Объем правильной шестиугольной пирамиды равен 2592. Пирамида. Объем правильной шестиугольной пирамиды

Чертеж — первый и очень важный шаг в решении геометрической задачи. Каким должен быть рисунок правильной пирамиды?

Сначала вспомним свойства параллельного проектирования :

— параллельные отрезки фигуры изображаются параллельными отрезками;

— сохраняется отношение длин отрезков параллельных прямых и отрезков одной прямой.

Рисунок правильной треугольной пирамиды

Сначала изображаем основание. Поскольку при параллельном проектировании углы и отношения длин не параллельных отрезков не сохраняются, правильный треугольник в основании пирамиды изображается произвольным треугольником.

Центр правильного треугольника — точка пересечения медиан треугольника. Поскольку медианы в точке пересечения делятся в отношении 2:1, считая от вершины, мысленно соединяем вершину основания с серединой противолежащей стороны, приблизительно делим ее на три части, и на расстоянии 2 частей от вершины ставим точку. Из этой точки вверх проводим перпендикуляр. Это — высота пирамиды. Перпендикуляр рисуем такой длины, чтобы боковое ребро не закрывало изображение высоты.

Рисунок правильной четырехугольной пирамиды

Рисунок правильной четырехугольной пирамиды также начинаем с основания. Поскольку параллельность отрезков сохраняется, а величины углов — нет, то квадрат в основании изображается параллелограммом. Желательно острый угол этого параллелограмма делать поменьше, тогда боковые грани получаются больше. Центр квадрата — точка пересечения его диагоналей. Проводим диагонали, из точки пересечения восстанавливаем перпендикуляр. Этот перпендикуляр — высота пирамиды. Выбираем длину перпендикуляра таким образом, чтобы боковые ребра не сливались между собой.

Рисунок правильной шестиугольной пирамиды

Поскольку при параллельном проектировании параллельность отрезков сохраняется, основание правильной шестиугольной пирамиды — правильный шестиугольник — изображаем шестиугольником, у которого противолежащие стороны параллельны и равны. Центр правильного шестиугольника — точка пересечения его диагоналей. Чтобы не загромождать рисунок, диагонали не проводим, а находим эту точку приблизительно. Из нее восстанавливаем перпендикуляр — высоту пирамиды — так, чтобы боковые ребра не сливались между собой.

Задачи с пирамидами. В данной статье продолжим рассматривать задачи с пирамидами. Их нельзя отнести к какому-то классу или типу заданий и дать общие (алгоритмы) рекомендации для решения. Просто здесь собраны оставшиеся задачи, не рассмотренные ранее.

Перечислю теорию, которую необходимо освежить в памяти перед решением: пирамиды, свойства подобия фигур и тел, свойства правильных пирамид, теорема Пифагора, формула площади треугольника (в она вторая). Рассмотрим задачи:

От треугольной пирамиды, объем которой равен 80, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания. Найдите объем отсеченной треугольной пирамиды.

Объём пирамиды равен одной трети произведения площади её основания и высоты:

Данные пирамиды (исходная и отсечённая) имеют общую высоту, поэтому их объемы соотносятся как площади их оснований. Средняя линия от исходного треугольника отсекает треугольник площадь которого в четыре раза меньше, то есть:

Подробнее об этом можно посмотреть здесь.

Это означает, что объём отсечённой пирамиды будет в четыре раза меньше.

Таким образом, он будет равен 20.

Ответ: 20

* аналогичной задачи, использована формула площади треугольника.

Объем треугольной пирамиды равен 15. Плоскость проходит через сторону основания этой пирамиды и пересекает противоположное боковое ребро в точке, делящей его в отношении 1: 2, считая от вершины пирамиды. Найдите больший из объемов пирамид, на которые плоскость разбивает исходную пирамиду.

Постоим пирамиду, обозначим вершины. Отметим на ребре AS точку Е, так чтобы AE была в два раза больше ES (в условии сказано, что ES относится к AE как 1 к 2), и построим указанную плоскость проходящую, через ребро АС и точку Е:

Проанализируем объём какой пирамиды будет больше: EABC или SEBC?

*Объём пирамиды равен одной трети произведения площади её основания и высоты:

Если рассмотреть две полученные пирамиды и в обеих принять за основание грань ЕВС, то становится очевидно, то объём пирамиды АЕВС будет больше объёма пирамиды SEBC. Почему?

Расстояние от точки А до плоскости ЕВС больше чем расстояние от точки S. А это расстояние играет у нас роль высоты.

Итак, найдём объём пирамиды ЕАВС.

Объём исходной пирамиды нам дан, основание у пирамид SАВС и ЕАВС общее. Если мы установим соотношение высот, то без труда сможем определить объём.

Из отношения отрезков ES и AE следует, что АЕ равно две третьих ES. Высоты пирамид SАВС и ЕАВС находятся в такой же зависимости - высота пирамиды ЕАВС будет равна 2/3 высоты пирамиды SАВС.

Таким образом, если

То

Ответ: 10

Объем правильной шестиугольной пирамиды 6. Сторона основания равна 1. Найдите боковое ребро.

В правильной пирамиде вершина проецируется в центр основания. Выполним дополнительные построения:

Найти боковое ребро мы можем из прямоугольного треугольника SOC. Для этого нужно знать SO и ОС.

SO это высота пирамиды, её мы можем вычислить используя формулу объёма:

Вычислим площадь основания. это правильный шестиугольник со стороной равной 1. Площадь правильного шестиугольника равна площади шести равносторонних треугольников с такой же стороной, подробнее об этом (п.6), итак:

Значит

ОС = ВС = 1, так как в правильном шестиугольнике отрезок соединяющий его центр с вершиной равен стороне этого шестиугольника.

Таким образом, по теореме Пифагора:


Ответ: 7

Объ ем тетраэдра равен 200. Найдите объем многогранника, вершинами которого являются середины ребер данного тетраэдра.

Объем указанного многогранника равен разности объемов исходного тетраэдра V 0 и четырех равных тетраэдров, каждый из которых получается отсечением плоскостью, проходящей через середины рёбер, имеющих общую вершину:

Определим, чему равен объём отсеченного тетраэдра.

Отметим, что исходный тетраэдр и «отсечённый» тетраэдр являются подобными телами. Известно, что отношение объёмов подобных тел равно k 3 , где k - коэффициент подобия. В данном случае он равен 2 (так как все линейные размеры исходного тетраэдра в два раза больше соответствующих размеров отсечённого):

Вычислим объём отсечённого тетраэдра:

Таким образом, искомый объём будет равен:

Ответ: 100

Площадь поверхности тетраэдра равна 120. Найдите площадь поверхности многогранника, вершинами которого являются середины ребер данного тетраэдра.

Первый способ:

Искомая поверхность состоит из 8 равносторонних треугольников со стороной, вдвое меньшей ребра исходного тетраэдра. Поверхность исходного тетраэдра состоит из 16-ти таких треугольников (на каждой из 4 граней тетраэдра по 4 треугольника), поэтому искомая площадь равна половине площади поверхности данного тетраэдра и равна 60.

Второй способ:

Так как известна площадь поверхности тетраэдра, то мы можем найти его ребро, затем определить длину ребра многогранника и далее вычислить площадь его поверхности.

Площадь поверхности тетраэдра состоит из четырёх равных по площади правильных треугольников. Пусть сторона такого треугольника (ребро тетраэдра) равна а, тогда можем записать:

На этом всё. Успеха Вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Инструкция

При квадратном основании пирамиды с известной длиной стороны (a) и заданном объеме (V) замените площадь в формуле расчета из предыдущего шага на возведенную в квадрат длину стороны: H = 3*V/a².

Формулу из первого шага можно трансформировать для вычисления высоты (H) правильной пирамиды c основанием любой формы. Исходные данные, которые в ней должны быть задействованы - объем (V) многогранника, длина ребра в основании (a) и количество вершин при основании (n). Площадь правильного многоугольника определяется четвертью произведения количества вершин на квадрат длины стороны и котангенс угла, равного соотношению 180° и количества вершин: ¼*n*a²*ctg(180°/n). Подставьте это выражение в формулу из первого шага: H = 3*V/(¼*n*a²*ctg(180°/n)) = 12*V/(n*a²*ctg(180°/n)).

Если площадь основания неизвестна из условий задачи, а даны лишь объем (V) и длина ребра (a) , то недостающую переменную в формуле из предыдущего шага можно заменить ее эквивалентом, выраженным через длину ребра. Площадь (он, как вы помните, лежит в основании пирамиды рассматриваемого типа) равна одной четверти от произведения квадратного корня из тройки на возведенную в квадрат длину стороны. Подставьте это выражение вместо площади основания в формулу из предыдущего шага, и получите такой результат: H = 3*V*4/(a²*√3) = 12*V/(a²*√3).

Поскольку объем тетраэдра тоже можно выразить через длину ребра, то из формулы вычисления высоты фигуры можно вообще убрать все переменные, оставив лишь сторону ее грани. Объем этой пирамиды вычисляется делением на 12 произведения квадратного корня из двойки на возведенную в куб длину грани. Подставьте это выражение в формулу из предыдущего шага, и получите в результате: H = 12*(a³*√2/12)/(a²*√3) = (a³*√2)/(a²*√3) = a*√⅔ = ⅓*a*√6.

Правильную призму можно вписать в сферу, а зная только ее радиус (R) можно вычислить и тетраэдра. Длина ребра равна учетверенному соотношению радиуса и квадратного корня из шестерки. Замените этим выражением переменную a в формуле из предыдущего шага и получите равенство: H = ⅓*√6*4*R/√6 = 4*r/3.

Аналогичную формулу можно получить и зная радиус (r) вписанной в тетраэдр окружности. В этом случае длина ребра будет равна двенадцати соотношениям между радиусом и квадратным из шестерки. Подставьте это выражение в формулу из третьего шага: H = ⅓*a*√6 = ⅓*√6*12*R/√6 = 4*R.

Пирамида – одна из самых мистических фигур в геометрии. С ней связывают потоки космической энергии, многие древние народы избирали именно эту форму для строительства своих культовых сооружений. Тем не менее, с точки зрения математики, пирамида – это всего лишь многогранник, с многоугольником в основании, а гранями являются треугольники с общей вершиной. Рассмотрим, как найти площадь грани в пирамиде .

Вам понадобится

  • калькулятор.

Инструкция

Пирамиды типов: правильная (в основании - правильный многоугольник, а вершины на – его центр), произвольная (в основании лежит любой многоугольник, а проекция вершины необязательно совпадает с его центром), прямоугольная (одно из боковых ребер составляет с основанием прямой угол) и . В зависимости от того, сторон имеет многоугольник в основании пирамиды, ее называют трех-, четырех-, пяти или, к примеру, десятиугольной.

Для всех видов пирамид, кроме усеченной:Перемножьте длины основания треугольника и опущенной на него высоты из вершины пирамиды. Разделите полученное произведение на 2 – это и будет искомая площадь боковой грани пирамиды.

Усеченная пирамидаСложите оба основания трапеции, являющейся гранью такой пирамиды. Разделите полученную сумму на два. Умножьте полученное значение на высоту грани -трапеции. Полученная в результате величина – площадь боковой грани пирамиды данного типа.

Видео по теме

Полезный совет

Площадь боковой поверхности и основания, периметр основания пирамиды и ее объем связывают между собой определенные формулы. Это порой дает возможность вычислить значения недостающих данных, необходимых для определения площади грани в пирамиде.

Объем любой не усеченной пирамиды равен трети от произведения высоты пирамиды и площади основания. Для правильной пирамиды справедливо: площадь боковой поверхности равна половине периметра основания умноженного на высоту одной из граней. При расчете объема усеченной пирамиды, вместо площади основания подставляется величина, равная сумме площадей верхнего, нижнего основания и квадратного корня из их произведения.

Источники:

  • Стереометрия
  • как найти боковую грань пирамиды

Прямоугольной называется пирамида, одно из ребер которой перпендикулярно ее основанию, то есть стоит под углом 90˚. Это ребро является одновременно и высотой прямоугольной пирамиды. Формулу объема пирамиды впервые вывел Архимед.

Вам понадобится

  • - ручка;
  • - бумага;
  • - калькулятор.

Инструкция

В прямоугольной высотой будет ее ребро, которое стоит под углом 90˚ к основанию. Как , площадь основания прямоугольной обозначают как S, а высоту, которая одновременно является пирамиды , − h. Тогда, чтобы найти объем этой пирамиды , необходимо площадь ее основания умножить на высоту и разделить на 3. Таким образом, объем прямоугольной пирамиды вычисляется с помощью формулы: V=(S*h)/3.

Постройте , следуя заданным параметрам. Ее основание обозначьте латинскими ABCDE, а вершину пирамиды - S. Так как чертеж получится на плоскости в проекции, то для того, чтобы не запутаться, обозначьте уже известные вам данные: SE=30см; S(ABCDE)=45 см².

Вычислите объем прямоугольной пирамиды , используя формулу. Подставив данные и сделав подсчеты, получится, что объем прямоугольной пирамиды будет равен: V=(45*30)/3=см³.

Если в условии задачи нет данных о и высоте пирамиды , то нужно провести дополнительные вычисления для получения этих величин. Площадь основания будет вычисляться в зависимости от того, многоугольник лежит в ее основании.

Высоту пирамиды узнаете, если известна гипотенуза любого из прямоугольных EDS или EAS и угол, под которым наклонена боковая грань SD или SA к ее основанию. Вычислите катет SE по теореме синусов. Он и будет являться высотой прямоугольной пирамиды .

Обратите внимание

Проводя вычисления таких величин, как высота, объем, площадь, следует помнить, что каждая из них имеет свою единицу измерения. Так, площадь измеряется в см², высота – в см, а объем - в см³.
Кубический сантиметр – это единица объема, которая равна объему куба с длиной ребер в 1см. Если подставить данные в нашу формулу, получим: см³= (см²*см)/3.

Полезный совет

Как правило, если в задаче требуется найти объем прямоугольной пирамиды, то все необходимые данные известны – как минимум для того, чтобы найти площадь основания и высоту фигуры.

Вычисление объемов пространственных фигур является одной из важных задач стереометрии. В данной статье рассмотрим вопрос определения объема такого полиэдра, как пирамида, а также приведем шестиугольной правильной.

Пирамида шестиугольная

Для начала рассмотрим, что собой представляет фигура, о которой пойдет речь в статье.

Пусть у нас имеется произвольный шестиугольник, стороны которого не обязательно равны друг другу. Также предположим, что мы выбрали в пространстве точку, не находящуюся в плоскости шестиугольника. Соединив все углы последнего с выбранной точкой, мы получим пирамиду. Две разные пирамиды, имеющие шестиугольное основание, показаны на рисунке ниже.

Видно, что помимо шестиугольника фигура состоит из шести треугольников, точка соединения которых называется вершиной. Различие между изображенными пирамидами заключается в том, что высота h правой из них не пересекает шестиугольное основание в его геометрическом центре, а высота левой фигуры попадает точно в этот центр. Благодаря этому критерию левая пирамида получила название прямой, а правая - наклонной.

Поскольку основание левой фигуры на рисунке образовано шестиугольником с равными сторонами и углами, то она называется правильной. Дальше в статье речь пойдет только об этой пирамиде.

Для вычисления объема произвольной пирамиды справедлива следующая формула:

Здесь h - это длина высоты фигуры, S o - площадь ее основания. Воспользуемся этим выражением для определения объема пирамиды шестиугольной правильной.

Поскольку в основании рассматриваемой фигуры лежит равносторонний шестиугольник, то для вычисления его площади можно воспользоваться следующим общим выражением для n-угольника:

S n = n/4 * a 2 * ctg(pi/n)

Здесь n - целое число, равное количеству сторон (углов) многоугольника, a - длина его стороны, функцию котангенса высчитывают, используя соответствующие таблицы.

Применяя выражение для n = 6, получим:

S 6 = 6/4 * a 2 * ctg(pi/6) = √3/2 * a 2

Теперь остается подставить это выражение в общую формулу для объема V:

V 6 = S 6 * h = √3/2 * h * a 2

Таким образом, для вычисления объема рассматриваемой пирамиды необходимо знать два ее линейных параметра: длину стороны основания и высоту фигуры.

Пример решения задачи

Покажем, как можно использовать полученное выражение для V 6 для решения следующей задачи.

Известно, что правильной объем равен 100 см 3 . Необходимо определить сторону основания и высоту фигуры, если известно, что они связаны друг с другом следующим равенством:

Поскольку в формулу для объема входят только a и h, то можно подставить в нее любой из этих параметров, выраженный через другой. Например, подставим a, получаем:

V 6 = √3/2*h*(2*h) 2 =>

h = ∛(V 6 /(2*√3))

Для нахождения значения высоты фигуры необходимо взять корень третей степени из объема, что соответствует размерности длины. Подставляем значение объема V 6 пирамиды из условия задачи, получаем высоту:

h = ∛(100/(2*√3)) ≈ 3,0676 см

Поскольку сторона основания в соответствии с условием задачи в два раза больше найденной величины, то получаем значение для нее:

a = 2*h = 2*3,0676 = 6,1352 см

Объем шестиугольной пирамиды можно найти не только через высоту фигуры и значение стороны ее основания. Достаточно знать два разных линейных параметра пирамиды для его вычисления, например апотему и длину бокового ребра.

Пирамиды бывают: треугольные, четырехугольные и т. д., смотря по тому, что является основанием - треугольник, четырехугольник и т. д.
Пирамида называется правильной (фиг.286,б), если, во - первых, ее основанием является правильный многоугольник, и, во - вторых, высота проходит через центр этого многоугольника.
В противном случае пирамида называется неправильной (фиг.286,в). В правильной пирамиде все боковые ребра равны между собой (как наклонные с равными проекциями). Поэтому все боковые грани правильной пирамиды есть равные равнобедренные треугольники.
Анализ элементов правильной шестиугольной пирамиды и их изображение на комплексном чертеже (фиг.287) .

а) Комплексный чертеж правильной шестиугольной пирамиды. Основание пирамиды расположено на плоскости П 1 ; две стороны основания пирамиды параллельны плоскости проекций П 2 .
б) Основание ABCDEF - шестиугольник, расположенный в плоскости проекций П 1 .
в) Боковая грань ASF - треугольник, расположенный в плоскости общего положения.
г) Боковая грань FSE - треугольник, расположенный в профильно - проектирующей плоскости.
д) Ребро SE - отрезок общего положения.
е) Ребро SA - фронтальный отрезок.
ж) Вершина S пирамиды - точка в пространстве.
На (фиг.288 и фиг.289) приведены примеры последовательных графических операций при выполнении комплексного чертежа и наглядных изображений (аксонометрии) пирамид.

Дано:
1. Основание расположено на плоскости П 1 .
2. Одна из сторон основания параллельна оси х 12 .
I. Комплексный чертеж.
I, а. Проектируем основание пирамиды - многоугольник, по данному условию лежащий в плоскости П 1 .
Проектируем вершину - точку, расположенную в пространстве. Высота точки S равна высоте пирамиды. Горизонтальная проекция S 1 точки S будет в центре проекции основания пирамиды (по условию).
I, б. Проектируем ребра пирамиды - отрезки; для этого соединяем прямыми проекции вершин основания ABCDE с соответствующими проекциями вершины пирамиды S . Фронтальные проекции S 2 С 2 и S 2 D 2 ребер пирамиды изображаем штриховыми линиями, как невидимые, закрытые гранями пирамиды (SBА и SAE ).
I, в. Дана горизонтальная проекция К 1 точки К на боковой грани SBА , требуется найти ее фронтальную проекцию. Для этого проводим через точки S 1 и K 1 вспомогательную прямую S 1 F 1 , находим ее фронтальную проекцию и на ней при помощи вертикальной линии связи определяем место искомой фронтальной проекции K 2 точки К .
II. Развертка поверхности пирамиды - плоская фигура, состоящая из боковых граней - одинаковых равнобедренных треугольников одна сторона которых равна стороне основания, а две другие - боковым ребрам, и из правильного многоугольника - основания.
Натуральные размеры сторон основания выявлены на его горизонтальной проекции. Натуральные размеры ребер на проекциях не выявлены.
Гипотенуза S 2 ¯A 2 (фиг.288, 1 , б) прямоугольного треугольника S 2 O 2 ¯A 2 , у которого большой катет равен высоте S 2 O 2 пирамиды, а малый - горизонтальной проекции ребра S 1 A 1 является натуральной величиной ребра пирамиды. Построение развертки следует выполнять в следующем порядке:
а) из произвольной точки S (вершины) проводим дугу радиусом R , равным ребру пирамиды;
б) на проведенной дуге отложим пять хорд размером R 1 равным стороне основания;
в) соединим прямыми точки D, С, В, А, Е, D последовательно между собой и с точкой S , получим пять равнобедренных равных треугольников, составляющих развертку боковой поверхности данной пирамиды, разрезанной по ребру SD ;
г) пристраиваем к любой грани основание пирамиды - пятиугольник, пользуясь способом триангуляции, например к грани DSE .
Перенос на развертку точки К осуществляется вспомогательной прямой с помощью размера В 1 F 1 , взятого на горизонтальной проекции, и размера А 2 К 2 , взятого на натуральной величине ребра.
III. Наглядное изображение пирамиды в изометрии.
III, а. Изображаем основание пирамиды, пользуясь координатами согласно (фиг.288, 1 , а).
Изображаем вершину пирамиды, пользуясь координатами по (фиг.288, 1 , а).
III, б. Изображаем боковые ребра пирамиды, соединяя вершину с вершинами основания. Ребро S"D" и стороны основания C"D" и D"E" изображаем штриховыми линиями, как невидимые, закрытые гранями пирамиды C"S"B" , B"S"A" и A"S"E" .
III, e. Определяем на поверхности пирамиды точку К , пользуясь размерами у F и х K . Для ди-метрического изображения пирамиды следует придерживаться той же последовательности.
Изображение неправильной треугольной пирамиды.

Дано:
1. Основание расположено на плоскости П 1 .
2. Сторона ВС основания перпендикулярна оси X .
I. Комплексный чертеж
I, а. Проектируем основание пирамиды - равнобедренный треугольник, лежащий в плоскости П 1 , и вершину S - точку, расположенную в пространстве, высота которой равна высоте пирамиды.
I, б. Проектируем ребра пирамиды - отрезки, для чего соединяем прямыми одноименные проекции вершин основания с одноименными проекциями вершины пирамиды. Горизонтальную проекцию стороны основания ВС изображаем штриховой линией, как невидимую, закрытую двумя гранями пирамиды ABS , ACS .
I, в. На фронтальной проекции A 2 С 2 S 2 боковой грани дана проекция D 2 точки D . Требуется найти ее горизонтальную проекцию. Для этого через точку D 2 проводим вспомогательную прямую параллельно оси х 12 - фронтальную проекцию горизонтали, затем находим ее горизонтальную проекцию и на ней, при помощи вертикальной линии связи, определяем место искомой горизонтальной проекции D 1 точки D .
II. Построение развертки пирамиды.
Натуральные размеры сторон основания выявлены на горизонтальной проекции. Натуральная величина ребра AS выявлена на фронтальной проекции; натуральной величины ребер BS и CS в проекциях нет, величину этих ребер выявляем путем вращения их вокруг оси i , перпендикулярной к плоскости П 1 проходящей через вершину пирамиды S . Новая фронтальная проекция ¯C 2 S 2 является натуральной величиной ребра CS .
Последовательность построения развертки поверхности пирамиды:
а) вычерчиваем равнобедренный треугольник - грань CSB , основание которого равно стороне основания пирамиды СВ , а боковые стороны - натуральной величине ребра SC ;
б) к сторонам SC и SB построенного треугольника пристраиваем два треугольника - грани пирамиды CSA и BSA , а к основанию СВ построенного треугольника - основание СВА пирамиды, в результате получаем полную развертку поверхности данной пирамиды.
Перенос на развертку точки D выполняется в следующем порядке: сначала на развертке боковой грани ASC проводим линию горизонтали при помощи размера R 1 а затем определяем на линии горизонтали место точки D при помощи размера R 2 .
III. Наглядное изображение пирамиды е фронтальной диметрической проекции
III, а. Изображаем основание А"В"С и вершину S" пирамиды, пользуясь координатами согласно (

Loading...Loading...