS · 10 -6 , (13)

где S - площадь, ограниченная дугами окружностей, описанных радиусом R вокруг каждого молниеотвода, м 2 .

Число ударов в год в протяженное возвышающееся сооружение (в том числе тросовый молниеотвод) высотой h и длиной l , (м):

N = 2 nTlR · 10 -6 , (14)

где R = 3,5 h .

Число ударов в сооружение длиной l (м), шириной m (м) и высотой h (м) определяется по формуле (), где

S = (l + 7 h )(m + 7 h ). (15)

В целях обеспечения безопасности людей, сохранности сооружений, оборудования и материалов от тепловых, механических и электрических воздействий молнии, разработана особая система защитных мер безопасности - молниезащита, представляющая собой комплекс технических решений и специальных приспособлений.

Нормативное регулирование

Требования к организации систем молниезащиты зданий и сооружений, расположенных на территории Российской Федерации, регламентируются следующими нормативными документами:

  • «Инструкцией по молниезащите зданий и сооружений» РД 34.21.122-87
  • «Инструкцией по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» CO 153-34.21.122-2003 .

Разрабатывая систему защитных мер объектов от ударов молнии, проектные организации могут руководствоваться положениями любой из указанных инструкций или использовать их комбинацию.

Элементы молниезащиты

Полный комплекс мер молниезащиты наземных объектов подразумевает сочетание систем внешней — защита от прямых ударов молнии и внутренней молниезащиты — устройства защиты от вторичных воздействий (наводок и импульсного перенапряжения). Внешняя молниезащита обеспечивает минимальный шанс прямого попадания молнии в сооружение, защищая тем самым его от повреждений. Она берет на себя удар молнии, который затем отводится в грунт.

Комплекс мер внешней системы молниезащиты включает в себя три элемента:

    Молниеприёмник (громоотвод, молниеотвод) - это устройство, предназначенное для перехвата молнии. Принцип действия молниеприемника состоит в том, что удар молнии приходится на наиболее высокие и хорошо заземленные металлические сооружения. Следовательно, если объект расположен в зоне защиты молниеотвода, то он не будет поражен молнией.

    Токоотвод - устройство, выполняющее отвод тока молнии с молниеприемника на заземление. Устанавливается на стену сооружения и водосточные трубы. Представляет собой омедненную проволоку или полосу, которая тянется от молниеприёмника к заземлителю.

    Заземлитель — устройство, выполняющее отвод 50% и более тока молнии, прошедшего по токоотводу в землю. Оставшийся ток распределяется по примыкающим к сооружению коммуникациям. Заземлитель - единственный элемент внешней молниезащиты, погруженный в грунт. Заземляющими электродами могут служить элементы разных размеров, материалов и форм, соответствующие требованиям нормативных документов.


Установить внешнюю молниезащитную систему можно как на самом защищаемом объекте, так и изолированно: в виде отдельно стоящих молниеприемников и соседних сооружений, выполняющих функции естественных молниеотводов.
Внутренняя молниезащита включает в себя комплекс устройств, защищающих от импульсных перенапряжений (УЗИП) и выполняющих функции ограничения магнитного и электрического полей молнии, предотвращая тем самым искрения внутри объекта защиты.

2. Молниеприемник как часть системы молниезащиты

Систему молниезащиты организуют по принципу максимального использования естественных молниеотводов. В случаях, когда обеспечиваемая ими защищенность недостаточна, то комбинируют со специально установленными элементами (искусственными молниеприемниками).

Простота устройств, отсутствие необходимости в специальном техническом обслуживании и сравнительно надежная защита объекта от поражения ударами молнии, обеспечили молниеприемникам пассивной системы молниезащиты наиболее широкое распространение на практике.

Выделяют следующие типы пассивных молниеприемников:

  • стержневые (мачта);
  • тросовые;
  • сетчатые.

Молниеприёмники изготавливают из различных материалов: алюминий, медь, нержавеющая или оцинкованная сталь, с учетом минимальных сечений для каждого из них согласно нормативным документам.

Стержневой молниеприемник (мачта)


Стержневые молниеприемники-мачты, установленные на вышках

Стержневой молниеприемник (или молниеприёмная мачта) представляет собой вертикальное устройство высотой обычно от 1 до 20 метров на крыше сооружения или рядом с ним, установленное таким образом, чтобы зона защиты покрывала защищаемый объект. Специальные зажимы, используемые при установке мачт, позволяют крепить их как к вертикальным (стена), так и горизонтальным (земля, крыша) поверхностям. От каждой мачты монтируют два токоотвода. Если молниеприемник располагают на кровле сооружения, то используемое заземляющее устройство представляет собой горизонтальный контур, который усиливают в точках опусков токоотводов вертикальными заземлителями. Заземляющее устройство отдельно стоящих мачт выполняют тремя вертикальными заземлителями, объединенными между собой по типу «куриной лапы». Стержневые молниеприемники (мачты) выбирают в основном для защиты небольших зданий, не сложной архитектуры.


Конструкция тросового молниеприемника состоит из двух мачт и натянутого между ними стального троса. К концам троса примыкают по одному токоотводу с заземлителем по типу «куриной лапы». При правильном расположении опорных мачт грозовые разряды уходят в землю за пределы защищаемого объекта. Тросовую молниезащиту широко применяют для невысоких строений. Стержневые и тросовые молниеприемники подразделяются на одиночные, двойные и многократные, образуя общую зону защиты объекта. Многократные молниеприемники используют для защиты крупных зданий или нескольких сооружений, занимающих значительную территорию.


Молниеприемная сетка, установленная на крыше здания

Конструкция молниеприемника изготавливается в виде сетки из металлического прутка на крыше защищаемого сооружения. Молниеприемную сетку укладывают на кровлю здания с шагом (размером ячеек) от 5х5 м до 20х20 м в зависимости от категории молниезащиты объекта. Распространённый вопрос, который возникает при проектировании, — можно ли укладывать молниеприемную сетку непосредственно на кровлю крыши. На самом деле, сетку можно укладывать прямо на кровлю или под утеплитель (см. пункт 2.11. в инструкции РД 34.21.122-87). По инструкции СО 153 3.2.2.4. если повышение температуры представляет для объекта опасность, то расстояние между токоотводом и горючей кровлей или стеной, должно быть больше 0,1 м. При этом металлический зажим может быть в контакте с горючей стеной. Если стена или кровля являются горючими, но повышение температуры для них не опасно, то разрешается крепление непосредственно к стене.
Токоотводы монтируют по всему периметру молниеприемника с шагом от 10 до 25 м (зависит от уровня защиты). Тип кровли защищаемого сооружения (мягкая или жесткая) определяет способ крепления «сетки» к поверхности крыши. При соблюдении условия не горючего основания, молниеприемная сетка может быть уложена в «кровельном пироге». Заземлитель для данного типа молниеприемника представляет собой замкнутый горизонтальный контур, усиленный в точках опусков токоотводов.

3. Категории молниезащиты

Выбор типа молниеприемника зависит от того, к какой категории по устройству молниезащиты относится строение.
Нормами установлены три категории устройств молниезащиты в зависимости от взрывной и пожарной опасности, вместимости, огнестойкости и назначения защищаемых объектов, а также с учетом среднегодовой продолжительности гроз в географическом районе расположения объекта, см. категории молниезащиты в таблице № 1 из пункта 1.1. в РД 34.21.122-87:

Здания и сооружения Местоположение Тип зоны защиты при использовании стержневых и тросовых молниеотводов Категория молниезащиты
Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов В-I и В-II На всей территории СССР Зона А I
То же классов В-Iа, В-Iб, В-IIа При ожидаемом количестве поражений молнией в год здания или сооружения N>1 — зона А; при N≤1 — зона Б II
Наружные установки, создающие согласно ПУЭ зону класса В-Iг На всей территории СССР Зона Б II
Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа Для зданий и сооружений I и II степеней огнестойкости при 0,1 2- зона А III
Расположенные в сельской местности небольшие строения III — V степеней огнестойкости, помещения которых согласно ПУЭ относятся к зонам классов П-I, П-II, П-IIа В местностях со средней продолжительностью гроз 20 ч в год и более при N - III
Наружные установки и открытые склады, создающие согласно ПУЭ зону классов П-III В местностях со средней продолжительностью гроз 20 ч в год и более При 0,12 — зона А III
Здания и сооружения III, IIIa, IIIб, IV, V степеней огнестойкости, в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов То же При 0,12 — зона А III
Здания и сооружения из легких металлических конструкций со сгораемым утеплителем (IVa степени огнестойкости), в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов В местностях со средней продолжительностью гроз 10 ч в год и более При 0,12 — зона А III
Небольшие строения III-V степеней огнестойкости, расположенные в сельской местности, в которых отсутствуют помещения, относимые по ПУЭ к зонам взрыво- и пожароопасных классов В местностях со средней продолжительностью гроз 20 ч в год и более для III, IIIa, IIIб, IV, V степеней огнестойкости при N - III
Здания вычислительных центров, в том числе расположенные в городской застройке В местностях со средней продолжительностью гроз 20 ч в год и более Зона Б II
Животноводческие и птицеводческие здания и сооружения III-V степеней огнестойкости: для крупного рогатого скота и свиней на 100 голов и более, для овец на 500 голов и более, для птицы на 1000 голов и более, для лошадей на 40 голов и более В местностях со средней продолжительностью гроз 40 ч в год и более Зона Б III
Дымовые и прочие трубы предприятий и котельных, башни и вышки всех назначений высотой 15 м и более В местностях со средней продолжительностью гроз 10 ч в год и более - III
Жилые и общественные здания, высота которых более чем на 25 м превышает среднюю высоту окружающих зданий в радиусе 400 м, а также отдельно стоящие здания высотой более 30 м, удаленные от других зданий более чем на 400 м В местностях со средней продолжительностью гроз 20 ч в год и более Зона Б III
Отдельно стоящие жилые и общественные здания в сельской местности высотой более 30 м То же Зона Б III
Общественные здания III-V степеней огнестойкости следующего назначения: детские дошкольные учреждения, школы и школы-интернаты, стационары лечебных учреждений, спальные корпуса и столовые учреждений здравоохранения и отдыха, культурно-просветительные и зрелищные учреждения, административные здания, вокзалы, гостиницы, мотели и кемпинги То же Зона Б III
Открытые зрелищные учреждения (зрительные залы открытых кинотеатров, трибуны открытых стадионов и т.п.) То же Зона Б III
Здания и сооружения, являющиеся памятниками истории, архитектуры и культуры (скульптуры, обелиски и т.п.) То же Зона Б III

I категория молниезащиты

Для молниезащиты строений, относящихся к I категории, используются молниеприемные мачты или тросовые молниеприемники,
см. пункт 2.1. в РД 34.21.122-87. Обязательным условием является обеспечение зоны защиты типа А в соответствии с требованиями приложения 3 .

II категория молниезащиты

Для молниезащиты строений II категории, имеющих неметаллическую кровлю, применяются молниеприемные мачты или тросовые молниеприемники, устанавливаемые изолированно или на самом защищаемом объекте см. пункт 2.11 в РД 34.21.122-87. При этом обязательным условием является обеспечение зоны защиты в соответствии с требованиями приведенной в статье таблицы и приложения 3 в РД 34.21.122-87. Если устройства молниезащиты расположены на объекте, то для каждой молниеприемной мачты или стойки тросового молниеприемника необходимо не менее двух токоотводов. Для обеспечения молниезащиты сооружений, уклон кровли которых не превышает 1:8, может использоваться молниеприемная сетка.
В качестве материала для изготовления молниеприемной сетки применяют стальную проволоку диаметром не менее 6 мм. Конструкцию с шагом ячеек не более 6х6 м укладывают на кровлю здания поверх или под огнеупорные материалы. Металлические конструкции, возвышающиеся над крышей строения, необходимо присоединять к молниеприемной сетке, а не металлические - оборудовать дополнительными устройствами защиты от удара молнии, так же закрепляя их с «сеткой».
Сооружения с металлическими фермами, кровли которых построены с использованием огнеупорных материалов, не требуют установки устройств молниезащиты. Металлическая кровля строений сама выступает в качестве молниеприемника. При этом устройствами молниезащиты необходимо оборудовать все возвышающиеся над крышей неметаллические элементы объекта защиты. Токоотводы монтируют от металлической кровли или молниеприемной сетки с шагом 25 м по периметру здания. Для всех типов молниеотводов, используемых для защиты строений II категории, обязательно выполнение требования пункта 2.6 в РД 34.21.122-87.

III категория молниезащиты

Для молниезащиты строений, относящихся III категории, применяют один из указанных выше способов (молниеприемные мачты, тросовые молниеотводы или сетку) с соблюдением действующих требований.
По возможности, в качестве токоотвода применяют металлические конструкции самого защищаемого объекта. Обязательным условием при этом является непрерывная электрическая связь в соединениях конструкций с остальными элементами системы внешней молниезащиты (молниеприемниками и заземлителями). Расположенные снаружи здания токоотводы необходимо монтировать на расстоянии не более 3 м от входов или в местах, не доступных для прикосновения людей.
Нормативными документами по организации молниезащиты наземных объектов не предусмотрено никак требований к расстоянию между отдельно стоящим молниеотводом и объектом защиты, его подземными коммуникациями. Применяя молниеприемную сетку для строений III категории, необходимо предусмотреть шаг ее ячеек не более 12 х 12м.

4. Зоны защиты стержневых и тросовых молниеприемников

Выбор количества и высоты стержневых и тросовых молниеотводов должен производиться с помощью расчета их зон защиты.
Под зоной защиты понимают площадь заданной геометрии в окрестности молниеприемника, на которой вероятность прямого удара молнии в размещенный там объект не превысит заданной величины.
Для обеспечения молниезащиты строения на уровне требуемой надежности, весь объем защищаемого объекта должен располагаться в зоне защиты молниеприемника.
Одиночная молниеприемная мачта обеспечивает зону защиты строения в виде кругового конуса высотой h0

Одиночный тросовый молниеприемник обеспечивает зону защиты в виде равнобедренного треугольника, вершина которого находится на высоте h0

Расчет зон защиты стержневых и тросовых молниеприемников производится согласно CO 153—343.21.122-2003.

5. Выбор типа молниеприемника

На основании всего вышеизложенного, делаем вывод, что выбор типа молниеприемника необходимо производить исходя из конструкций зданий и сооружений и материалов их кровли, с обязательным учетом категории молниезащиты и соблюдением всех необходимых требований РД 34.21.122-87 и CO 153—343.21.122-2003.
Осуществляя молниезащиту строений при помощи стержневых и тросовых молниеприемников, их располагают таким образом, что бы объект целиком находился в их зонах защиты, рассчитываемых для каждого типа молниеотвода согласно CO 153—343.21.122-2003.
При выборе молниеприемной сетки важно учитывать, что шаг сетки (размеры ячеек) определяется категориями молниезащиты см. РД 34.21.122-87.
Для комплексной молниезащиты объектов могут применяться комбинированные типы, например тросостержневые. Нередко «сетку» комбинируют со стержневыми молниеприемниками, что обеспечивает довольно надежную защиту.

Широкое применение стержневых молниеприемников обусловлено простотой и относительной дешевизной их изготовления. В основном молниеприемные мачты выбирают для защиты небольших строений, не сложной архитектуры. Для молниезащиты крупных зданий или нескольких сооружений, занимающих значительную территорию, используют многократные стержневые молниеприемники.
Тросовые молниеприемники выбирают для защиты весьма протяженных объектов. По экономическим параметрам обустройство ими сооружений сопоставимо со стержневыми устройствами молниезащиты, однако в процессе эксплуатации они показали себя менее надежными.

Наличие установленной системы внешней молниезащиты не является гарантией полной защиты от всех воздействий молнии. Для защиты от вторичных последствий необходимо обязательно защищать объект комплексно: элементы внешней молниезащиты , а также внутренняя молниезащита, которая представляет из себя совокупность устройств защиты от импульсного перенапряжения (УЗИП).

Смотрите также :

Loading...Loading...