На пороге водородной эры. Водород — экологически чистое то­пливо». «Водородная энергетика — дело ближайшего будущего» Почему водород считают экологически чистым топливом

На самом деле перевести автомобили, самолеты, корабли и локомотивы на водородное топливо — весьма привлекательная идея. Применение H 2 не оставляет «углеродного следа». Легковой автомобиль Toyota Mirai, работающий на водородных топливных батареях, проезжая 100 км, производит около полуведра воды. И все! Никаких парниковых газов. Никаких токсичных выбросов. Разве это не прекрасная замена углеводородному топливу? Замена отличная, но проблема в том, что природа создала нам обширные месторождения нефти и газа, а вот месторождений водорода не существует. Самый легкий элемент таблицы Менделеева обильно наличествует в окружающем мире, но в виде соединений — в основном с углеродом и кислородом. Чтобы получить водород в свободном виде, требуется эти соединения разрушить, для чего необходимо затратить энергию, причем при нынешнем уровне развития технологий энергию намного бóльшую, чем мы сможем потом получить, утилизировав водород.

Излучение Солнца, приливы, ветер называют сегодня альтернативными источниками энергии, но водород в их ряду не стоит. H 2 — это экологически чистое топливо, которое по сути является аккумулятором энергии, затраченной на его производство (за вычетом неизбежных потерь). Есть целый ряд ныне применяемых и перспективных технологий производства водорода, но основные подразделяются на два типа: оторвать водород от углерода и оторвать водород от кислорода.

Как устроен автомобиль Toyota Mirai

1. Блок топливных элементов Использованы первые серийно производимые концерном Toyota топливные элементы с высокой удельной мощностью на единицу объема (3,2 кВт/л) Максимальная мощность: 124 кВт 2. Повышающий преобразователь превращает постоянный ток, вырабатываемый топливным элементом, в переменный с повышением напряжения до 650 В 3. Никель-металл-гидридный аккумулятор запасает энергию, рекуперируемую при торможении. При трогании с места питает двигатель совместно с топливным элементом 4. Баллоны высокого давления Рабочее давление внутри: 700 атм. Внутренний объем: 60 л (передний баллон) 62,4 л (задний баллон) 5. Электрический мотор Синхронный электродвигатель переменного тока: максимальная мощность — 113 кВт (153,6 л.с.) максимальный крутящий момент — 335 Нм 6. Блок управления управляет топливным элементом, а также зарядкой/разрядкой аккумуляторной батареи 7 Дополнительные приспособления Насос для подкачки водорода и проч.

Грязное чистое топливо?

Более половины водорода в мире производится методом паровой конверсии метана — это самый дешевый и доступный способ. В многоэтапном процессе с применением высоких температур и катализаторов молекулы метана разлагаются на водород и угарный газ (моноксид углерода). Поскольку в процессе используется ископаемое топливо, назвать полученный таким путем водород не дающим «углеродного следа» как-то не получается.

Другой достаточно распространенный промышленный процесс — это электролиз, знакомый всем еще по школьным химическим опытам. Здесь уже нет ни нефти, ни газа, ни угля — на кислород и водород разлагается обычная вода при приложении к ней электрической энергии. Но откуда эта энергия? Если рядом с водородным производством чадит тепловая электростанция на мазуте, то и здесь с «углеродным следом» будет все не очень хорошо. Визионеры энергетики будущего говорят о водородных фабриках, питающихся электричеством исключительно от ветропарков, солнечных электростанций и других возобновляемых источников. В этом случае появится действительно безуглеродная цепочка выработки топлива, но это потребует колоссального прироста генерирующих мощностей в сфере «зеленой» энергетики.


Производство водорода с применением биотехнологий

О судьбе «Гинденбурга»

Для тотального перехода на водород потребуются не только энергоресурсы для его производства, но и развитая инфраструктура для его транспортировки и хранения — трубопроводы, железнодорожные цистерны, морские танкеры, резервуары, автозаправки. Одна из главных причин несколько настороженного отношения общества к водородной революции заключается в том, что водород очень летуч и взрывоопасен. Там, где будет храниться, транспортироваться или использоваться водород, необходимо наличие высокочувствительных газоанализаторов, которые просигналят о малейшей утечке. Правда, сторонники активного использования водорода утверждают, что опасность преувеличена. В отличие от тяжелых газов типа метана, утекший из баллона легкий водород мгновенно поднимается вверх и развеивается. В пример приводят историю катастрофы дирижабля «Гинденбург», в котором вспыхнувший водород горел всего 32 секунды, что позволило 62 из 97 пассажиров не сгинуть в огне и выжить. Но в любом случае присутствие на улицах большого количества транспортных средств, в которых под давлением находится взрывоопасный газ, потребует нового уровня безопасности движения.


Все эти факторы, ограничивающие широкое применение водорода, свидетельствуют в пользу того, что переход на новое топливо будет происходить не очень быстрыми темпами. Продажи пионерской Toyota Mirai на водородных топливных элементах, начавшиеся в 2015 году, приблизились лишь к рубежу 3000 штук — и это на огромном рынке, в который входят не только Япония, но и США, ЕС, ОАЭ. Очевидно, что водород как топливо будет еще долго соседствовать как с традиционными углеводородами, так и с литий-ионными аккумуляторами (в электромобилях). При этом опережающими темпами водородные технологии смогут развиваться в отдельных наиболее перспективных нишах, например в сфере электрических БПЛА. Дело в том, что КПД водородного топливного элемента очень высок, за счет того что энергия, выделяемая при соединении водорода с кислородом, утилизуется непосредственно в электричество, без значительных потерь в виде тепла, как это происходило бы при сжигании топлива в цикле Карно. Используя энергию топлива по максимуму, БПЛА с топливным элементом может оставаться в воздухе гораздо дольше, чем беспилотник с сопоставимой взлетной массой, но питающий двигатель от широко применяемых литий-ионных аккумуляторов.

Твердый водород?

В нашей стране лидерами в создании водородно-воздушных топливных элементов (ВВТЭ) для БПЛА и не только являются Институт проблем физической химии ИПФХ РАН и Центральный институт авиационного моторостроения ЦИАМ им. Баранова. ВВТЭ ИПФХ в апреле 2016 года обеспечил рекордный полет длительностью 3 часа 10 минут октокоптера-концепта НЕЛК-88 совместного производства компании НЕЛК и ИПФХ РАН.


Схема размещения гранул «твердого водорода» в крыле БПЛА

Водородная бортовая система обладает очень хорошим ВВТЭ и эффективно работает, но с появлением на борту сжатого баллонного водорода возникли проблемы немалого веса и габарита. Кроме того, сохраняется вероятность утечки газа, что небезопасно. Новейшие сверхпрочные материалы и технологии до конца эту проблему не решили.

Чтобы иметь на борту водорода побольше и в более легкой системе хранения, пробовали перейти на сжиженный при температуре -253°C водород, плотность которого втрое выше плотности водорода, сжатого до стандартных для баллонных систем давлений 300−350 атм., что могло бы увеличить энергоемкость системы. Но проблемы с сосудом Дьюара, термоизоляцией, заправкой и т. п. от такой идеи заставили отказаться. Выход был найден, когда вспомнили о твердых металлических гидридах. В гидриде водород настолько плотно запакован, что о каких-либо его просачиваниях речи не идет. Поэтому «твердый» водород — это серьезный аргумент в решении проблемы безопасности и людей, и техники.


В разных гидридах — натрия, магния, бора и др. — водород в весовом отношении существует в разном количестве, и чемпионом здесь является боран аммиака (боразан) с 20%-ным содержанием водорода. Для получения необходимого для ВВТЭ газообразного водорода боран аммиака достаточно осторожно нагреть, чтобы не было его плавления с пенообразованием, до температуры 85−100°С. Получение такой температуры на борту БПЛА не проблема: до нее при работе, например, нагреваются ВВТЭ.

Полет на таблетках

Не так давно в этой сфере произошло два знаковых события. Первое — в самом начале февраля 2016 года, когда британская компания Cella Energy совместно с шотландской ассоциацией морских наук SAMS на полигоне в Аргайле провела успешные испытания твердоводородной технологии на беспилотнике-демонстраторе. По плану полет продолжался десять минут, БЛА поднимался на высоту 80 м.

Второе событие имело место в середине февраля 2016 года в Сингапуре, накануне открытия там Air Show 2016. Тогда серийный мини-БЛА Skyblade 360 UAV компании HES Energy Systems осуществил управляемый полет в течение шести часов и суммарно налетал 300 км со скоростью 50−55 км/ч. В обоих случаях разработчики использовали похожие технологии изготовления материала-носителя водорода и получения из него водорода газообразного.


Материал гидрида был изготовлен в виде гранул, которые размещались на печатной монтажной ленте, что делало удобным производить последовательный, от гранулы к грануле, их осторожный нагрев от бортового источника тепла. Гранулы компании Cella из бoрана аммиака имели квадратное сечение со стороной 1 см. Они были помещены в картридж-газогенератор цилиндрической формы, в котором после выделения газообразного водорода поддерживался необходимый уровень рабочего давления — кстати, небольшой. Технология «гранулы в картридже» позволяет масштабировать топливную загрузку в зависимости от конкретного задания, что обеспечивает гибкость в применении беспилотника.

Ничего не пропадет

При производстве гранул боразана использовалась технология наноструктурирования с получением наночастиц гидрида размером 4−6 нм (в 30 раз меньше размеров песчинки, как это было у компании Cella), и это способствовало высокой отдаче водорода. 1 г структурированной гранулы отдает с эффективностью более 90−95% 1 л газообразного водорода.


Но что делать с отработавшим картриджем, в котором после извлечения водорода из гидрида остается много полезного материала? Конечно, такой картридж никто не собирается выбрасывать, а оставшийся в нем остаток — полиборазилен — восстанавливают до состояния борана аммиака насыщением водородом в присутствии специального катализатора, например, на основе рутения. Уже имеется технология регенерации, по которой все происходит в «одном котле» — прямо в отработавшем картридже, что делает процесс безопасным и упрощает производственную цепочку.

Оценивая перспективы водорода как источника энергии, мы в основном опираемся на существующие технологии его производства и применения. Однако чуть ли не каждый день в этой сфере происходит что-то новое (что показывает стремительное пришествие «твердого водорода»), и, возможно, водородная экономика придет к нам в итоге в совершенно ином обличье.

Власти Москвы заинтересовались опытом Рима, где установили автоматы для приема пластиковых бутылок. Такую концепцию было бы уместно обсудить и применительно к российской столице, рассказала “РГ” глава комиссии Мосгордумы по экологической политике Зоя Зотова. Как уже писала "РГ", в Риме автоматы для пластика поставили на станциях "Чипро", "Пирамида" и "Сан-Джованни". За каждую бутылку устройство начисляет бонусные баллы через мобильное приложение. Сдашь 30 бутылок – едешь бесплатно. Аналогичный проект можно обсудить и в Мосгордуме, считает Зотова. Нужно провести обсуждение с представителями метро. Для начала было бы идеально провести эксперимент на двух-трех станциях.…

Как не превратиться в женщину, с которой невозможны длительные отношения, – вы узнаете из этой познавательной статьи психолога. Существуют женщины, которые не могут долго жить либо встречаться с мужчиной, по причине того, что своим страстным желанием привязать его к себе, они попросту отпугивают сильный пол. Создание здоровых и крепких отношений с такими женщинами становится проблематичным по ряду причин: ограничение свободы выбора мужчины, жесткое планирование развития отношений (например, завести ребенка к определенному возрасту и т.п.). Женщина, которая вредит себе Распознать такой тип женщины помогут следующие подсказки: 1. Она постоянно с кем-то…

Их чрезвычайно успешная петиция даже получила отклик – и обещание – от гиганта быстрого питания. Дети не довольны Happy Meals. Обеспокоенные количеством пластика в дешевых жестких игрушках, выданных McDonalds, и коротким промежутком времени, в которое обычно играют с ними дети, две маленькие девочки из Саутгемптона, Англия, запустили петицию, прося рестораны быстрого питания пересмотреть то, что они раздают. Кейтлин и Элла, 7 и 9 лет, написали на своей странице Change.org: «Нам нравится есть в Burger King и McDonald’s, но дети играют с пластиковыми игрушками, которые дают там, в течение нескольких минут,…

Выпущенные 27 июня и 16 июля из “китовой тюрьмы” в Приморье косатки, сошлись в одном районе вблизи Шантарских островов, сообщается на сайте Всероссийского НИИ океанографии. Вывод сделан на основании данных со спутниковых меток, установленных на животных. Морские млекопитающие находятся на расстоянии менее 30 километров друг от друга. На этом расстоянии животные могут установить акустический контакт. Теперь ученые ждут, произойдет ли их встреча в дикой природе. Младшая косатка из второй группы сейчас находится у берегов Сахалина, в заливе Байкал, удалившись от места выпуска на расстояние более ста километров. Между тем, как…

Завтракать чиа-пудингом предпочитают многие селебрити, а в Instagram и Pinterest он уже стал популярнейшим трендом! Почему все помешались на завтраке из семян чиа и как его приготовить, читай в нашем материале. Польза семян чиа Польза семян чиа в том, что они богаты многими микроэлементами и превосходят по их количеству привычные нам продукты. Именно поэтому семена чиа называют суперфудом, а добавлять их в различные блюда советуют супермодели, блогеры, актрисы и певицы. Семена чиа содержат много кальция, жирных кислот омега-3, а также магний, железо, калий, фосфор и цинк. Суперфуд поможет нормализовать работу…

Ежегодно 29 июля во всем мире отмечается Международный день тигра (International Tiger Day). Этот праздник был учрежден в 2010 году на Международном форуме «Тигриный саммит» в Санкт-Петербурге по проблемам сохранения популяции этого хищного животного. Инициаторами учреждения этой даты выступили 13 государств, участвовавшие в форуме, в которых тигры еще обитают. В ходе мероприятия также была разработана и принята программа восстановления тигриной популяции, рассчитанная на 2010-2022 годы, целью которой является увеличение количества тигров в 2 раза за обозначенный период. К сожалению, в дикой природе сохранилось всего не более 5 тысяч особей, и…

Речного транспорта становится все больше, а качество воды в Москве-реке за последние десять лет не ухудшилось. Такое заявление сделала главный гидролог, начальник отдела мониторинга воды ГПБУ “Мосэкомониторинг” Виктория Мазлова во время рейда на корабле “Экопатруль”. Это единственный корабль в городе, который следит за качеством речной воды, ведь на его борту стоит экспресс-лаборатория. Московское судно каждый будничный день уходит в рейс с пристани в Нагатинском затоне. Все 8 часов рейда специальный насос закачивает воду, которая затем проходит через ряд фильтров и попадает на анализаторы состава по десяти показателям. "На нижнем участке…

Короткая, но сложная планка-тренировка Главная Журнал Фитнес 24 0 Елена Лыжникова 29 июля 2019 У планки есть много сторонников и противников, но даже ярые противники не спорят с тем, что это очень эффективное упражнение для всего тела. Рассмотрим одно из главных преимуществ планки – возможность экономить свое время, ведь провести продуктивную тренировку можно всего за несколько минут. В этом материале ты найдешь пример такой тренировки, для ее проведения не потребуется много времени и места. При регулярном выполнении программы ты очень быстро укрепишь мышцы кора. Преимущества планки сложно перечислить в нескольких…

1. Не пытайся резко взять и перестать Организм еще припомнит эти издевательства, что выразится в головной боли, усталости и проблеме с концентрацией. 2. Снижай дозу кофеина постепенно Поставь себе цель — на одну чашку в день меньше. Через неделю убери еще одну. При неспешном подходе ты ничем не рискуешь. 3. Ешь больше белка Тогда не будешь чувствовать усталости. А вот углеводами злоупотреблять не стоит: они мешают хорошему сну. 4. Создай новый вечерний ритуал Если ты привыкла пить кофе не только утром и днем, но и вечером, ищи замену. Например, сходи прогуляйся (это взбодрит) или почитай хорошую книжку (отвлечет). В крайнем случае можно выпить чашку декафа. Со временем ты начнешь делать это автоматически, а организм…

По данным ВОЗ, от псориаза страдают около 2% людей в мире. При этом в развитых странах показатель достигает 4,6%. Многим заболевание кажется безобидным. При этом за него нередко присваивают самую тяжелую группу инвалидности - первую. Псориаз относят к неинфекционным заболеваниям кожи и называют одной из самых распространенных кожных патологий. Псориаз не смертелен, но может быть мучителен для пациента. Ведь все тело болит, зудит, жжет и т. д. Естественно, с болезнью пытаются бороться, используют разные варианты терапии, ищут пути облегчения состояния больного. и у многих возникает вопрос: можно ли вылечить псориаз?…

Содержание Польза фитнес-упражнения «Мостик» Советы поклонникам ЗОЖ по правильному выполнению упражнения Комплекс упражнений, помогающий выполнить «Мостик» Профессиональное выполнение «Мостика» Упражнение «мостик» знакомо всем с детства. Выполнять его было легко и интересно. Но с возрастом при отсутствии физических нагрузок и гибкости сделать его может далеко не каждый. Вместе с тем оно очень популярно среди поклонников ЗОЖ, поскольку этот элемент полезен для позвоночника, от состояния которого напрямую зависит здоровье человека. Польза фитнес-упражнения «Мостик» Правильное и регулярное выполнение такого упражнения позволяет: укрепить мышцы, способствующие выпрямлению позвоночника. Они расположены с двух сторон всего позвоночного…

До сих пор мы рассматривали так назы­ваемые первичные энергоносители, но есть ещё и вторичный энергоноситель - водород, при горении которого получается вода, что и обусловило широко распространённое пред­ставление о водороде как экологически чи­стом топливе. В действительности дело обстоит существенно сложнее. Сам по себе водо­род и в самом деле относительно чист в эко­логическом плане. Правда, следует учесть, что при использовании водорода в качестве го­рючего для автомобилей в цилиндрах двига­теля развивается очень высокая температура, при которой начинает окисляться азот воз­духа, и поэтому в выхлопе присутствует не­большое количество оксидов азота.

Основные же экологические проблемы возникают ещё при получении водорода - ведь водород в чистом виде на Земле отсут­ствует, его надо синтезировать из воды или углеводородов. Отсюда следует, что для реализации красивой и заманчивой идеи под названием «водородная энергетика» водород следует получить, т. е. затратить энергию. Причём получить его экономически оправ­данным способом, чтобы стоимость энергетического эквивалента этого энергоносителя была соизмерима со стоимостью традицион­ных энергоносителей и того энергоносителя, что использовали для производства водорода.

Первая и главная задача водородной энер­гетики декларируется как замена водородом нефти, природного газа и угля. Но на сегод­няшний день мир не знает технологии, удо­влетворяющей всем требованиям этой гло­бальной задачи. Все известные сегодня спо­собы получения водорода далеки от совершенства: во-первых, они энергозатратны, во-вторых, получение водорода из углеводо­родов сопровождается выделением огромно­го количества диоксида углерода и других токсичных веществ. И если сейчас вклад угле­кислого газа в увеличение концентрации пар­никовых газов в атмосфере ещё относительно невелик и вызывает только беспокойство, то переход на водородное топливо, которое бу­дут получать, например, из метана, приведёт к увеличению выбросов углекислого газа в десятки раз.

Получение водорода электролизом воды с использованием традиционных источников энергии, естественно, приходится отвергнуть, поскольку в результате будет затрачено не­сколько больше энергии, чем получено при сжигании водорода. Поэтому ведутся интен­сивные исследования по разработке мате­риалов, расщепляющих воду под действием солнечного света. Параллельно проводятся работы, направленные на создание полупроводниковых фотоэлементов для превращения солнечной энергии в электричество, исполь­зуемое далее для электролиза воды. Перспек­тивы этих исследований пока неясны, но в случае их успеха речь пойдёт о создании новой отрасли промышленности со всеми вы­текающими отсюда последствиями. Экологические проблемы в водородной энергетике возникнут и при разработке ма­териалов для трубопроводного транспорта водорода - он взрывоопасен, обладает высо­кой диффузионной подвижностью (легко просачивается через обычные конструкцион­ные материалы), значит, потребуются мате­риалы и технологии нового поколения, кото­рые вряд ли будут экологически чистыми.

Пока далека от решения и задача хранения водорода. Департамент энергетики США сфор­мулировал требования к материалу, аккумулирующему водород: он должен содержать не менее 5,5% водорода по массе при комнатной температуре, процесс сорбции-десорбции во­дорода должен быть обратимым при темпера­туре не выше 120 °С, система должна быть безопасной и сохранять рабочее состояние не менее чем в течение 5000 разряд-зарядных циклов. Сегодня нет ни одного материала, даже приблизительно отвечающего этим тре­бованиям. Сорбенты, поглощение которыми водорода основано на физической адсорбции, не способны, в силу природы явления, при­близиться к этим требованиям, так как для них относительно высокое содержание адсорбата достижимо только при низкой температуре (77 К). Наоборот, для гидридов металлов и интерметаллидов при высоком содержании водорода требуются высокие же температуры для его выделения и связывания. Это не толь­ко усложняет технические решения при реа­лизации задачи, но и резко повышает опас­ность использования системы в целом.

Опять-таки можно надеяться, что со вре­менем задача хранения и аккумулирования водорода будет решена, но рассчитывать на полную экологическую безопасность разра­ботанных промышленных технологий не приходится.

Научно-технические проблемы водород­ной энергетики, по-видимому, будут преодо­лены, хотя на это потребуется, по разным прогнозам, от 10 до 50 лет, но экологические трудности в любом случае останутся. Поэто­му об экологической чистоте водородной энергетики говорить не приходится - водо­родная энергетика не является экологически чистой.

«Электромобили - экологически чи­стый транспорт».

Ещё один чрезвычайно живучий миф свя­зан с электромобилями: переход автомобиль­ного транспорта на электрическую тягу якобы обеспечит чистоту атмосферы. Для начала попробуем разобраться, что произойдёт, если сегодня значительную часть автомобильных двигателей внутреннего сгорания заменить электромоторами. Как известно, электромо­торы не дают никаких выбросов в атмосферу и к тому же имеют высокий КПД - выше 90%. К сожалению, в настоящее время единствен­ный источник энергии для автомобильных электромоторов - аккумуляторы. Их надо постоянно заряжать и, следовательно, ис­пользовать энергию, вырабатываемую дей­ствующими электростанциями. Но примерно 80% электричества вырабатывают тепловые электростанции (табл. 1), использующие в качестве топлива нефть, газ или уголь - эко­логически грязные виды топлива. Значит, выбросы двигателей будут заменены пример­но тем же объёмом выбросов электростанций, т. е. произойдет перенос экологических проблем из одного района в другой.

На пороге водородной эры

Впервые о водороде как энергоносителе и, тем самым, о водородной энергетике речь зашла в романе Жюль Верна «Таинственный остров». В ходе неторопливой беседы его основных действующих лиц великий француз уже в 1874 г. высказал смелую мысль, что в будущем человечество будет получать энергию из воды, разлагая ее на водород и кислород, а затем сжигая водород.

Как бы фантастически эта идея ни звучала, она не является столь безумной, как может показаться на первый взгляд. Давайте попытаемся в меру собственных сил и способностей продолжить беседу Смита и Пенкрофа, а именно - рассмотреть (конечно, не во всех аспектах - объять необъятное невозможно) состояние дел по водородной энергетике и топливным элементам как ее важнейшей составляющей...

- Какое топливо заменит уголь?
- Bода, - ответил инженер.
- Вода? - переспросил Пенкроф. - Вода будет гореть в топках пароходов, локомотивов, вода будет нагревать воду?
- Да, но вода, разложенная на составные части, - пояснил Сайрес Смит. - Без сомнения, это будет делаться при помощи электричества, которое в руках человека станет могучей силой, ибо все великие открытия - таков непостижимый закон - следуют друг за другом и как бы дополняют друг друга.
Да, я уверен, что наступит день, и вода заменит топливо: водород и кислород, из которых она состоит, будут применяться и раздельно; они окажутся неисчерпаемым и таким мощным источником тепла и света, что углю до них далеко! Hacтупит день, друзья мои, и в трюмы пароходов, в тендеры паровозов станут грузить не уголь, а баллоны с двумя этими сжатыми газами, и они будут сгорать с огромнейшей тепловой отдачей.

Ж. Верн, «Таинственный остров»

От водорода - к топливным элементам

И все-таки - почему именно водород? До сих пор основными источниками энергии служили ископаемые углеродсодержащие топлива (уголь, нефть, газ). При их сжигании углерод окисляется кислородом воздуха, образуя всем известный углекислый газ (СО 2). Многие считают, что именно он наравне с другими так называемыми парниковыми газами несет ответственность за потепление климата в последние десятилетия, грозящее нам экологическими катастрофами.

А что, кроме энергии, получается при соединении кислорода и водорода? Правильно - обыкновенная вода! Представьте себе автомобиль на водородном топливе - что может быть чище и безопаснее для окружающей среды? Единственное, но существеннейшее препятствие для использования водорода в качестве энергоносителя заключается в том, что в свободном состоянии его в природе практически НЕТ. Поэтому для создания водородной энергетики в первую очередь необходимы технологии, позволяющие наладить крупномасштабное производство водорода, а также его хранение и транспортировку. Второе, но не менее важное условие - создание промышленных энергоустановок нового поколения, в которых в качестве топлива будет использоваться водород.

Есть серьезные основания считать, что в XXI веке произойдет постепенное вытеснение ископаемых углеродсодержащих энергоносителей (уголь, нефть, газ) новым, экологически чистым - водородом. Впервые о водороде как энергоносителе и, тем самым, о водородной энергетике речь зашла в романе Жюль Верна «Таинственный остров». В ходе неторопливой беседы его основных действующих лиц великий француз уже в 1874 г. высказал смелую мысль, что в будущем человечество будет получать энергию из воды, разлагая ее на водород и кислород, а затем сжигая водород.
Как бы фантастически эта идея ни звучала, она не является столь безумной, как может показаться на первый взгляд. Давайте попытаемся в меру собственных сил и способностей продолжить беседу Смита и Пенкрофа, а именно - рассмотреть (конечно, не во всех аспектах - объять необъятное невозможно) состояние дел по водородной энергетике и топливным элементам как ее важнейшей составляющей

Но вернемся к водороду. Нелишне заметить, что водород и водородсодержащий газ (так называемый синтез - газ ) традиционно широко применяются в различных отраслях экономики: химической, нефтеперерабатывающей, металлургической, радиоэлектронной, даже в пищевой промышленности (например, гидрированием растительных масел получают твердые жиры, маргарины).

Что же касается новых применений водорода, то при добавлении водорода или синтез-газа к обычным топливам можно получить немалый выигрыш даже при использовании их в обычных двигателях внутреннего сгорания или в газовых турбинах. В результате такого «облагораживания» топлива увеличивается КПД работы энергоустановок и улучшается состав выбросов.

Один из отцов водородной энергетики, президент Международной ассоциации по водородной энергетике Т. Н. Везирогли (США) даже утверждал, что спустя несколько десятилетий мы будем называться «водородной цивилизацией». И для такого утверждения есть все основания. Так, в 2000 г. общее производство водорода составило примерно 50 Мт, а оптимистические прогнозы на 2100 г. дают цифры примерно в 20 раз больше! В этом месте вдумчивый читатель должен уже впасть в недоумение и спросить: откуда и каким образом эти мегатонны должны появиться, если практически весь водород на планете находится в связанном виде? Прежде чем дать ответ на этот вопрос, познакомимся с тем, что скрывается за понятием топливный элемент .

Топливные элементы: «за» и «против»

Топливным элементом называют электрохимическое устройство, позволяющее превращать химическую энергию топлива в электроэнергию непосредственно, минуя процесс горения и механические преобразования типа сжатия и расширения. Помимо электричества топливный элемент, конечно, генерирует тепло.

Все типы топливных элементов устроены практически одинаково. Они представляют собой гальванические ячейки, в которых соответственно есть электролит и электроды - анод и катод . Электроэнергия вырабатывается в результате окислительно-восстановительных превращений реагентов, непрерывно поступающих к электродам извне.

Если на анод топливного элемента с протонпроводящим полимерным электролитом подавать топливо (например, водород), а на катод - воздух или кислород, то на аноде будет протекать реакция разложения водорода на протоны и электроны. Протоны переносятся через электролит к катоду, где соединяются с кислородом, образуя воду, которая в виде пара выбрасывается наружу. Электроны же двигаются от анода к катоду по внешней цепи и, естественно, генерируют электрическую энергию.

Достоинств у топливных элементов много: высокий КПД (по сравнению с обычными источниками электроэнергии), низкая токсичность выбросов, бесшумность, модульная конструкция. Недостаток на сегодня один, но существенный: высокая стоимость.

КПД топливных элементов рассчитывается как отношение величины полученной электрической энергии к теплу, которое выделяется при сжигании топлива. И теоретически для некоторых окислительно-восстановительных реакций, протекающих в топливном элементе, он может быть больше единицы, хотя реально это никогда не достигается.

Почему же два понятия - водород и топливные элементы - постоянно встречаются рядом? Ответ прост: именно водород является для последних лучшим, к тому же - экологически чистым топливом. Все остальное преобразуется в них менее эффективно. Так что водородное топливо и топливные элементы представляют собой «неразлучную пару» с большим будущим. И с позиций энергетики выигрыш здесь очевиден, поскольку того же ископаемого топлива в «водородном виде» на производство энергии в энергоустановках на топливных элементах будет расходоваться существенно меньше, чем в традиционных.

Заправь ноутбук метанолом

Топливные элементы классифицируются по природе электролита. Например, щелочные, где электролитом является раствор щелочи, или твердополимерные, в которых электролитом «работает» полимерная протонпроводящая мембрана. В качестве топлива в твердополимерных топливных элементах может использоваться метанол. Его тоже можно окислять, хотя и менее эффективно, чем водород. Метанольные топливные элементы, по-видимому, наиболее перспективны для электропитания портативных устройств: ноутбуков, фотоаппаратов, сотовых телефонов и т. п.

Известны также фосфорно-кислотные топливные элементы, где электролитом является фосфорная кислота; твердооксидные топливные элементы, в которых в качестве электролита выступает керамика на основе диоксида циркония; и, наконец, расплав-карбонатные топливные элементы, где электролитом служит расплав карбонатов калия и лития. Рабочая температура для разных типов топливных элементов также различна. Так, твердополимерные топливные элементы работают при 80-100 °С, а два последних типа - в области очень высоких (650-1000 °С) температур.

Особенность всех типов топливных элементов заключается в небольшой величине напряжения, которое снимается с единичного элемента - обычно меньше одного вольта. Чтобы получить нужное напряжение, элементы соединяют в батарею . Однако даже батарея топливных элементов не является устройством, которое можно использовать в промышленности или в быту для получения электроэнергии. Сделать это можно только с помощью электрохимического генератора , представляющего собой батарею топливных элементов вместе с системами, обеспечивающими ее работу: управления, поддержания тепла, подготовки топлива (т.е. перевода любого топлива в водородсодержащий газ) и др.

КПД современных топливных элементов составляет 40-60 %, причем максимум, как уже говорилось, достигнут в устройствах на водороде. Если в качестве первичного топлива используется метан, КПД падает - из-за того, что часть энергии тратится на конвертирование метана в водородсодержащий газ. Кстати сказать, если в системе предусмотрена рекуперация (возвращение) тепла, то суммарный КПД, естественно, возрастает на 20-30 %.

В итоге уже реально получен КПД около 70 % - не правда ли, впечатляюще? При сравнении КПД топливных элементов и других современных энергоустановок (микротурбин, двигателей внутреннего сгорания, газовых турбин, ТЭЦ, дизелей и т. д.) убеждаешься, что в области низких мощностей конкурировать с топливными элементами ничто не может. Это - идеальный вариант в случае рассредоточенной или автономной энергетики, идея которой становится все более и более популярной в обществе - особенно после катастрофических системных энергетиче­ских аварий последнего времени.

Где взять водород?

Убедившись в достоинствах топливных элементов, снова возвращаемся к водороду как лучшему для них энергоносителю. Поскольку в природе свободного водорода нет, его надо каким-то образом получать. Принцип получения в целом прост: берете водородсодержащее вещество, прикладываете к нему энергию (в идеале - из возобновляемых источников) и - пожалуйста! Источников и путей получения водорода существует несколько. В первую очередь, это ископаемые и синтетические топлива. Примерно 50 % водорода сегодня получают из природного газа, около 30 % - из нефти. А еще есть уголь, биомасса, вода, в конце концов.

Но вот на следующем этапе появляется одно немаловажное но : существуют немалые трудности с хранением, аккумулированием полученного водорода и перезаправкой им энергетических устройств. Одно из решений этой проблемы состоит в получении водорода непосредственно рядом с энергоустановкой в устрой­стве, названном топливный процессор .

Вопрос о стоимости водорода сегодня непростой, поскольку он не является биржевым продуктом, да и процесс его получения пока еще слишком материало- и энергоемкий. Соответственно цена водорода на сегодняшний день договорная и высокая. Согласно оценкам Министерства энергетики США, к 2010 г. цена за водород будет составлять от 1,5 до 2,9 доллара за килограмм. Для сравнения: теплотворная способность 1 кг водорода равна примерно таковой 1 галлона (около 4 л) бензина. Поэтому для развития водородной энергетики крайне важно в ближайшее время научиться эффективно получать водород и синтез-газ из наиболее дешевого и доступного сырья - природного газа. (К слову: наша страна обладает примерно 40 % его потенциальных мировых запасов.)

На примере природного газа можно рассмотреть и общую схему подготовки углеводородного топлива для использования в топливных элементах. Первая стадия осуществляется при высокой температуре. Это каталитические реакции парциального окисления либо паровой и автотермической конверсии природного газа. В результате получается синтез - газ - смесь водорода и оксида углерода (СО). Этот газ уже можно использовать в качестве топлива для высокотемпературных топливных элементов, поскольку оксид углерода и водород при высоких температурах окисляются с высокой скоростью.

Для более низкотемпературных фосфорнокислотных топливных элементов синтез-газ уже надо очищать от СО, доводя его концентрацию до 1 объемного процента. В противном случае топливный элемент просто не работает: оксид углерода блокирует анод. Для еще более низкотемпературных (твердополимерных) топливных элементов требования к чистоте водорода очень жесткие: на 1 млн молекул водорода должно приходиться не более 10 молекул СО. Для столь глубокой очиcтки водородсодержащего газа используется каталитическая реакция селективного окисления СО в присутствии водорода, в результате чего образуется углекислый газ (СО 2), который в этом случае не мешает.

Таким образом, подготовка углеводородного сырья наиболее проста для высокотемпературных топливных элементов. А поскольку они имеют самый высокий КПД, да к тому же для их производства не требуются драгоценные металлы, очевидно, что именно за этим типом топливных элементов будущее автономной стационарной энергетики.

«Сибирский» катализ

Наш внимательный читатель мог заметить, что в статье наконец-то прозвучало слово каталитический . Произошло это неслучайно, поскольку действительно высокоэффективные технологии получения водорода и синтез-газа из природного углеводородного сырья во всем мире разрабатываются на основе и исключительно благодаря катализаторам.

Хочется отметить, что хотя целенаправленные работы в этой области начались в нашей стране на 10-15 лет позже, чем за рубежом, отечественная наука в этом плане является, безусловно, конкурентоспособной. Так, в новосибирском Институте катализа им . Г . К . Борескова СО РАН разработаны высокоэффективные структурированные катализаторы для реакции парциального окисления метана в виде лент или блоков из термостойких металлических сплавов и керамики. На их основе созданы компактные реакторы для воздушной конверсии природного газа, обеспечивающие переработку около 4 м 3 метана в час на 1 л реактора.

Еще одна интересная разработка связана с реакцией паровой конверсии метана. Этот эндотермический процесс протекает при высоких температурах, поэтому часто лимитируется подводом тепла. Для решения проблемы была предложена «хитрая» система: с одной стороны металлической пластинки-катализатора идет реакция окисления метана с выделением тепла, с другой стороны – паровая конверсия. Тепло легко передается через пластинку, благодаря чему производительность реактора возрастает. На этом принципе при финансовой поддержке ОАО ГМК Норильский никель совместными усилиями специалистов Института катализа и Российского федерального ядерного центра ВНИИ эспериментальной физики (г. Саров) был создан первый топливный процессор для питания высокотемпературных топливных элементов.

Для портативных топливных элементов перспективным топливом считается боргидрид натрия. Реакция получения из него водорода - каталитическая. В том же Институте катализа разработаны блочные и гранулированные катализаторы, не уступающие лучшим мировым образцам, на основе которых совместно с московским Государственным научным центром РФ ГНИИ химии и технологии элементоорганических соединений уже созданы первые картриджи для питания портативных топливных элементов.

Как уже говорилось, для низкотемпературных топливных элементов требуется чистый водород, свободный как от оксида углерода, так и углекислого газа. Суть метода, предложенного сибирскими учеными, проста: если есть адсорбент, который будет поглощать в ходе паровой конверсии углеводородного топлива СО 2 и СО, то, естественно, на выходе будет получаться чистый водород. Ясно, что если один адсорбер-реактор будет работать на поглощение, а другой на регенерацию, можно организовать непрерывный процесс. Идея эта уже реализована: действительно, удается получать водород чистотой 99 %!

У института много и других перспективных разработок. Например, катализаторы для пиролиза метана с получением водорода без выбросов СО 2 ; мембранные реакторы, в которых природный газ окисляется кислородом, поступающим через специальную мембрану непосредственно из воздуха, и т. п. - упомянуть обо всех просто невозможно!

Как можно заметить, многие подобные разработки проводятся совместно с различными производственными компаниями, научными организациями и учреждениями, в том числе сибирскими. Роль Сибирского отделения РАН во многих областях, связанных с созданием водородной энергетики, может быть действительно велика. Это относится как к разработке новых технологий получения водорода и производства электрохимических устройств, так и к научному сопровождению промышленных технологий водородной энергетики, к участию в разработке прогнозов и программ российской энергетики. И, без сомнения, - к подготовке высококвалифицированных специалистов на базе Новосибирского государственного университета. Хочется думать, что и в дальнейшем российское энергетическое могущество будет прирастать Сибирью…

Не пароходы, но подводные лодки!

Подводя итог, можно констатировать, что водородная энергетика и топливные элементы как ее важнейшая часть весьма настойчиво стучатся в наши уже приоткрытые двери. Не исключено, что развитие водородной энергетики на базе топливных элементов будет одним из приоритетов мировой экономики в наступившем веке.

Многое для этого уже сделано, но предстоит еще больше. Смена энергоносителя - тернистый, длительный и капиталоемкий путь, на котором могут быть ошибки, но не должно быть «синдромов». Вспомним, как долго и трудно завоевывает место под солнцем атомная энергетика, доля которой в балансе топливно-энергетического комплекса до сих пор не превышает 7 %. Для достижения успеха на «водородном» пути нужны усилия химиков, физиков, математиков, материаловедов, энергетиков, экономистов - в конечном итоге всех землян!

Что уже сейчас есть в мире? Пока примерно 50 МВт - это вся установленная мощность реально существующих электрохимических генераторов. В демонстрационных испытаниях участвует не менее 100 компаний, но готового коммерческого продукта на этом рынке до сих пор нет.

Потребности же в энергетических установках на водороде неуклонно растут. Например, уже сейчас фактически нет ни одной автомобильной компании, которая не занималась бы разработкой автомобиля на топливных элементах. Уже созданы не только автобусы, ноутбуки, сотовые телефоны, но даже подводная лодка, использующая водородное топливо. Вот таким образом в XXI веке претворилась в жизнь мечта Жюля Верна!

Поток информации по водородной энергетике и топливным элементам сейчас нарастает лавинообразно - даже специалистам порой трудно следить за всеми новинками: более 10 периодических специализированных научных журналов, более 5 представительных ежегодных конференций, выставки, многочисленные веб-сайты. Читайте, анализируйте, делайте выводы, а время покажет, насколько пророческой оказалась мысль великого «технократического» романтика.

Мы живём в 21 веке, человечество развивается, строит заводы, ведёт активный образ жизни. Однако для полноценного развития и существования нам нужна энергия! Сейчас такой энергией является нефть. Из неё делается топливо для всех отраслей. Мы используем ее буквально повсюду: от маленьких авто, до огромных заводов.

Однако нефть не является бесконечным ресурсом, с каждым годом мы движемся к полному её уничтожению. Учёные говорят, что мы находимся на той стадии, когда нам нужно искать эффективную замену бензину, ведь уже сейчас цена на него очень высокая, а с каждым годом нефти будет всё меньше, а цены всё выше, и в скором времени, когда нефть закончится (а с существуюшем образом жизни человечества это произойдёт через 60 лет), наше развитие и полноценное существование попросту закончится.

Всем понятно, что нужно искать альтернативные виды топлива. Но какая замена самая эффективная? Ответ прост: водород! Вот, что заменит привычный всем бензин.

Кто придумал водородный двигатель?

Как и многие высокие технологии, данная идея пришла к нам с запада. Первый водородный двигатель разработал и создал американский инженер и учёный Браун. Первая компания, которая использовала данный двигатель, была японская «Honda». Но этой автомобильной компании пришлось на многое пойти ради воплощения в жизнь «автомобиля будущего». Во время создания авто были задействованы на несколько лет все лучшие инженеры и умы компании! Им всем пришлось приостановить производство некоторых автомобилей. И что самое главное, они отказались от участия в Формуле 1, так как все работники, которые были задействованы в создании болидов, стали разрабатывать автомобиль на водороде.

Плюсы водорода как топлива

  • Водород является самым распространенным элементом во вселенной, абсолютно всё в нашей жизни состоит из него, все окружающие нас предметы имеют хоть маленькую, но частицу водорода. Именно этот факт очень приятный для человечества, ведь в отличие от нефти, водород не закончится никогда, и нам не придётся экономить на топливе.
  • Он является абсолютно экологически чистым! В отличие от бензинового, водородный двигатель не выделяет вредных газов, которые негативно влияли бы на экологию. Выхлопами, которые выделяет такой силовой агрегат, является обычная пара.
  • Водород, который используется в двигателях, очень воспламеняем, и автомобиль будет хорошо заводиться и передвигаться, независимо от погоды. То есть нам больше не потребуется зимой прогревать автомобиль перед поездкой.
  • На водороде даже маленькие двигатели будут очень мощными и чтобы создать самый быстрый автомобиль, больше не потребуется строить агрегат размером с танк.

Конечно есть и минусы в этом топливе:

  • Дело в том, что вопреки тому, что это безграничный материал, и он имеется повсюду, его очень тяжело добывать. Хотя для человечества это не проблема. Научились добывать нефть среди океана, пробурив его дно, научимся и водород брать с земли.
  • Вторым минусом является недовольство нефтяных магнатов. Зразу после начала прогрессивного развития данной технологии, большинство проектов были закрыты. По слухам, всё это связано с тем, что если заменить бензин водородом, то самые богатые люди планеты останутся без дохода, а они этого позволить не могут.

Способы добычи водорода в качестве использования в виде энергии

Водород не является чистым ископаемым вроде нефти и угля, нельзя так просто взять выкопать и использовать его. Для того, чтобы он стал энергией, его нужно раздобыть и испоьлзовать некоторую энергию для его переработки, после чего этот самый распространенный химический элемент станет топливом.

Практикуемым на данный день способом добычи водородного топлива является так называемый «паровой риформинг». Чтобы переработать обычный водород в топливо, используются углеводы, которые состоят из водорода и углерода. При химических реакциях, при определенной температуре выделяется огромное количество водорода, который и можно использовать в качестве топлива. Данное топливо не будет выделять вредных веществ в атмосферу во время эксплуатации, однако во время его добычи выделяется огромное количество углекислого газа, который плохо влияет на экологию. Поэтому данный метод хоть и является эффективным, он не должен браться в основу по добыче альтернативного топлива.

Есть двигатели, для которых подойдёт и чистый водород, они сами перерабатывают данный элемент в топливо, однако, как и при предыдущем способе, здесь также наблюдается огромное количество выбросов углекислого газа в атмосферу.

Очень эффективным способом добычи альтернативного топлива в виде водорода является электролиз. Электрический ток пускают в воду, вследствии чего она распадается на водород и кислород. Данный метод является дорогим и хлопотным, однако экологически чистым. Единственным отходом от получения и эксплуатации топлива является кислород, который лишь позитивно повлияет на атмосферу нашей планеты.

А самым перспективным и дешёвым способом получения водородного топлива является переработка аммиака. При необходимой химической реакции аммиак распадается на азот и водород, при чём водорода получается в трижды больше, ежели азота. Данный метод лучше тем, что он немного дешевле и менее затратный. Кроме того, аммиак легче и безопаснее транспортировать, а по прибытию к месту доставки, следует запустить химическую реакцию, выделить азот и топливо готово.

Искусственный шум

Двигатели на водородном топливе практически бесшумны, поэтому на автомобилях, которые эксплуатируются или будут входить в эксплуатацию, устанавливается так называемый «искусственный шум автомобиля», - для предотвращения аварий на дорогах.

Ну что же, друзья, мы с вами стоим на пороге грандиозного перехода от бензина, который уничтожает всю нашу экосистему, до водорода, который наоборот её восстанавливает!

Loading...Loading...