Системы и технические средства раннего обнаружения пожара. Раннее обнаружение пожара. Стандартный набор извещателей

В настоящее время, большинство методов обнаружения лесных пожаров связаны с личным присутствием спасателей: патрулированием, наблюдением с вышек и вертолётов, а также с применением космических данных. Все применяемые меры, безусловно, эффективны в отсутствие аномальной жары. Но, в период засухи, когда пожары охватывают одновременно огромные территории в самых разных уголках страны, остро встаёт вопрос о более совершенных системах наблюдения и раннего предупреждения лесных пожаров.

Система «Forest fire detection»

Инновационные разработки в этом направлении позволили создать совершенно уникальную систему «Forest fire detection». В отличие от всех ныне существующих способов борьбы с пожарами, эта система работает автоматизировано, практически без человеческого участия, оповещая оператора на самых ранних стадиях обнаружения огня.

«Forest fire detection» представляет собой масштабную систему датчиков, позволяющих:

  • Вести непрерывное видеонаблюдение.
  • Обнаруживать на ранних стадиях дым.
  • Автоматически оповещать спасательные службы.
  • Прогнозировать масштабы развития очага возгорания.
  • Рассчитывать количество сил, направленных на ликвидацию пожара.

Оборудование оснащено автономной системой питания и имеет высокую степень защиты от различных погодных условий и форс-мажорных обстоятельств. А это значит, что система не выйдет из строя во время грозы и позволит обнаружить очаги, пораженные молнией.

Как приобрести систему

Компания «Ксорекс-Сервис» , представляющая технологию «Forest fire detection» на белорусском рынке, зарекомендовала себя как надёжный партнёр в сфере IT-технологий. Всё оборудование, продвигаемое компанией, проходит обязательную сертификацию и отличается отменным качеством.

Работа над каждым заказом ведётся в индивидуальном порядке:

  1. На начальном этапе высококвалифицированные специалисты проведут оценку местности, учтут все особенности рельефа, наличие инфраструктуры, и даже погодные условия предоставляемой территории.
  2. На втором этапе будут осуществлены все работы по установке и настройке оборудования, с учётом всех индивидуальных особенностей, выявленных ранее.
  3. После подготовки, специалисты компании обучат работе с системой персонал вашей организации и обеспечат постоянную поддержку со своей стороны. Таковы гарантии сервисного обслуживания!

Привлекательно и то, что вы сами, воочию, можете убедиться в эффективности «Forest fire detection» опробовав нашу систему . Вас обязательно порадует команда профессионалов и стоимость обслуживания системы. А своевременное прогнозирование страшного стихийного бедствия поможет избежать множества необратимых последствий лесных пожаров.

К сожалению, у нас далеко не все так же понимают тех преимуществ, которые дают адресно-аналоговые системы, а некоторые вообще сводят их достоинства к "заботе о курильщиках". Поэтому давайте так же раз посмотрим, что же все-таки нам дают адресно-аналоговые системы.

Важно не только вовремя обнаружить, но и вовремя предупредить

Напомню, что различают три класса систем пожарной сигнализации: неадресные, адресные, адресно-аналоговые.

В неадресных и адресных системах "решение о пожаре" принимается непосредственно самим извещателем и затем передается на приемно-контрольный прибор.

Адресно-аналоговые системы являются по своей сути телеметрическими системами. На приемно-контрольный прибор передается значение контролируемого извещателем параметра (температура, задымленность в помещении). Приемно-контрольный прибор постоянно отслеживает состояние окружающей среды во всех помещениях здания и на основании этих данных принимает решение не только о формировании сигнала "Пожар", но и сигнала "Предупреждение". Особо подчеркнем, что "решение" принимает не извещатель, а приемно-контрольный прибор. Теория гласит, что если построить график интенсивности пожара в зависимости от времени, то он будет иметь вид типа параболы (рис. 1). На начальном этапе развития пожара его интенсивность невелика, затем она возрастает и далее наступает лавинообразный цикл. Если бросить непотушенный окурок в корзину с бумагами, сначала будет наблюдаться их тление с выделением дыма, затем появится пламя, оно перекинется на мебель и далее начнется интенсивное развитие пожара, с которым справиться уже непросто.

Получается, что если возгорание выявлено на ранней стадии, его легко ликвидировать с помощью стакана воды или обычного огнетушителя и ущерб от него будет минимален. Именно это и позволяют сделать адресно-аналоговые системы. Если, например, неадресный (или адресный) тепловой извещатель обеспечивает формирование сигнала "Пожар" при температуре 60 °С, то до достижения этого значения дежурный не видит на приемноконтрольном приборе никакой информации о том, что происходит в помещении. А все - таки это предполагает уже значительный очаг пожара. Аналогичная ситуация наблюдается и с дымовыми извещателями, где должен быть достигнут необходимый уровень задымленности.

Адресное не значит адресно-аналоговое

Адресно-аналоговые системы, постоянно контролируя состояние среды в помещении, немедленно выявляют начавшееся изменение температуры или задымленности и выдают дежурному предупреждающий сигнал. Поэтому адресно-аналоговые системы обеспечивают раннее обнаружение пожара. Это значит, что пожар легко ликвидировать с минимальным ущербом для здания.

Подчеркнем, что "водораздел" находится не м. неадресными системами, с одной стороны, и адресными и адресно-аналоговыми – с другой, а м. адресно-аналоговыми и остальными системами.

В реальных адресно-аналоговых приборах имеется принцип. возможность индивидуально задавать не только уровни формирования сигналов "Пожар" и "Предупреждение" для каждого извещателя, но и определять логику их совместной работы. Другими словами, мы получаем в руки инструмент, позволяющий оптимальным образом формировать систему раннего обнаружения пожара для каждого объекта с учетом его индивидуальных особенностей, т.е. мы имеем принцип. возможность оптимально строить систему пожарной безопасности объекта.

Попутно решается так же ряд важных задач, например контроль работоспособности извещателей. Так, в адресно-аналоговой системе в принципе не может быть неисправного извещателя, не выявленного приемно-контрольным прибором, так как все время извещатель должен передавать определенный сигнал. Если к этому добавить мощную самодиагностику самих извещателей, автоматическую компенсацию запыленности и выявление запыленных дымовых извещателей, то становится очевидным, что эти факторы только повышают эффективность адресно-аналоговых систем.

Основные особенности

Важным компонентом адресно-аналоговых приборов является построение шлейфов сигнализации. протокол работы шлейфа является ноухау фирмы и составляет коммерческую тайну. Вместе с тем именно он во многом определяет характеристики системы. изучим наиболее характерные особенности адресно-аналоговых систем.

Число извещателей в шлейфе

Обычно оно составляет от 99 до 128 и ограничено энергетическими возможностями организации питания извещателей. В ранних моделях адресация извещателей производилась с помощью механических переключателей, в более поздних моделях переключатели отсутствуют, а адрес заносится в энергонезависимую память датчика.

Кольцевой шлейф сигнализации

В принципе большинство адресноаналоговых приборов способны работать и с радиальным шлейфом. но есть вероятность "потерять" большое количество извещателей из-за обрыва шлейфа. Поэтому кольцевой шлейф – средство повышения живучести системы. При его обрыве прибор формирует соответствующее извещение, но обеспечивает работу с каждым полукольцом, сохраняя тем самым работоспособность всех извещателей.

Устройства локализации коротких замыканий

Это тоже средство повышения "живучести" системы. Обычно данные устройства устанавливаются через 20–30 извещателей. При коротком замыкании в шлейфе ток в нем возрастает, что фиксируется двумя устройствами локализации, и неисправный участок отключается. из строя выходит лишь сегмент шлейфа м. двумя устройствами локализации коротких замыканий, а вся остальная его часть остается работоспособной за счет кольцевой организации подключения.

В современных системах встроенным устройством локализации коротких замыканий оснащен каждый извещатель или модуль. При этом за счет существенного снижения цен на электронные компоненты стоимость датчиков фактически не увеличилась. Такие системы практически не страдают от коротких замыканий шлейфов.

Стандартный набор извещателей

Он, включает в себя дымовой оптоэлектронный, тепловой максимальной температуры, тепловой максимально-дифференциальный, комбинированный (дымовой плюс тепловой) и ручной извещатели. Этих извещателей обычно достаточно, чтобы защитить основные виды помещений в здании. Некоторые производители дополнительно предлагают и достаточно экзотические виды датчиков, например, адресно-аналоговый линейный извещатель, оптический дымовой извещатель для помещений с высоким уровнем загрязнения, оптический дымовой извещатель для взрывоопасных помещений и др. Все это расширяет сферу применения адресно-аналоговых систем.

Модули контроля неадресного подшлейфа

Они позволяют использовать неадресные извещатели. Это сокращает стоимость системы, но при этом, естественно, свойства, присущие адресно-аналоговой аппаратуре, теряются. В ряде случаев такие модули могут с успехом использоваться для подключения обычных линейных дымовых извещателей или создания взрывобезопасных шлейфов.

Модули управления и контроля

Они включаются непосредственно в шлейфы сигнализации. Обычно число модулей соответствует числу извещателей в шлейфе, а их адресное поле является дополнительным и не накладывается на адреса извещателей. В некоторых системах адресное поле извещателей и модулей является общим.

Общее количество подключенных модулей может составлять несколько сотен. Именно это свойство и позволяет на базе адресно-аналоговой системы пожарной сигнализации СПС осуществить интеграцию систем автоматической пожарной защиты здания (рис. 2).

При интеграции осуществляется управление исполнительными устройствами и контроль их срабатывания. Количество точек контроля и управления как раз и составляет несколько сотен.

Разветвленная логикаформирования управляющихсигналов

Это непременный атрибут адресноаналоговых приемно-контрольных приборов. Именно мощные логические функции обеспечивают построение единой системы автоматической пожарной защиты здания. Среди этих функций и логика формирования сигнала "Пожар" (например, по двум сработавшим извещателям в группе), и логика включения модуля управления (например, при каждом сигнале "Пожар" в системе или при сигнале "Пожар" в данной группе), и принцип. возможность задания временных параметров (например, при сигнале "Пожар" включить через время Т1 модуль управления М на время Т2). Все это позволяет эффективно строить на базе стандартных элементов даже мощные комплексы газового пожаротушения.

И не только раннее обнаружение

Сам принцип построения адресно-аналоговых систем позволяет помимо раннего обнаружения пожара получить так же ряд уникальных качеств, например, повышение помехоустойчивости системы. Поясним это на примере.

На рис. 3 представлены несколько последовательных циклов опроса (n) прибором теплового адресно-аналогового извещателя. Для простоты понимания по оси ординат отложим не длительность сигнала от извещателя, а сразу соответствующее ей значение температуры. Пусть на цикле опроса 4 прошел ложный сигнал от извещателя или искажение длительности ответа извещателя под воздействием электромагнитных помех что воспринятое прибором значение соответствует температуре 80 °С. по пришедшему ложному сигналу прибором должен быть сформирован сигнал "Пожар", т.е. произойдет ложное срабатывание аппаратуры.

В адресно-аналоговых системах этого можно избежать за счет введения алгоритма усреднения. Для примера введем усреднение по трем последовательным отсчетам. значение параметра для "принятия решения" о пожаре будет являться суммой значений по трем циклам, поделенной на 3:

  • для циклов 1, 2, 3 Т=60:3=20 °С – ниже порога;
  • для циклов 2, 3, 4 Т=120:3=40 °С – ниже порога;
  • для циклов 3, 4, 5 Т=120:3=40 °С – ниже порога.

То есть при пришедшем ложном отсчете сигнал "Пожар" не сформирован. При этом хочется обратить особенное внимание на то, что поскольку "решение" принимает приемно-контрольный прибор, никакие пересбросы и перезапросы извещателей не нужны.

Заметим, что если пришедший сигнал не является ложным, значит на циклах 4 и 5 значение параметра соответствует 80 °С, то при данном усреднении сигнал будет сформирован, так как Т=180:3=60 °С, значит соответствует порогу формирования сигнала "Пожар".

Что в итоге?

Итак, мы убедились, что благодаря своим уникальным свойствам адресноаналоговые системы являются эффективным средством обеспечения пожарной безопасности объектов. Число извещателей в таких системах может составлять несколько десятков тысяч, что достаточно для самых грандиозных проектов.

Рынок адресно-аналоговых систем за рубежом за последние несколько лет имеет устойчивую тенденцию к росту. Доля адресно-аналоговых систем в общем объеме производства уверенно превысила 60%., массовый выпуск адресноаналоговых извещателей привел к снижению их стоимости, что явилось дополнительным стимулом к расширению рынка.

К сожалению, у нас доля адресно-аналоговых систем составляет по различным оценкам от 5 до 10%. Отсутствие системы страхования и действующие нормативы не способствуют внедрению качественной аппаратуры и часто применяется наиболее дешевая техника. Тем не менее определенные сдвиги уже наметились, и думается, что мы стоим на пороге кардинального изменения рынка. Только за последние годы стоимость оптического дымового адресно-аналогового извещателя в России уменьшилась примерно в 2 раза, что делает их более доступными. Без адресно-аналоговых систем немыслимо обеспечение безопасности высотных зданий, многофункциональных комплексов и ряда других категорий объектов.

Системы противодымнои защиты зданий: проблемы проектирования
Со счетов списывать рано

Данная система предназначена для обнаружения начальной стадии пожара, передачи извещения о месте и времени его возникновения и при необходимости включения автоматических систем пожаротушения и дымоудаления.

Эффективной системой оповещения пожарной опасности является применение систем сигнализации.

Система пожарной сигнализации должна:

* - быстро выявить место возникновения пожара;

* - надёжно передавать сигнал о пожаре на приёмно-контрольное устройство;

* - преобразовывать сигнал о пожаре в форму, удобную для восприятия персоналом охраняемого объекта;

* - оставаться невосприимчивой к влиянию внешних факторов, отличающихся от факторов пожара;

* - быстро выявлять и передавать извещение о неисправностях, препятствующих нормальному функционированию системы.

Средствами противопожарной автоматики оборудуют производственные здания категорий А, Б и В, а также объекты государственной важности.

Система пожарной сигнализации состоит из пожарных извещателей и преобразователей, преобразующих факторы появления пожара (тепло, свет, дым) в электрический сигнал; прёмно- контрольной станции, передающей сигнал и включающей световую и звуковую сигнализацию; а также автоматические установки пожаротушения и дымоудаления.

Обнаружение пожаров на ранней стадии облегчает их тушение, что во многом зависит от чувствительности датчиков.

Автоматические системы пожаротушения

Автоматические системы пожаротушения предназначены для тушения или локализации пожара. Одновременно они должны выполнять и функции автоматической пожарной сигнализации.

Установки автоматического пожаротушения должны отвечать следующим требованиям:

* - время срабатывания должно быть меньше предельно допустимого времени свободного развития пожара;

* - иметь продолжительность действия в режиме тушения, необходимую для ликвидации пожара;

* - иметь необходимую интенсивность подачи (концентрацию) огнетушащих веществ;

* - надёжность функционирования.

В помещениях категорий А, Б, В применяются стационарные установки пожаротушения, которые подразделяются на аэрозольные (галоидоуглеводородные), жидкостные, водяные (спринклерные и дренчерные), паровые, порошковые.

Наибольшее распространение в настоящее время приобрели спринклерные установки для тушения пожаров распылённой водой. Для этого под потолком монтируется сеть разветвлённых трубопроводов, на которых размещают сприклеры из расчёта орошения одним спринклером от 9 до 12м 2 площади пола. В одной секции водяной системы должно быть не менее 800 спринклеров. Площадь пола, защищаемая одним спринклером типа СН-2, должна быть не более 9м 2 в помещениях с повышенной пожарной опасностью (при количестве горючих материалов более 200кг на 1м 2 ; в остальных случаях - не более 12м 2 . Выходное отверстие в спринклерной головке закрыто легкоплавким замком (72°С, 93°С, 141°С, 182°С), при расплавлении которого вода разбрызгивается, ударяясь о дефлектор. Интенсивность орошения площади составляет 0,1л/с м 2

Спринклерные сети должны находиться под давлением, способным подать 10л/с. Если при пожаре вскрылся хотя бы один спринклер, то подаётся сигнал. Контрольно-сигнальные клапаны располагаются на заметных и доступных местах, причём к одному контрольно-сигнальному клапану подключают не более 800 спринклеров.

В пожароопасных помещениях рекомендуется подавать воду сразу по всей площади помещения. В этих случаях применяют установки группового действия (дренчерные). Дренчерные - это спринклеры без плавких замков с открытыми отверстиями для воды и других составов. В обычное время выход воды в сеть закрыт клапаном группового действия. Интенсивность подачи воды 0,1л/с м 2 и для помещений повышенной пожарной опасности (при количестве сгораемых материалов 200кг на 1м 2 и более) - 0,3л/с м 2 .

Расстояние между дренчерами не должно превышать 3м, а между дренчерами и стенами или перегородками - 1,5м. Площадь пола, защищаемая одним дренчером, должна быть не более 9м 2 . В течение первого часа тушения пожара должно подаваться не менее 30л/с

Установки позволяют осуществлять автоматическое измерение контролируемых параметров, распознавание сигналов при наличии взрывопожароопасной ситуации, преобразование и усиление этих сигналов, и выдачу команд на включение исполнительных приспособлений защиты.

Сущностью процесса прекращения взрыва является торможение химических реакций путём подачи в зону горения огнетушащих составов. Возможность прекращения взрыва обусловлена наличием некоторого промежутка времени от момента возникновения условий взрыва до его развития. Этот промежуток времени, условно названный периодом индукции (ф инд), зависит от физико-химических свойств горючей смеси, а также от объёма и конфигурации защищаемого аппарата.

Для большинства горючих углеводородных смесей ф инд составляет порядка 20% от общего времени взрыва.

Для того чтобы автоматическая система противовзрывной защиты отвечала своему назначению, должно выполняться следующее условие: Т АСПВ < ф инд, то есть, время срабатывания защиты должно опережать время индуктивного периода.

Условия безопасного применения электрооборудования регламентируется ПУЭ. Электрооборудование подразделяют на взрывозащищённое, пригодное для пожароопасных зон, и нормального выполнения. Во взрывоопасных зонах позволяется применять только взрывозащищённое электрооборудование, дифференцированное по уровням и видам взрывозащиты, категориям (характеризующиеся безопасным зазором, то есть максимальным диаметром отверстия, через которое пламя данной горючей смеси не способно пройти), группам (которые характеризуются Т с данной горючей смеси).

Во взрывоопасных помещениях и зонах внешних установок применяют специальное электроосветительное оборудование, выполненное в противовзрывном варианте.

Дымовые люки

Дымовые люки предназначены для обеспечения незадымляемости смежных помещений и уменьшения концентрации дыма в нижней зоне помещения, в котором возник пожар. Открыванием дымовых люков создаются более благоприятные условия для эвакуации людей из горящего здания, облегчается работа пожарных подразделений по тушению пожара.

Для удаления дыма в случае пожара в подвальном помещении нормы предусматривают устройство окон размером не менее 0,9 х 1,2м на каждые 1000м 2 площади подвального помещения. Дымовой люк обычно перекрывается клапаном.

В Российской Федерации ежедневно происходит около 700 пожаров, на которых погибает более 50 человек. Поэтому сохранение жизни людей остается одной из важнейших задач всех систем безопасности. В последнее время все больше обсуждается тема раннего обнаружения пожара.

Разработчики современной противопожарной техники соревнуются в повышении чувствительности пожарных извещателей к основным признакам пожара: теплу, оптическому излучению от пламени и концентрации дыма. В этом направлении проводится огромная работа, но все пожарные извещатели срабатывают, когда хотя бы небольшой пожар уже возник. И мало кто обсуждает тему обнаружения возможных признаков пожара. Однако приборы, которые могут регистрировать не пожар, а лишь угрозу или вероятность появления пожара, уже разработаны. Это – газовые пожарные извещатели.

Сравнительный анализ

Известно, что пожар может возникнуть как от внезапной аварийной ситуации (взрыв, короткое замыкание), так и при постепенном накоплении опасных факторов: скоплении горючих газов, паров, перегрева вещества выше точки воспламенения, тления изоляции проводов электрокабелей от перегрузки, гниения и разогрева зерна и т.п.

На рис. 1 представлен график типичной реакции газового пожарного извещателя на пожар, начинающийся с горящей сигареты, упавшей на матрас. Из графика видно, что газовый извещатель реагирует на монооксид углерода через 60 мин. после попадания горящей сигареты на матрас, в этом же случае фотоэлектрический дымовой извещатель реагирует через 190 мин., ионизационный дымовой – через 210 мин., что значительно увеличивает время для принятия решения об эвакуации людей и ликвидации очага пожара.

Если фиксировать комплекс параметров, который может привести к началу пожара, то можно (не дожидаясь появления пламени, дыма) изменить обстановку и избежать пожара (аварии). При раннем получении сигнала от газового пожарного извещателя обслуживающий персонал успеет предпринять меры к ослаблению или устранению фактора угрозы. Например, это может быть проветривание помещения от горючих паров и газов, при перегреве изоляции – выключение питания кабеля и переход на использование резервной линии, при коротком замыкании на электронной плате вычислительных и управляемых машин – тушение локального пожара и удаление неисправного блока. Таким образом, именно человек принимает окончательное решение: вызывать пожарную охрану или устранять аварию своими силами.

Виды газовых извещателей

Все газовые пожарные извещатели различаются по типу сенсора:
- металлооксидные,
- термохимические,
- полупроводниковые.

Металлооксидные сенсоры

Изготавливаются металлооксидные сенсоры на основе толстопленочной микроэлектронной технологии. В качестве подложки используется поликристаллическая окись алюминия, на которую с двух сторон наносятся нагреватель и металлооксидный газочувствительный слой (рис. 2). Чувствительный элемент помещен в корпус, защищенный проницаемой для газа оболочкой, удовлетворяющей всем требованиям взрывопожаробезопасности.



Металлооксидные сенсоры предназначены для определения концентраций горючих газов (метан, пропан, бутан, водород и т.д.) в воздухе в интервале концентраций от тысячных до единиц процентов и токсичных газов (СО, арсин, фосфин, сероводород и т.д.) на уровне предельно допустимых концентраций, а также для одновременного и селективного определения концентраций кислорода и водорода в инертных газах, например в ракетной технике. Кроме того, они имеют рекордно низкую для своего класса электрическую мощность, необходимую для нагрева (менее 150 мВт), и могут применяться в сигнализаторах утечки газов и системах противопожарной сигнализации как стационарных, так и носимых.

Термохимические газосигнализаторы

Среди методов, применяемых для определения концентрации в атмосферном воздухе горючих газов или паров горючих жидкостей, используется термохимический метод. Его сущность заключается в измерении теплового эффекта (дополнительного повышения температуры) от реакции окисления горючих газов и паров на каталитически активном элементе датчика и дальнейшем преобразовании полученного сигнала. Датчик сигнализатора, используя этот тепловой эффект, формирует электрический сигнал, пропорциональный концентрации горючих газов и паров с различными коэффициентами пропорциональности для различных веществ.

При горении различных газов и паров термохимический датчик выдает сигналы, разные по величине. Одинаковым уровням (в % НКПР) различных газов и паров в воздушных смесях соответствуют неравные выходные сигналы датчика.

Термохимический датчик не избирателен. Его сигнал характеризует уровень взрывоопасности, определяемый суммарным содержанием горючих газов и паров в воздушной смеси.

В случае контроля совокупности компонентов, в которой содержание отдельных, заранее известных горючих компонентов колеблется от нуля до какой-то концентрации может привести к погрешности контроля. Такая погрешность существует и при нормальных условиях. Этот фактор необходимо учитывать для задания границ диапазона сигнальных концентраций и допуском на их изменение – пределом допускаемой основной абсолютной погрешности срабатывания. Пределы измерения сигнализатора – это наименьшее и наибольшее значение концентрации определяемого компонента, в рамках которых сигнализатор осуществляет измерение с погрешностью, не превышающей заданную.

Описание измерительной схемы

Измерительная схема термохимического преобразователя представляет собой мостовую схему (см. рис. 2). Чувствительный В1 и компенсирующий В2 элементы, расположенные в датчике, включены в мостовую схему. Вторая ветвь моста – резисторы R3–R5 находятся в блоке сигнализации соответствующего канала. Мост балансируется резистором R5.

При каталитическом горении воздушной смеси горючих газов и паров на чувствительном элементе В1 происходит выделение тепла, увеличение температуры и, следовательно, увеличение сопротивления чувствительного элемента. На компенсирующем элементе В2 горения не происходит. Сопротивление компенсирующего элемента изменяется при его старении, изменении тока питания, температуры, скорости движения контролируемой смеси и т.п. Эти же факторы действуют и на чувствительный элемент, что значительно уменьшает вызванный ими разбаланс моста (дрейф нуля) и погрешность контроля.

При стабильном питании моста, стабильной температуре и скорости контролируемой смеси разбаланс моста со значительной степенью точности является результатом изменения сопротивления чувствительного элемента.

В каждом канале устройство питания моста датчика обеспечивает регулированием тока постоянную оптимальную температуру элементов. В качестве датчика температуры, как правило, используется сам же чувствительный элемент В1. Сигнал разбаланса моста снимается с диагонали моста ab.

Полупроводниковые газовые сенсоры

Принцип действия полупроводниковых газовых сенсоров основан на изменении электропроводности полупроводникового газочувствительного слоя при химической адсорбции газов на его поверхности. Этот принцип позволяет эффективно использовать их в приборах пожарной сигнализации как альтернативные устройства традиционным оптическим, тепловым и дымовым сигнализаторам (извещателям), в том числе содержащим радиоактивный плутоний. А высокую чувствительность (для водорода от 0,00001% объемного), селективность, быстродействие и дешевизну полупроводниковых газовых сенсоров следует рассматривать как основное их преимущество перед другими типами пожарных извещателей. Используемые в них физико-химические принципы детектирования сигналов сочетаются с современными микроэлектронными технологиями, что обуславливает низкую стоимость изделий при массовом производстве и высокие технические характеристики.

Полупроводниковые газочувствительные сенсоры – это высокотехнологичные элементы с низким энергопотреблением (от 20 до 200 мВт), высокой чувствительностью и увеличенным быстродействием до долей секунд. Металлооксидные и термохимические сенсоры являются слишком дорогостоящими для такого использования. Внедрение в производство газовых пожарных извещателей на основе полупроводниковых химических сенсоров, изготавливаемых по групповой технологии, позволяет намного снизить стоимость газовых извещателей, что немаловажно для массового применения.

Нормативные требования

Нормативные документы на газовые пожарные извещатели еще не разработаны в полной мере. Имеющиеся ведомственные требования РД БТ 39-0147171-003-88 распространяются на объекты нефтяной и газовой промышленности. В НПБ 88-01 по размещению газовых пожарных извещателей сказано, что их следует устанавливать в помещениях на потолке, стенах и других строительных конструкциях зданий и сооружений в соответствии с инструкцией по эксплуатации и рекомендациями специализированных организаций.

Однако в любом случае, для того чтобы точно рассчитать количество газовых извещателей и правильно произвести их установку на объекте, предварительно необходимо знать:
- параметр, по которому контролируется безопасность (тип газа, который выделяется и свидетельствует об опасности, например CO, CH4, H2 и т.д.);
- объем помещения;
- назначение помещения;
- наличие систем вентиляции, подпора воздуха и т.д.

Резюме

Газовые пожарные извещатели – это приборы следующего поколения, и поэтому они еще требуют от отечественных и зарубежных компаний, занимающихся противопожарными системами, новых научно-исследовательских изысканий по разработке теории газовыделения и распространения газов в помещениях разных по назначению и эксплуатации, а также проведению практических экспериментов для разработки рекомендаций по рациональному размещению таких извещателей.

Нашей организацией на территории Воронежской области выполнен монтаж оборудования и программных средств системы раннего обнаружения лесных пожаров. На территориях Воронежской, Тамбовской и Липецкой областях осуществляется техническое сопровождение функционирования данных программно-аппаратных комплексов в интересах территориальных органов МЧС России и органов управления Лесного хозяйства.

Описание комплекса

Информационная система «Лесной Дозор» — это программно-аппаратный комплекс для мониторинга леса и раннего обнаружения лесных пожаров.

Архитектура системы мониторинга леса и раннего обнаружения лесных пожаров «Лесной Дозор»

Система «Лесной Дозор » состоит из двух частей: аппаратной и программной. Аппаратная часть — это сеть управляемых датчиков наблюдения (видеокамер, тепловизионных датчиков, инфракрасных камер). Программная часть — это специальное программное обеспечение (ПО), с помощью которого заказчик осуществляет мониторинг лесов в режиме реального времени и определяет координаты возгораний. Последнее предполагает, что система может обнаруживать огонь на предпожарной стадии — стадии возгорания, что на практике позволяет предупреждать чрезвычайные ситуации.

Для функционирования системы используется уже существующая инфраструктура мобильных операторов (сотовые вышки, аппаратура связи и обслуживающие команды). Т.к. система легко масштабируется и расширяется, она пригодна для обнаружения лесных пожаров как на небольших территориях, так и на больших площадях.

Характеристики системы

  • Возможная ошибка определения координат очага возгорания – до 250 метров.
  • Радиус обзора одной точки мониторинга – до 30 километров.
  • Точность определения направления на очаг возгорания – 0.5°
  • Время для обзора одной точки – до 10 минут. Зависит от производительности сервера заказчика.
  • Интеграция и учет метеорологических данных.
  • Интеграция и учет спутниковых данных.
  • Интеграция данных из сторонних информационных систем.
  • Возможность оперативного масштабирования и расширения системы для увеличения площади мониторинга.
  • Неограниченное число пользователей с доступом к системе.
  • Возможность оперативного получения информации на мобильные устройства.
  • Автоматическое обнаружение потенциально опасных объектов: дыма и пламени.

Сиcтема работает на основе современных технологий:

  • компьютерного зрения;
  • IP видеонаблюдения;
  • беспроводной широкополосной связи;
  • геоинформационных систем (ГИС);
  • клиент-серверных Интернет-приложений.

Система распределенного видеомониторинга «Лесной Дозор» состоит из следующих элементов:

  • Распределенная система видеокамер
  • Каналы связи, соединяющие видеокамеры с сетью Интернет
  • Сервер системы «Лесной Дозор » подключенный в сеть Интернет
  • Программное обеспечение сервера системы «Лесной Дозор »
  • Оборудование автоматизированного рабочего места оператора
  • Программное обеспечение «Лесной Дозор » автоматизированного рабочего места

Роботизированный сервер

Роботизированный сервер — это сервер системы «Лесной Дозор «, который осуществляет ряд ключевых функций, а именно:

  • управляет сетью видеокамер (датчиков) и осуществляет при их помощи видеонаблюдение территории, в том числе на основе заданных маршрутов патрулирования;
  • управляет подсистемой компьютерного зрения для поиска дыма и огня;
  • предоставляет рекомендации пользователю, информируя его о наличии потенциально опасных очагов возгорания.

Умная точка мониторинга

При установке системы иногда возникают ситуации, когда скорость Интернет-соединения чрезвычайно мала (меньше 512 Кбит/сек.) и передача видео данных в центр контроля затруднена. Чтобы решить эту проблему, наши специалисты используют концепцию «умной точки мониторинга».

Смысл концепции заключается в том, что основная часть данных с видеокамер обрабатывается ещё до того, как оказывается в Сети и передаётся в центр контроля. Осуществляется это благодаря специальным мини-серверам, «прикреплённым» к каждой конкретной точке мониторинга. Именно на мини-серверах осуществляется предварительный анализ медиа-информации и отсеивается «информационный шум».

Как следствие, даже через слабый Интернет оператор получает всё тот же архив потенциально опасных объектов (ПОО), что и при стандартной схеме передачи медиа данных.

Это позволяет заказчику избегать затрат на дорогостоящие каналы связи или в случаях, когда в этой местности доступ к качественному Интернет-соединению крайне затруднён.

Функционал системы «Лесной Дозор»

Возможности системы обеспечивают проведение видеомониторинга леса вблизи населённых пунктов в режиме реального времени.

Функционал системы «Лесной Дозор » позволяет осуществлять следующие действия:

  • Получать доступ к системе из любого центра контроля, при наличии подключения в сеть Интернет на требуемой скорости с достаточным количеством трафика.
  • Возможность выбора любой доступной камеры для получения с нее видеоизображения.
  • Менять ориентацию камеры, как по азимуту, так и по высоте, менять приближение камеры.
  • Устанавливать параметры получаемого с камеры видеоизображения, такие как разрешение и качество изображения (величина сжатия).
  • Изменять параметры используемого камерой инфракрасного фильтра для достижения приемлемых условий видимости в различных условиях.
  • Возможность получения информации о текущей ориентации камеры относительно севера (азимут) в виде числа и указания направления.
  • Получать информацию о текущем приближении камеры в виде числа и сектора обзора.
  • Возможность представления информации о местоположении видеокамер и их текущей ориентации.
  • Возможность управления камерой с помощью программных алгоритмов.
  • Возможность сохранения и доступа к сохраненным ориентациям камеры (привязкам) на заранее заданные объекты, например пожароопасные объекты, естественные ориентиры и т.д.
  • Формировать маршруты патрулирования, предназначенные для автоматического сканирования заданной территории.
  • Запускать маршруты патрулирования по отдельности для выбираемых камер, а также последовательно несколько маршрутов на различных камерах путем формирования списка маршрутов для просмотра.
  • Запускать одновременно до четырех маршрутов патрулирования в одном окне, предназначенном для обзорного мониторинга сразу нескольких камер (требуется высокая пропускная способность каналов связи).
  • Возможность зациклить просмотр одного маршрута или группы маршрутов.
  • Возможность автоматического отключения приложения при долгосрочном отсутствии активности пользователя.
  • Сохранять текущее изображение с камеры в виде картинки и в виде видеофайла для дальнейшего просмотра и анализа.
  • Возможность автоматического обновления с минимальным участием пользователя для добавления новой функциональности и устранения программных ошибок в любом месте размещения.
  • Возможность работы нескольких пользователей с одной камерой в режиме разделения по времени с помощью механизма блокировок управления и просмотра.
  • Возможность маркировки различных объектов, предназначенных для выполнения процедур по мониторингу леса (населенные пункты, ориентиры и т.д.).
  • Возможность отображения на видеоизображении, поступающем с камеры, объектов, попадающих в область обзора с обозначением типа объекта.
  • Определять направление на видимый пожар при видимости с одной камеры с точностью 0,5 градуса и осуществлять маркировку данного объекта.
  • Определять точные географические координаты видимого не менее чем с 2-х камер пожара с точностью 250м и отображать его в информационной базе.
  • Возможность определения квартала по географическим координатам.
  • Возможность представления информации о текущей пожарной обстановке на мобильном телефоне.
  • Определять координаты пожара на основе информации поступающей от системы наземного мониторинга – с пожарно-наблюдательных вышек. Осуществлять маркировку пожара.
  • Возможность корректировки ориентации камеры при её физическом смещении, для сохранения всех привязок ориентации камеры.
  • Возможность представления в едином информационном блоке информации с различных информационных источников (метеорологические данные, данные с системы спутникового мониторинга и др.).
  • Возможность автоматического обнаружения очагов возгорания системой и сигнализации оператору при просмотре маршрутов патрулирования (требуется высокая производительность процессора).
  • Возможность автоматического обнаружения очагов возгорания системой и сигнализации оператору при выполнении мониторинга в ручном режиме (требуется высокая производительность процессора).
  • Автоматическое обнаружение очагов возгорания и сохранение фотоинформации и информации о направлении на потенциально опасный объект в архиве.
  • Предоставление доступа к архиву потенциально опасных объектов, обнаруженных автоматической системой, с возможностью уточнения.
  • Возможность обмениваться оперативными сообщениями о сложившейся ситуации с другими операторами и группами операторов в рамках выполнения задач по обнаружению и ликвидации пожаров.
  • Получать уведомления, указания, рекомендации от администраторов системы по вопросам функционирования компонентов продукта.

Комплекс программного обеспечения

Программная часть написана на платформе.NET с использованием MS SQL Express и представляет собой микро-сервисную архитектуру. Программно-аппаратная часть имеет систему распределенных серверов плюс сервер для хранения головных баз данных. Система имеет блок раннего обнаружения пожаров, написанный на C++ и встроенный в так называемый камера контроллер. Система представляет дружественный интерфейс и обладает широким функционалом, а именно

  • Круглосуточное патрулирование камерой территории лесного массива по проложенным маршрутам;
  • Автоматическое определение пожароопасного объекта;
  • Определение расстояния до пожароопасного объекта, прокладка до него маршрута;
  • Возможность присваивания различных категорий пожароопасному объекту;
  • Хранение роликов в соответствии с пожароопасным объектом;
  • Хранение архива всех объектов присутствующих в программе;
  • Визуализация сил и средств тушения пожаров;
  • Поддержка квартальных карт;
  • Много сервисных функций
  • Комплекс “Лесной дозор” в настоящее время поставляется как декстопная так и веб-версия.

Каналы передачи тревожного сигнала

  • Интернет
  • Мобильные сети
  • Встроенная система оповещения

Информирование всех необходимых служб

  • Департаменты Лесного дозора
  • Администрации городов и поселков
  • Районные администрации
  • Экологические службы

ООО «ДСК» © 2017 г., Нижний Новгород

Loading...Loading...