Пожар от замыкания электропроводки. Неисправности электропроводки: чем они опасны, и как их предотвратить? Чем тушить электропроводку — выводы

Одной из причин пожароопасных ситуаций является неисправная электропроводка. За состоянием изоляции кабелей и проводов необходимо следить и своевременно выполнять замену поврежденных. Старая же проводка за счет того, что была установлена десятки лет назад, представляет еще большую опасность, так как по прошествии времени изоляция проводов высыхает, осыпается и растрескивается, что может стать причиной короткого замыкания или возгорания помещения. Кроме того, качество изоляции у старой проводки существенно ниже в сравнении с современной. Электропроводка в домах старого фонда не рассчитана на сегодняшний уровень потребления электроэнергии. Ее состояние не контролируется специальными органами, а отсутствие профилактики способно привести к печальному исходу. В деревянных домах пожароопасная ситуация при неисправности проводки усугубляется еще больше, так как при ее возгорании в подобных помещениях пожар практически неминуем.

При загорании проводки очаг пожара отыскать практически невозможно, поэтому обнаружение тлеющей проводки происходит в момент, когда открытое возгорание уже произошло. Если вдруг вы почувствовали запах плавящейся или горящей электропроводки, то:

  • Безотлагательно отключите все электрические приборы и обесточьте помещение.
  • Если Вы нашли источник возгорания, то накройте пламя тряпкой или закидайте его землей из цветочных горшков;
  • Перерубите провод с помощью инструмента, имеющего деревянную ручку, заранее обмотав его изолентой.

Ни в коем случае не прикасайтесь к проводам голыми руками и не пытайтесь залить пламя водой. Если не удалось потушить возгорание, то вызывайте пожарную службу, набрав номер 01 со стационарного телефона, либо наберите 112 с мобильного.

В случае если проводка начала оплавляться, то необходимо полностью менять проводку в доме. Если вы не являетесь специалистом, то не стоит экономить на замене электропроводки.

Процедура проводится в несколько этапов:

  • проектирование схемы электроснабжения дома или квартиры;
  • составление плана разводки;
  • прокладка проводки;
  • установка сопутствующих механизмов, УЗО, розеток и электроприборов.

При обращайте внимание на качество продукции и надежность выполняемых работ.

Причины возгорания

Причиной пожароопасной ситуации может стать недостаточное сечение токопроводящих жил (ТПЖ). Так провод, 0.75 мм2 подходит для подключения лампочки или люстры, но не для современных электроприборов, потому что он будет сильно греться и риск расплавления изоляции и последующего короткого замыкания сверхвысок. Сечение ТПЖ выбирается исходя из нагрузки на этапе проектирования электропроводки.

Возгорание может произойти из-за недостаточно высокого качества провода при повышенной нагрузке на электросеть и некачественного монтажа. Это случается, если при установке электрики не придерживались правил пожарной безопасности.

Так называемый «плохой контакт» также может стать причиной возгорания. Это повышенное сопротивление на участке соединения проводов, в результате чего происходит механическое ослабление сжима или их окисление. Когда ток протекает через сопротивление, то выделяется тепло, а при повышении значений тока и сопротивляемости происходит выброс энергии, способной нагреть провод до температуры возгорания.

Горящая электропроводка представляет серьёзную опасность. Чтобы её потушить, нужно использовать специальные противопожарные средства, которые гарантируют эффективность и безопасность при ликвидации возгорания. Необходимо чётко знать, каким огнетушителем можно, а каким нельзя пользоваться во время тушения проводки под напряжением.

Причины возгорания электропроводки

Электросети в доме или на предприятии – источник опасности для человека. Пренебрежение мерами безопасности может привести к тяжёлым поражениям током и пожару.

Основные причины возгорания:

  • Техническая неисправность электропроводки. Следует принимать во внимание состояние всех узлов инженерной сети. Это распределительный щиток, к которому подсоединены основной подающий кабель, ответвления и установлены приборы защиты. Все аппараты должны функционировать. Необходимо предусмотреть резервную защиту на случай вывода из строя одного из приборов. Особое внимание стоит уделить качеству соединений контактов проводников. Для надёжности и безопасности эксплуатации электропроводки (особенно во влажных помещениях) понадобятся устройства защитного отключения.
  • Небезопасная эксплуатация электроприборов. При подключении любых приборов стоит учитывать возможности предельной нагрузки сети и наличие заземляющего контакта в розетке. Одна из причин возгорания электропроводки – большая нагрузка на одну из розеток, к которой через разветвители и удлинители подключается сразу несколько агрегатов. Кроме этого, опасность представляют повреждённые шнуры и вилки приборов.

После включения электроприбора в сеть спустя некоторое время необходимо его отключить и проверить вилку на предмет перегрева. Если штепсель горячий – значит, есть повреждение контактных креплений.

  • Неполадки в работе освещения. Осветительные приборы часто становятся причиной возгорания электропроводки. В помещениях с высокой влажностью нужно предусмотреть защиту ламп от брызг и выключателей от влажности.

Главное требование при любых неполадках с электропроводкой – полное её отключение. Чтобы предотвратить возгорание, при первых признаках короткого замыкания, необходимо обесточить сеть, и только после этого приступать к ремонту. Работать с сетью под напряжением могут только профессиональные электрики в специальном защитном костюме, исключающем опасность поражения током.

Короткое замыкание – причина возгорания проводки

Возникновение мощного и разрушительного импульса тока в сети называют коротким замыканием. Происходит оно в момент, когда провода цепи соединяются, но ток не поступает к электроприбору. Проводка нагревается и начинается возгорание.

При появлении искрения и открытого огня необходимо немедленно выключить электричество.

Если доступ к пробкам невозможен, провода необходимо оборвать любым инструментом, имеющим электроизоляцию.

Первыми признаками грядущего замыкания могут быть перебои в работе освещения и электроприборов. Их стоит проверить на предмет целостности проводов и контактов.

В горящей проводке под напряжением есть ток, поэтому, если нет возможности отключить щиток или перерубить проводку, необходимо вызывать пожарных.

Тушение горящей электропроводки

Тушение электропроводки, находящейся под напряжением, водой запрещено. Вода является идеальным проводником тока и человек, который будет поливать проводку водой, гарантированно получит поражение электротоком. Если сеть обесточена, то можно применять воду, песок или любой огнетушитель, имеющийся под рукой.

Если обесточить сеть не удалось, можно использовать только огнетушитель, на корпусе которого отмечено, что его возможно применять при пожарах класса Е. Эта классификация соответствует пожарам электроустановок.

Для устранения возгорания в электроустановках применимы некоторые порошковые и аэрозольные, углекислотные средства тушения. Они предназначены для тушения проводки и электроустановок под напряжением не больше 1000 вольт (оптимально около 300 вольт). При наличии более высокого напряжение необходимо искать способы обесточивания сети.

Нельзя под напряжением использовать пенно-воздушные и пенно-химические составы.

Горящую наружную электропроводку зимой можно попытаться потушить снежками. Они вызовут замыкание и срабатывание защитного механизма сети.

Правила тушения проводки огнетушителями

  • Огнетушителями с порошковым наполнителем можно тушить горящие электроприборы с напряжением до 1000 вольт;
  • Углекислотный состав пригоден для тушения электрических установок с напряжением до 10 киловольт;
  • Если длина струи углекислотного состава менее трёх метров, можно тушить только оборудование под напряжением 1 киловольт.

Типы огнетушителей и область их применения

Водные и пенные составы

Огнетушащие приборы типа ОВП, ОВ, ОХП могут применяться для тушения обесточенной сети. Их могут применять для устранения видимого возгорания при обрыве кабельной линии, которая питает горящее оборудование.

Порошковые составы

Горящий электрощит с напряжением до тысячи вольт можно тушить порошковым огнетушителем. Порошок сбивает огонь и создаёт плотный слой, который перекрывает доступ кислорода к месту возгорания.

Отмечена высокая эффективность приборов серии «ОП». Их можно использовать при напряжении до 1 киловатта.

Углекислотные составы

Считаются наиболее эффективными при ликвидации возгорания электроустановок. Серия «ОУ» сбивает пламя и понижает температуру нагретых участков. При работе с этим огнетушителем стоит учесть, что углекислота выделяет вредные испарения и применять её в закрытых помещениях недопустимо. Вместе с тем, она обладает рядом неоспоримых преимуществ:

  • Она не оставляет следов после полного испарения. Это важно для сложной электроники.
  • Гасит электроагрегаты с напряжением до 10 киловатт.

Если под рукой нет подходящего для тушения электропроводки огнетушителя – можно воспользоваться песком.

Безопасное расстояние, с которого можно тушить электропроводку:

  • При напряжении до 10 КВт – не менее 1 метра углекислотным огнетушителем;
  • При напряжении до 1 КВт – не менее 1 метра порошковым огнетушителем;
  • При напряжении до 0,4 КВт – не менее 1 метра хладоновым огнетушителем.

Основы работы пожарной команды при тушении электроустановок под напряжением:

  1. При работе с пенными составами осуществляется заземление пеногенераторов, стволов и насосов пожарных машин.
  2. Соблюдаются безопасные расстояния для тушения.
  3. Не используются пенные огнетушители.
  4. Тушение ведётся в специализированной одежде.

Выводы

Если необходимо ликвидировать возгорание электропроводки в домашних условиях, необходимо использовать все возможности для обесточивания сети. Обычно напряжение потребительской сети не превышает 380 Вольт. Если обесточивание по каким-то причинам невозможно – следует использовать порошковый или углекислотный огнетушитель.

Необходимо помнить, что при повреждённой изоляции может образоваться электрическая дуга, она опасна для человека.

Можно тушить электропроводку под напряжением следующими приборами огнетушения:

  • До 400 Вольт – порошковыми, хладоновыми и углекислотными составами;
  • До 1000 Вольт – порошковыми и углекислотными;
  • До 10000 Вольт – углекислотными.

Запрещено тушить электропроводку, находящуюся под напряжением пенными и водными составами, в том числе морской водой.

Если доверять статистике то, наиболее распространённые причины пожаров связаны с неисправностями электропроводки.

В свою очередь, неисправности электропроводки связаны с её физическим и моральным старением.
Физическое старение - наступает врезультате длительной эксплуатации электропроводки и электрощитов без надлежащего технического обслуживания.
Моральное - связано с техническим прогрессом, в результате которого значительно выросло количество потребителей электроэнергии и их мощьность.

Причиной возгорания проводки, практически всегда, становится:
1. "плохой контакт" - повышенное сопротивление в месте соединения проводов, в результате окисления проводов или механического ослабления их сжима. При протекании тока через сопротивление всегда выделяется тепло. (это физика) Когда значения тока и сопротивления велики - выделяются энергии, которые способны нагреть провод и всё что его окружает, до температуры возгорания.
2. Неисправные автоматические выключатели (или с завышенными номиналами). При максимально допустимом для токе (для каждого сечения и марки они свои) автомат должен сработать, обесточив перегруженную цепь.

Как контакт стал "плохим"?
Щит (на фото) был установлен около 15 лет назад и всё это время исправно работал. В этом электрощите установлены электросчётчики и автоматы на две квартиры. В одной из этих квартир из мощных приборов установлен кондиционер, стиральная машина и электродуховка. Хозяин квартиры заказал по замене " " С16А на С25 А. Старые - постоянно "выбивали", отключая электричество в квартире, а новые, после замены свободно переносили высокие нагрузки...

Хозяин квартиры не догадывался, что электропроводка таких мощностей не выдержит и что скоро у него будет пожар. Он жил спокойно и пользовался всей бытовой техникой...

Делаем выводы:

Причина возгорания данного электрощита стал перегрев проводов в нулевой клемме. Тоесть плохой контакт, который появился из за ослабления винтового зажима клеммы.
Ослабление клеммы произошло в следствии температурных колебаний провода, вызванных его переодической перегрузкой. (алюминиевый провод рассчитан на 18А). Провод под действием температурного расширения деформируется, а множественные циклы нагрева и остывания делают деформацию проводника критичной. В месте зажима он становится тоньше. Так же от нагрева провод окисляется и в месте соединения возрастает сопротивление. Появляется плохой контакт, что при дальнейшей перегрузке приводит - перегреву и возгоранию.

Вывод: Не выполняем техническое обслуживание электропроводки и щитов, ставим автоматы по-мощнее - получаем пожар.

Как не довести свой дом до пожара из за электропроводки?

Когда у вас ржавая труба, или ещё хуже она подтекает, то вы это видите и начинаете действовать. А как же быть с электропроводкой? Утечек тока не видно, да и нагрев проводов не всегда можно заметить, так как проводка, как правило скрытая…
Для диагностики и проведения ППР(планово прредупредительный ремонт) электропроводки необходимо вызывать электриков.

Если у Вас алюминиевая проводка , и Вы одновременно пользуетесь двумя(и более) мощными электроприборами (электрочайник, электродуховка, стиральная машина, утюг, микроволновая печь, кондиционер, обогреватель воздуха, водонагреватель…) Вашу проводку необходимо проверить, причём с этим лучше не затягивать.

Чтобы эксплуатация старой электропроводки была безопасной, необходимо установить новые автоматические выключатели (с соответствующими проводу номиналами) и по возможности добавить отдельные линий для мощных электроприборов (т.е. исключить нагрузку мощных стационарно установленых приборов).

При использовании материалов обязательна ссылка на

Стремительная электрификация жилых зданий обязывает более внимательно анализировать электроустановку (электропроводку, электроприборы, защитную и коммутационную аппаратуру) с точки зрения опасности возникновения пожара. В данной статье рассмотрим условия, при которых короткое замыкание действительно может стать причиной пожара.

Нормативные требования

В соответствии с ПУЭ, электрическую сеть напряжением до 1 кВ в жилых, общественных, административных и бытовых зданиях требуется защищать от токов короткого замыкания и токов перегрузки.

ПУЭ-7
3.1.10
Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.
Кроме того, должны быть защищены от перегрузки сети внутри помещений:
осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно¬бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах.

3.1.11
В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:
80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), – для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;
100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) – для проводников всех марок.

Рис. 1. Характерная схема электроснабжения жилого здания

Схема электроснабжения

Рассмотрим характерную схему (рис. 1), где источником электроснабжения служит, как правило, отдельно стоящая подстанция с распределительным щитом 10(6)/0,4/0,23 кВ. На вводе в здание ВРУ-0,4/0,23 кВ. Следующая ступень – это этажный групповой распределительный щиток, и последняя ступень – это квартирный . Вышеперечисленные распределительные устройства подключены между собой проводниками, минимально допустимые сечения которых указаны в требованиях ПУЭ. Номинальные токи аппаратов, которые защищают провода и кабели от токов коротких замыканий и от перегрузки, выбираются в соответствии с требованиями ПУЭ.

Условия возгорания электропроводки

Возникает вопрос, может ли при коротком замыкании произойти возгорание электропроводки, если выполнены вышеперечисленные и другие требования ПУЭ? Рассматривая данный вопрос, необходимо обратить внимание на то, что возгорание электропроводки происходит при достижении проводником определенной температуры, зависящей от типа изоляции кабеля. В настоящее время широко применяется , у которого эта температура равна: Q = 350 O С.
Изменение температуры проводника при протекании тока короткого замыкания описывается формулами, которые приведены в . С учетом некоторых особенностей, а именно кратковременности протекания тока короткого замыкания, о чем будет рассказано далее, в рассматриваемых случаях для проводников с медными жилами можно использовать нижеследующую формулу:

где Q кон. и Q нач. – соответственно конечная и начальная температуры токоведущей жилы проводника, О С;
к – показатель степени:

(1а)

где t – время протекания тока короткого замыкания, с;
S – сечение проводника, мм 2 ;
– интеграл Джоуля или тепловой импульс, кА 2 /с.

В общем случае ток короткого замыкания содержит периодическую и апериодическую составляющие, т.е.:

Однако, как показывает анализ, влияние апериодической составляющей в данном случае невелико ввиду её быстрого затухания (постоянная времени затухания Т 0,003 с). В результате интегрирования на интервале времени действия защитной аппаратуры (0 — 0,02 с) получим:

где I д – действующее значение периодической составляющей тока короткого замыкания.
Тогда формула (1а) примет вид:

(4)

Из вышеперечисленных формул видим, что предельные значения токов короткого замыкания, при которых возгорание проводника не произойдет, зависят от его сечения и времени отключения короткого замыкания.


Рис. 2 (а). Времятоковые характеристики автоматических выключателей типа LSN


Рис. 2 (б). Времятоковые характеристики автоматических выключателей типа С 60а Merlin Gerin

Граничные значения токов короткого замыкания и минимально допустимые значения токов КЗ

Проводя анализ защитных времятоковых характеристик автоматических выключателей (рис. 2), мы наблюдаем две области: работа отсечки, предназначенной для отключения токов короткого замыкания, и работа тепловых расцепителей, предназначенных для защиты от перегрузки. Время действия отсечки измеряется сотыми и даже тысячными долями секунды, а время действия защиты от перегрузки измеряется от нескольких секунд до нескольких минут. Понятно, что короткие замыкания должны отключаться отсечкой автоматического выключателя как можно быстрее. Если короткое замыкание будет отключаться медленнее действующей тепловой защиты, то неминуемо произойдет повреждение соседних проводников горящей дугой, на которых вследствие этого также произойдут короткие замыкания. При этом возникновение пожара неминуемо.
Исходя из требований чувствительности, можно определить минимальные значения токов КЗ, при которых будет надежно срабатывать отсечка автоматических выключателей:

I кзмин. = I ном · 2 · 5,

где I ном – номинальный ток автомата;
2 – коэффициент надежности;
5 – кратность тока срабатывания отсечки.



Для определения максимально допустимых значений токов КЗ, при которых в электропроводке возгорание ещё не произойдет, используем формулы (1) и (2).
Примем начальную температуру проводника Q нач. = 30 O С. В качестве конечной требуется принять такую, при которой изоляция электропроводки ещё не теряет своих свойств и позволяет осуществлять дальнейшую эксплуатацию. Для кабелей и проводов с пластмассовой изоляцией эта температура находится в диапазоне 160 — 250 О С . Примем среднее значение Q кон. = 200 О С:

Важную роль играет время срабатывания электромагнитных расцепителей автомата при КЗ. ГОСТ Р 50345­99 , а также аналогичные зарубежные документы, к сожалению, содержат лишь требование о том, что время действия автоматических выключателей в начальной зоне отсечки (время мгновенного расцепления) должно быть менее 0,1 с. Однако из каталожных времятоковых характеристик автоматов следует, что на самом деле время срабатывания выключателей намного меньше. Так, для автоматов типа LSN и С 60а это время не превышает 20 мс, а при больших кратностях тока короткого замыкания ещё меньше (рис. 2а и 2б). При времени отключения 20 мс предельно допустимое значение тока КЗ для медного проводника сечением 1,5 мм 2 составит:

Задаваясь регламентированными ПУЭ минимально допустимыми значениями сечений медных проводников на разных ступенях системы электроснабжения (табл. 7.1.1), можно аналогичным образом определить максимальные и минимальные значения тока на других ступенях системы электроснабжения. Результаты расчетов приведены в табл. 1.


Табл. 1. Граничные значения тока КЗ на различных ступенях системы электроснабжения

Следует ещё раз подчеркнуть, что максимально допустимые значения тока КЗ в значительной мере зависят от быстродействия автоматического выключателя при КЗ.

Если необходимо определить минимально допустимое сечение кабеля или провода при заданном токе короткого замыкания и времени его отключения, то можно использовать формулу:

Влияние перегрузки проводников

В большинстве случаев, перегрузка электрической сети в жилом секторе может возникнуть при использовании дополнительных обогревательных электроприборов в холодное время года, в период аварий в системе водяного отопления и т.п. Несмотря на то, что внутренние электросети жилых, общественных, административных и бытовых зданий должны быть защищены от перегрузки, в соответствии с требованиями ПУЭ, однако же защитные аппараты допускают некоторую перегрузку проводников. Это связано с тем, что надежное срабатывание предохранителей происходит при токах, превышающих 1,6I ном, а автоматов – 1,45I ном.
Если, например, автомат выбран на основании требований ПУЭ, т.е. его номинальный ток равен длительно допустимому току проводника, то последний может длительно работать с нагрузкой 145% I доп., при этом его температура может достигать:

Q р = Q о + (Q д – Q р) · (I пред / I р) 2 = 30 + (65 – 25) 1,45 2 = 147 O С.

Эта величина больше длительно допустимой температуры для кабелей с пластмассовой изоляцией, указанной не только в ПУЭ и равной 65 O С, но и больше указанной в ГОСТ Р 53769-2010 и равной 70 O С.
При возникновении короткого замыкания в процессе длительной перегрузки температура проводника превысит предельно допустимое значение 350 O С и составит для S = 1,5 мм 2 при I кз = 1550 А (1):

Q кон. = 147 · е к + 228 (е к – 1) = 394 O С, где к = 0,506.

На основании вышеизложенных расчетов и анализа напрашивается вывод о том, что для исключения возможного превышения допустимых температур электропроводки при перегрузках и КЗ номинальные токи защитной аппаратуры следует выбирать несколько ниже, чем требует ПУЭ, как, например, для автоматических выключателей: I ном.авт. 80% I доп.
Обратим особое внимание на то, что действующие требования ПУЭ не обязывают выполнять проверки проводников до 1 кВ на термическую стойкость к токам КЗ. Однако в отношении жилых, общественных, административных и бытовых помещений с этим трудно согласиться с учетом возможных тяжелых последствий.

Реальные значения токов короткого замыкания в схеме электроснабжения зданий

Токи КЗ в системе электроснабжения напряжением до 1 кВ рассчитываются согласно методике, изложенной в ГОСТ 28249­93 . Расчет оказывается более сложным, чем для сетей напряжением 6–35 кВ, что объясняется рядом обстоятельств:

  • необходимостью учета не только реактивных, но и активных сопротивлений элементов схемы;
  • необходимостью учета сопротивлений контактных соединений;
  • необходимостью учета увеличения активных сопротивлений проводника при росте температуры;
  • необходимостью учета сопротивления дуги;
  • отсутствием точных данных по сопротивлениям нулевой последовательности некоторых элементов системы электроснабжения (кабели с непроводящей оболочкой, силовые трансформаторы со схемой соединения обмоток Y/Yн, Y/Zн).

Однако это отдельная тема для разговора.
Как показывают , при установке на подстанциях трансформаторов мощностью 630 кВ·А и более, токи КЗ у потребителя могут превышать указанные в табл. 1 максимально допустимые значения. С целью ограничения токов КЗ в электросети жилого помещения можно применять питающие трансформаторы со схемами соединения обмоток Y/Yн. Такие трансформаторы обладают повышенными сопротивлениями нулевой последовательности, снижающими токи однофазного КЗ . В ряде случаев следует идти на увеличение сечения проводников внутренней электропроводки по сравнению с требуемым по условиям допустимой нагрузки и минимально допустимыми значениями, указанными в ПУЭ.

Из всего вышеизложенного следует, что даже при выполнении действующих нормативных требований, в результате КЗ на отдельных участках электропроводки жилых зданий могут создаться условия для возгорания. Однако в этом случае само КЗ было бы неправильно квалифицировать как причину пожара. Истинными причинами пожара являются либо неправильные технические решения, либо недостаточная надежность и быстродействие примененной защитной аппаратуры, либо превышение нормативного срока эксплуатации электрооборудования и т.п.

ВЫВОДЫ

1. В результате коротких замыканий, при значительных величинах тока КЗ и недостаточном быстродействии защитной аппаратуры, существует реальная опасность возгорания или серьезного ухудшения состояния изоляции внутренней электропроводки зданий.
2. Учитывая особую опасность возгорания, целесообразно ввести нормативное требование о выполнении проверки термической стойкости электропроводки в жилых зданиях.
3. Для исключения перегрузок внутренней электропроводки номинальные токи защитных аппаратов необходимо выбирать ниже длительно допустимых токов защищаемых проводников.
4. При выборе защитных аппаратов особое внимание следует уделять надежным автоматическим выключателям с гарантированным быстродействием в зоне мгновенного расцепления 0,02 с и менее.

Литература, используемая в статье

1. Правила Устройства Электроустановок, 6-­е и 7-­е изд.
2. Технический циркуляр №Ц­02­98(э) Департамента стратегии развития и научно­технической политики РАО «ЕЭС России».
3. ГОСТ Р 50345­99. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения.
4. ГОСТ 28249­93. Токи короткого замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
5. Федоровская А.И., Фишман В.С. Силовые трансформаторы 10(6)/0,4 кВ.

Для организации любого производства необходимы следующие основные составляющие: помещение, производственная линия и бригада квалифицированных рабочих. Еще, разумеется, необходимо закупить сырье и обеспечить каналы сбыта продукции. Но цех не заработает, если...


  • Кабель с многожильными проводами От того какую мы выбираем марку кабеля, для проведения электромонтажных работ, зависит безопасность энергосистемы и электрооборудования. Одной из причин пожаров, как не печально об этом говорить, является...


  • Приобретая новую квартиру, перед началом отделочных работ, возникает необходимость капитального ремонта электропроводки. Это связано с тем, что электромонтаж электропроводки в новостройках выполняется по типовым проектами, которые не учитывают всех требований, ...


  • Электромонтаж и прокладка кабеля в жилых и нежилых помещениях Прокладка кабеля — это одна и важнейших частей электромонтажных работ и от того как грамотно проведён электромонтаж кабеля, будет зависить дальнейшая работа...

  • Страница 1 из 2

    Какие неисправности электрической проводки могут стать причиной возгорания здания?

    Перевод: И.В. Луговская

    Источник: http://www.interfire.org/features/electric_wiring_faults.asp

    Общее понятие

    Значительная часть возгораний зданий связана с неисправностями электропроводок или проводящих устройств. Удивительно, но режимы, в которых электрические неисправности могут стать причинами возгораний, не были изучены. Этот документ рассматривает известную, ранее опубликованную информацию по этой теме, а также указывает на основные моменты дальнейших исследований. Основной упор делается исключительно на однофазные, 120/240В системы распределения . Необходимо также отметить, что систематические исследования этой темы чрезмерно недостаточны, а большая часть существующих исследований, доступна только на японском языке.

    Предпосылки

    Последние статистические данные Национальной ассоциации противопожарной защиты , за 1993 – 1997 гг., гласят, что 41200 бытовых пожаров в зданиях за год, относятся к так называемым «электрически распространяемым».

    Эти электрические возгорания насчитывают 336 смертей, 1446 травм гражданских лиц, и 643 млн. $ прямого ущерба имуществу в год.

    41200 пожаров зданий составляют 9,7% от общего числа бытовых пожаров, электрические возгорания занимают 5 место среди 12 основных причин пожаров.

    643 млн. $ прямого ущерба имуществу составляет 14,4% от общего числа повреждений вследствие пожаров, разместив электрические возгорание на второе место по причинению ущерба от пожаров (после поджога или подозрительных причин).

    Опубликованные ранее FEMA статистические данные за 1985 – 1994 гг. были очень похожи: электрические возгорания занимали пятое место среди причин пожаров, четвертое место, среди причин пожаров со смертельным исходом, и второе место среди причин пожара по ущербу имуществу. Причины электрические возгораний , перечислены в таблице 1.

    Таблица 1. Причины пожаров жилых помещений в США из-за электрических возгораний

    Причины пожара

    Процентное соотношение (%)

    Стационарная проводка

    34.7

    Шнуры и вилки

    17.2

    Осветительные приспособления

    12.4

    Выключатели и розетки

    11.4

    Светильники и лампы накаливания

    Предохранители, выключатели

    Измерительные приборы

    Трансформаторы

    Неклассифицированное или неизвестное электрораспределительное оборудование

    Большие потери, нанесенные возгоранием электрических приборов, не означают, что электрические системы являются ненадежными. В США около 270 миллионов человек занимают около 100 млн. единиц жилья, в среднем 5.4 комнат на дом . Это означает, что в США проживает 2,7 человека в одной единице жилья, или же имеется 2 комнаты на одного человека. Если есть по 4 розетки в комнате, то количество розеток составляет 4*2*270*106 = 2,16 миллиарда. Следует вычесть определенный процент неиспользуемых розеток. Можно предположить, что половина розеток имеют подключенные устройства. Из оставшейся половины розеток, будем считать, что половина из них имеет последовательное соединение к другой розетке, а другой выход используется. Таким образом, реальное количество розеток, с протекающим в них током, оценивается как ¾ = 2,16 млрд., или 1620000000. Статистические данные NFPA показывают, что 4700 пожаров приходится на "выключатели и розетки", но CPSC далее опровергает статистику для выключателей, указывая, что они составляют 30% на рисунке выше. Не принимая во внимание пожары, произошедшие из-за неисправностей переключателей, 3290 пожаров за год обусловлены неисправностями розеток. Частота повреждений оценивается как 3290 / 1,62 "109, или 2"10-6 / в год. Очень низкий процент повреждений показывает, что электрический розетки обладают высокой надежностью. Проблема заключается не в высокой вероятности повреждений, кол-ва устройств, за год.

    Вместо этого, вопрос состоит в том, что электрическая сеть включает в себя необычайно большое количество устройств, которые распределены повсеместно. Каждое устройство является источником энергии, и каждый из них потенциально может дать сбой и привести к пожару.

    Виды возгораний

    Учитывая то, что такие причины пожаров, как электрические возгорания занимают второе место по количеству нанесенного ущерба (в долларах США) среди остальных причин пожаров, можно сделать вывод, что был выполнен большой объем исследований, по изучению неправильной работы механизмов, приводящих к возникновению воспламенений. Это доказывает по сути, что, в лучшем случае, исследования были фрагментарными. К рассмотрению повреждений можно подойти по-разному:

    • определение срабатывания или бездействия, которые привели к повреждению
    • классификации повреждений неисправного устройства или его части
    • изучение основ физики повреждений.

    Такие методы, играют важную роль в реконструкции несчастных случаев.

    Изучение неисправностей механизмов показывает, что существует всего несколько основных способов, при которых электрическая изоляция или горючие вещества, расположенные близко к электрическим компонентам проводки, могут воспламениться, хотя существуют различные аспекты для каждого из них:

    • дуга
    • чрезмерный омический нагрев, без искрения
    • внешний нагрев

    Некоторые типы возгораний включают сочетание механизмов, поэтому они не должны рассматриваться как взаимоисключающие причины пожара.

    Образование дуги

    Графически изображено, как дуга может возникнуть или последовательно (рис. 1), или же параллельно (рис. 2)

    Рисунок 1. Последовательная дуга Рисунок 2. Параллельная дуга

    Некоторые авторы считают короткозамкнутую дугу – третьей формой дуги, её появление возможно, когда схема содержит короткозамкнутую нейтраль. Топологический механизм такой дуги идентичен параллельной, так как нагрузка не последовательна дуге. Различие между двумя основными формами дуг имеет важное значение. В случае последовательной дуги – при возникновение дуги, уменьшается ток в цепи. Таким образом, устройства защиты перегрузки по току не сработают.

    Причин возникновения дуги может быть много, но основными из них являются:

    • обугливание изоляции (дуга тонарма)
    • внешняя ионизация воздуха
    • короткое замыкание.

    Обугливание изоляции

    В цепи переменного тока, напряжением 120В легко образуется устойчивое горение дуги, если в цепи будут находиться обугленные токопроводящие элементы. Это явление иногда называют ещё ‘ arcing - across - char ’. Этот механизм известен в области электротехники уже в течение очень долгого времени . То, как обугленные токопроводящие элементы появляются в изоляционном материале, не является тривиальным вопросом. Существуют не мало способов получения таких элементов. Самый простой способ, используемый в некоторых стандартных методиках испытаний , заключается в создании дуги непосредственно на поверхности изоляции, например, путем размещения двух электродов на изоляционном материале и применения высокого напряжения между ними. Другой механизм предполагает комбинированное воздействие влаги и загрязняющих веществ на поверхность. Этот процесс иногда называют «мокрый трекинг» (wet tracking ) и он являлся особой проблемой для воздушной проводки с полиамидной изоляцией . Совокупное воздействие влаги и загрязняющих веществ вызывают на поверхности изолятора токи утечки, которые со временем могут привести к образованию обугленных треков .

    Изоляционные материалы различаются по своей восприимчивости к дуге трекинга. Большая часть проводки напряжением 120/240В изолированы поливинилхлоридом (ПВХ), но, к сожалению, ПВХ является одним из менее удовлетворительных полимеров по отношению к дуге трекинга . Ното и Кавамура сообщили об обширных мокрых трекинг - экспериментов с ПВХ изоляцией. Использование стандарта Международной электротехнической комиссии (IEC ) 60112 , они зафиксировали ряд типовых образцов, которые привели к воспламенению кабеля.

    Когда ПВХ подвергается воздействию температуры 200 - 300С°, образец является полупроводником. Не удивительно, что это может привести к утечке тока и искрению. Однако Нагата и Юкои обнаружили, что, если абсолютно новый ПВХ нагревается до достаточно низкой температуры 160C°, то приложение напряжения величиной 100В через 1 мм толщины изолятора достаточно, чтобы вызвать воспламенение изоляции. Кроме того, если изоляция была ранее предварительно нагрета до 200 - 300C°, тогда возгорание происходит при умеренных температурах. В течение исследования испытательное напряжение варьировалось – от комнатной температуры до 40C° – этого было достаточно для появления возгорания (рис. 3).

    Рисунок 3. Влияние температуры предварительного нагрева и температуры испытания на воспламенение ПВХ изоляции проводов при воздействии переменного тока напряжением до 100В через 1 мм толщины изоляции

    Хагимото вместе с соавт. провели лабораторные исследования параллельной дуги при неисправностях электрических шнуров. Они определили, что этот процесс обычно происходит в нерегулярно повторяющихся режимах работы. Исследователи выявили следующую последовательность шагов:

    • начальный ток возникает из-за обугливания слоя изоляции кабеля
    • электрический ток увеличивается, что приводит к возникновению местной дуги
    • искрение вызывает плавление металла и высвобождение расплавленных частиц, т.к. расплавленные частицы были высвобождены, ток начинает падать
    • продолжительный ток через обугленные частицы материала, в конечном итоге, приводит опять к возникновению значительного электрического тока.

    Этот процесс повторяется до бесконечности. Кроме того, авторы измерили ток в процессе, и обнаружили пики до 250А, но такие пики были редки, а сигнал амперметра обычно показывал пики не более 50А. Следовательно, длительное время может потребоваться для включения выключателя. (Обратите внимание, конечно, что фактические текущие значения будут зависеть от сопротивления конкретной схеме испытания).

    Внешняя ионизация воздуха

    Внутренняя электрическая прочность воздуха высокая (около 3 МВ м-1, для всех, кроме очень маленьких зон), но пробой может произойти при гораздо более низких значениях, если воздушное пространство ионизировать тем или иным способом. Если происходит серьезная неисправность с появлением дуги в распределительном устройстве, выбрасывается большое количество ионизированных газов. Они могут перемещаться на определенном расстоянии, и если они соприкасаются с участками новой цепи, они могут легко привести к поломке и образованию новых дуг в других местах . Месина зарегистрировала в лабораторных условиях, что снижение пробивной силы воздуха происходит из-за наличия пламени . Опыты показали, что электрическая прочность воздуха падает до приблизительно 0,11 МВ м-1 в огне. Однако, исследование Месины, охватывали условия только при напряжении 1600В и выше.

    Считается, что дугообразование, при появлении возгораний, является наиболее распространенной причиной пожара, которые могут возникнуть в месте действия огне . Оно может включать в себя либо обугливание изоляции, либо внешнюю ионизацию воздуха, или оба условия сразу. Но в случае схем, напряжением 120В, существуют лишь несколько ограниченных эмпирических исследований, по которым нет общих рекомендаций.

    Loading...Loading...