Расчет кирпичной колонны на прочность и устойчивость. Расчет кирпичной кладки на прочность Расчет кирпичной кладки на устойчивость

Необходимость расчета кирпичной кладки при строительстве частного дома очевидна любому застройщику. При строительстве жилых зданий используется клинкерный и красный кирпич, отделочный кирпич применяется для создания привлекательного внешнего вида наружной поверхности стен. Каждая марка кирпича имеет свои специфические параметры и свойства, но различие в размерах между разными марками минимально.

Максимальное количество материала можно рассчитать, определив общий объем стен и разделив его на объем одного кирпича.

Клинкерный кирпич используется для строительства элитных домов. У него большой удельный вес, привлекательный внешний вид, высокая прочность. Ограниченное использование вызвано высокой стоимостью материала.

Наиболее популярным и востребованным материалом является красный кирпич. Он обладает достаточной прочностью при сравнительно небольшом удельном весе, легко обрабатывается, мало подвержен воздействию окружающей среды. Недостатки — неряшливые поверхности с большой шероховатостью, способность впитывать воду при высокой влажности. В нормальных условиях эксплуатации эта способность не проявляется.

Для укладки кирпичей существует два метода:

  • тычковый;
  • ложковый.

При укладке тычковым методом кирпич укладывается поперек стены. Толщина стены должна быть не менее 250 мм. Наружная поверхность стены будет состоять из торцевых поверхностей материала.

При ложковом методе кирпич укладывается вдоль. Снаружи оказывается боковая поверхность. Этим способом можно выкладывать стены в полкирпича — толщиной 120 мм.

Что нужно знать для расчета

Максимальное количество материала можно рассчитать, определив общий объем стен и разделив его на объем одного кирпича. Полученный результат будет приблизительным и завышенным. Для более точного расчета необходимо учесть следующие факторы:

  • размер кладочного шва;
  • точные размеры материала;
  • толщина всех стен.

Производители довольно часто по разным причинам не выдерживают стандартные размеры изделий. Красный кладочный кирпич по ГОСТу должен иметь размеры 250х120х65 мм. Во избежание ошибок, лишних материальных затрат желательно уточнить у поставщиков размеры имеющегося в наличии кирпича.

Оптимальная толщина наружных стен для большинства регионов равна 500 мм, или в 2 кирпича. Такой размер обеспечивает высокую прочность здания, хорошую теплоизоляцию. Недостатком является большой вес строения и, как следствие, давление на фундамент и нижние слои кладки.

Размер кладочного шва в первую очередь будет зависеть от качества раствора.

Если для приготовления смеси использовать крупнозернистый песок, ширина шва увеличится, с мелкозернистым — шов можно сделать тоньше. Оптимальная толщина кладочных швов равна 5-6 мм. При необходимости допускается выполнять швы толщиной от 3 до 10 мм. В зависимости от размера швов и способа укладки кирпича можно сэкономить некоторое его количество.

Для примера возьмем толщину шва 6 мм и ложковый способ укладки кирпичных стен. При толщине стены 0,5 м нужно уложить в ширину 4 кирпича.

Суммарная ширина зазоров составит 24 мм. Укладка 10 рядов по 4 кирпича даст суммарную толщину всех зазоров в 240 мм, что почти равно длине стандартного изделия. Общая площадь кладки при этом будет примерно 1,25 м 2 . Если кирпичи уложены вплотную, без зазоров, в 1 м 2 помещается 240 шт. С учетом зазоров расход материала составит примерно 236 штук.

Вернуться к оглавлению

Методика расчета несущих стен

При планировании наружных размеров здания желательно выбирать значения кратные 5. С такими цифрами проще выполнять расчет, затем выполнять в реальности. При планировании строительства 2 этажей следует просчитывать количество материала поэтапно, для каждого этажа.

Вначале выполняется расчет наружных стен на первом этаже. Для примера можно взять здание с размерами:

  • длина = 15 м;
  • ширина = 10 м;
  • высота = 3 м;
  • толщина стен в 2 кирпича.

По этим размерам нужно определить периметр строения:

(15 + 10) х 2 = 50

3 х 50 = 150 м 2

Рассчитав общую площадь, можно определить максимальное количество кирпича для строительства стены. Для этого нужно умножить определенное ранее количество кирпичей для 1 м 2 на общую площадь:

236 х 150 = 35 400

Результат неокончательный, стены должны иметь проемы для установки дверей и окон. Количество входных дверей может варьироваться. У небольших частных домов обычно одна дверь. Для зданий больших размеров желательно планировать два входа. Количество окон, их размеры и место расположения определяются внутренней планировкой здания.

В качестве примера можно взять 3 оконных проема на 10-метровую стену, по 4 на 15-метровые стены. Одну из стен желательно выполнять глухой, без проемов. Объем дверных проемов можно определить по стандартным размерам. При отличии размеров от стандартных объем можно рассчитать по габаритным размерам, добавив к ним ширину монтажного зазора. Для расчета следует воспользоваться формулой:

2 х (А х В) х 236 = С

где: А — ширина дверного проема, В — высота, С — объем в количестве кирпичей.

Подставив стандартные значения, получим:

2 х (2 х 0,9) х 236 = 849 шт.

Объем оконных проемов рассчитывается аналогично. При размерах окон 1,4 х 2,05 м объем составит 7450 штук. Определить количество кирпичей на температурный зазор просто: нужно длину периметра умножить на 4. В результате получится 200 штук.

35400 — (200 + 7450 + 849) = 26 901.

Приобретать необходимое количество следует с небольшим запасом, потому что во время работы возможны ошибки и прочие непредвиденные ситуации.

В случае самостоятельного проектирования кирпичного дома возникает острая необходимость рассчитать, сможет ли выдержать кирпичная кладка те нагрузки, которые заложены в проекте. Особенно серьёзная ситуация складывается на участках кладки, ослабленных оконными и дверными проёмами. В случае большой нагрузки эти участки могут не выдержать и подвергнуться разрушению.

Точный расчет устойчивости простенка к сжатию вышележащими этажами достаточно сложен и определяется формулами, заложенными в нормативном документе СНиП-2-22-81 (далее ссылка – <1>). В инженерных расчетах прочности стены к сжатию учитывается множество факторов, включая конфигурацию стены, сопротивление сжатию, прочность данного типа материалов и многое другое. Однако приблизительно, «на глазок», можно прикинуть резистентность стены к сжатию, воспользовавшись ориентировочными таблицами, в которых прочность (в тоннах) увязана в зависимость от ширины стенки, а также марок кирпича и раствора. Таблица составлена для показателя высоты стены 2,8 м.

Таблица прочность кирпичной стенки, тонн (пример)

Марки Ширина участка, см
кирпич раствор 25 51 77 100 116 168 194 220 246 272 298
50 25 4 7 11 14 17 31 36 41 45 50 55
100 50 6 13 19 25 29 52 60 68 76 84 92

В случае, если значение ширины простенка находится в интервале между указанными, необходимо ориентироваться на минимальное число. Вместе с тем, следует помнить, что в таблицах учтены не все факторы, которые могут корректировать устойчивость, прочность конструкции и сопротивление кирпичной стенки к сжатию в достаточно широком диапазоне.

По времени нагрузки бывают временные и постоянные.

Постоянные:

  • вес элементов сооружений (вес ограждений, несущих и других конструкций);
  • давление грунтов и горных пород;
  • гидростатическое давление.

Временные:

  • вес временных сооружений;
  • нагрузки от стационарных систем и оборудования;
  • давление в трубопроводах;
  • нагрузки от складируемых изделий и материалов;
  • климатические нагрузки (снеговые, гололёдные, ветровые и т.д.);
  • и многие другие.

При анализе нагруженности конструкций обязательно следует учитывать суммарные эффекты. Ниже приведён пример подсчёта основных нагрузок на простенки первого этажа здания.

Нагруженность кирпичной кладки

Для учёта воздействующей на проектируемый участок стены силы нужно суммировать нагрузки:


В случае малоэтажного строительства задача сильно упрощается, и многими факторами временной нагрузки можно пренебречь, задавая определённый запас прочности на этапе проектирования.

Однако в случае строительства 3 и более этажных сооружений необходим тщательный анализ по специальным формулам, учитывающим сложение нагрузок от каждого этажа, угол приложения силы и многое другое. В отдельных случаях прочность простенка достигается армированием.

Пример расчёта нагрузок

Данный пример показывает анализ действующих нагрузок на простенки 1-го этажа. Здесь учтены только постоянно действующие нагрузка от различных конструкционных элементов здания, с учётом неравномерности веса конструкции и углом приложения сил.

Исходные данные для анализа:

  • количество этажей – 4 этажа;
  • толщина стены из кирпичей Т=64см (0,64 м);
  • удельный вес кладки (кирпич, раствор, штукатурка) М=18 кН/м3 (показатель взят из справочных данных, табл. 19 <1>);
  • ширина оконных проемов составляет: Ш1=1,5 м;
  • высота оконных проемов — В1=3 м;
  • сечение простенка 0,64*1,42 м (нагружаемая площадь, куда приложен вес вышележащих конструктивных элементов);
  • высота этажа Вэт=4,2 м (4200 мм):
  • давление распределено под углом 45 градусов.
  1. Пример определения нагрузки от стены (слой штукатурки 2 см)

Нст=(3-4Ш1В1)(h+0,02)Мyf = (*3-4*3*1,5)* (0,02+0,64) *1,1 *18=0, 447МН.

Ширина нагруженной площади П=Вэт*В1/2-Ш/2=3*4,2/2,0-0,64/2,0=6 м

Нп =(30+3*215)*6 = 4,072МН

Нд=(30+1,26+215*3)*6 = 4,094МН

Н2=215*6 = 1,290МН,

в том числе Н2l=(1,26+215*3)*6= 3,878МН

  1. Собственный вес простенков

Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН

Общая нагрузка будет результатом сочетания указанных нагрузок на простенки здания, для её подсчета выполняется суммирование нагрузок от стенки, от перекрытий 2второго этажа и веса проектируемого участка).

Схема анализа нагрузки и прочности конструкции

Для подсчета простенка кирпичной стенки потребуются:

  • протяжённость этажа (она же высота участка) (Вэт);
  • число этажей (Чэт);
  • толщина стены (Т);
  • ширина кирпичной стены (Ш);
  • параметры кладки (тип кирпича, марка кирпича, марка раствора);
  1. Площадь простенка (П)
  1. По таблице 15 <1> необходимо определить коэффициент а (характеристика упругости). Коэффициент зависит от типа, марки кирпича и раствора.
  2. Показатель гибкости (Г)
  1. В зависимости от показателей а и Г, по таблице 18 <1> нужно посмотреть коэффициент изгиба ф.
  2. Нахождение высоты сжатой части

где е0 – показатель экстренсиситета.

  1. Нахождение площади сжатой части сечения

Псж = П*(1-2 е0/Т)

  1. Определение гибкости сжатой части простенка

Гсж=Вэт/Всж

  1. Определение по табл. 18 <1> коэффициент фсж, исходя из Гсж и коэффициента а.
  2. Расчет усредненного коэффициента фср

Фср=(ф+фсж)/2

  1. Определение коэффициента ω (таблица 19 <1>)

ω =1+э/Т<1,45

  1. Расчет силы, воздействующей на сечение
  2. Определение устойчивости

У=Кдв*фср*R*Псж* ω

Кдв – коэффициент длительного воздействия

R – сопротивление кладки сжатию, можно определить по таблице 2 <1>, в МПа

  1. Сверка

Пример расчета прочности кладки

— Вэт — 3,3 м

— Чэт — 2

— Т — 640 мм

— Ш — 1300 мм

— параметры кладки (глиняный кирпич, изготовленный методом пластического прессования, цементно-песчаный раствор, марка кирпича — 100, марка раствора — 50)

  1. Площадь (П)

П=0,64*1,3=0,832

  1. По таблице 15 <1> определяем коэффициент а.
  1. Гибкость (Г)

Г =3,3/0,64=5,156

  1. Коэффициент изгиба (таблица 18 <1>).
  1. Высота сжатой части

Всж=0,64-2*0,045=0,55 м

  1. Площадь сжатой части сечения

Псж = 0,832*(1-2*0,045/0,64)=0,715

  1. Гибкость сжатой части

Гсж=3,3/0,55=6

  1. фсж=0,96
  2. Расчет фср

Фср=(0,98+0,96)/2=0,97

  1. По табл. 19 <1>

ω =1+0,045/0,64=1,07<1,45


Для определения действующей нагрузки необходим расчет веса всех элементов конструкции, оказывающих воздействие на проектируемый участок здания.

  1. Определение устойчивости

У=1*0,97*1,5*0,715*1,07=1,113 МН

  1. Сверка

Условие выполнено, прочность кладки и прочность её элементов достаточна

Недостаточное сопротивление простенка

Что делать, если расчетное сопротивление простенков давлению недостаточно? В этом случае необходимо укрепление стенки при помощи армирования. Ниже приведён пример анализа необходимой модернизации конструкции при недостаточном сопротивлении сжатию.

Для удобства можно воспользоваться табличными данными.

В нижней строке представлены показатели для стенки, армированной проволочной сеткой диаметра 3 мм, с ячейкой 3 см, класса В1. Армирование каждого третьего ряда.

Прирост прочности составляет около 40 %. Обычно данное сопротивление сжатию оказывается достаточным. Лучше сделать подробный анализ, подсчитав изменение прочностных характеристик в соответствии с применяемым способом усиления конструкции.

Ниже приведён пример подобного вычисления

Пример расчета усиления простенков

Исходные данные – см. предыдущий пример.

  • высота этажа — 3,3 м;
  • толщина стены– 0,640 м;
  • ширина кладки 1,300 м;
  • типовые характеристики кладки (тип кирпичей – глиняные кирпичи, изготовленные методом прессования, тип раствора – цементный с песком, марка кирпичей — 100, раствора — 50)

В этом случае условие У>=Н не выполняется (1,113<1,5).

Требуется увеличить сопротивление сжатию и прочность конструкции.

Коэффициент усиления

k=У1/У=1,5/1,113=1,348,

т.е. надо увеличить прочность конструкции на 34,8%.

Усиление железобетонной обоймой

Усиление производится обоймой из бетона В15 толщиной 0,060 м. Вертикальные стержни 0,340 м2, хомуты 0,0283 м2 с шагом 0,150 м.

Размеры сечения усиленной конструкции:

Ш_1=1300+2*60=1,42

Т_1=640+2*60=0,76

При таких показателях условие У>=Н выполняется. Сопротивление сжатию и прочность конструкции достаточны.

В статье представлен пример расчета несущей способности кирпичной стены трехэтажного бескаркасного здания с учетом выявленных в ходе ее осмотра дефектов. Подобные расчеты относятся к категории «проверочных» и выполняются обычно в рамках детального визуально-инструментального обследования зданий.

Несущая способность центрально- и внецентренно — сжатых каменных столбов определяется на основании данных о фактической прочности материалов кирпичной кладки (кирпича, раствора) в соответствии с разделом 4 .

Для учета выявленных в ходе обследования дефектов в формулы СНиП вводится дополнительный понижающий коэффициент, учитывающий снижение несущей способности каменных конструкций (Ктр) в зависимости от характера и степени обнаруженных повреждений по таблицам гл. 4 .

ПРИМЕР РАСЧЕТА

Проверим несущую способность внутренней несущей каменной стены 1-го этажа по оси «8» м/о «Б»-«В» на действие эксплуатационных нагрузок с учетом выявленных в ходе ее обследования дефектов и повреждений.

Исходные данные:

— Толщина стены: dст=0,38 м
— Ширина простенка: b=1,64 м
— Высота простенка до низа плит перекрытий 1 этажа: H=3,0 м
— Высота вышележащего столба кладки: h=6,5 м
— Площадь сбора нагрузок от перекрытий и покрытия: Sгр=9,32 м2
— Расчетное сопротивление кладки cжатию: R=11,05 кг/см2

В ходе осмотра стены по оси «8» зафиксированы следующие дефекты и повреждения (см. фото ниже): массовое выпадение раствора из швов кладки на глубину более 4 см; смещение (искривление) горизонтальных рядов кладки по вертикали до 3 см; множественные вертикально ориентированные трещины раскрытием 2-4 мм (в т.ч. по растворным швам), пересекающие от 2 до 4 горизонтальных рядов кладки (до 2-х трещин на 1 м стены).



Пустошовка Растрескивание кирпича Искривление рядов кладки

По совокупности выявленных дефектов (с учетом их характера, степени развития и площади распространения), в соответствии с , несущая способность рассматриваемого простенка должна быть снижена не менее чем на 30%. Т.е. коэффициент снижения несущей способности простенка принимается равным — Ктр=0,7. Схема для сбора нагрузок на простенок приведена ниже на Рис.1.

РИС.1. Схема для сбора нагрузок на простенок

I. Сбор расчетных нагрузок на простенок

II. Расчет несущей способности простенка

(п. 4.1 СНиП II-22-81)

Количественная оценка фактической несущей способности кирпичного центрально сжатого простенка (с учетом влияния обнаруженных дефектов) на действие расчетной продольной силы N, приложенной без эксцентриситета, сводится к проверке выполнения следующего условия (формула 10 ):

Nс=mg×φ×R×A×Kтр ≥ N (1)

Согласно результатам прочностных испытаний расчетное сопротивление кладки стены по оси «8» сжатию составляет R=11,05 кг/см2 .
Упругая характеристика кладки согласно п.9 Таблицы 15(К) равна: α=500.
Расчетная высота столба: l0=0,8×H=0,8×300=240 см.
Гибкость элемента прямоугольного сплошного сечения: λh=l0 / dст=240/38=6,31.
Коэффициент продольного изгиба φ при α=500 и λh=6,31 (по Таблице 18): φ=0,90.
Площадь поперечного сечения столба (простенка): A=b×dст=164×38=6232 см2.
Т.к. толщина рассчитываемой стены более 30 см (dст=38 см), коэффициент mg принимается равным единице: mg=1.

Подставив полученные значения в левую часть формулы (1), определим фактическую несущую способность центрально-сжатого неармированного кирпичного простенка :

Nс=1×0,9×11,05×6232×0,7=43 384 кгс

III. Проверка выполнения условия прочности (1)

[ Nc=43384 кгс ] > [ N=36340,5 кгс ]

Условие прочности выполнено: несущая способность кирпичного столба с учетом влияния выявленных дефектов оказалась больше значения суммарной нагрузки N .

Список источников:
1. СНиП II-22-81* «Каменные и армокаменные конструкции».
2. Рекомендации по усилению каменных конструкций зданий и сооружений. ЦНИИСК им. Курченко, Госстрой.

Рисунок 1 . Расчетная схема для кирпичных колонн проектируемого здания.

При этом возникает естественный вопрос: какое минимальное сечение колонн обеспечит требуемую прочность и устойчивость? Конечно же, идея выложить колонны из глиняного кирпича, а тем более стены дома, является далеко не новой и все возможные аспекты расчетов кирпичных стен, простенков, столбов, которые есть суть колонны, достаточно подробно изложены в СНиП II-22-81 (1995) "Каменные и армокаменные конструкции". Именно этим нормативным документом и следует руководствоваться при расчетах. Приводимый ниже расчет, не более, чем пример использования указанного СНиПа.

Чтобы определить прочность и устойчивость колонн, нужно иметь достаточно много исходных данных, как то: марка кирпича по прочности, площадь опирания ригелей на колонны, нагрузка на колонны, площадь сечения колонны, а если на этапе проектирования ничего из этого не известно, то можно поступить следующим образом:

Пример расчета кирпичной колонны на устойчивость при центральном сжатии

Проектируется:

Терраса размерами 5х8 м. Три колонны (одна посредине и две по краям) из лицевого пустотелого кирпича сечением 0.25х0.25 м. Расстояние между осями колонн 4 м. Марка кирпича по прочности М75.

Расчетные предпосылки:

.

При такой расчетной схеме максимальная нагрузка будет на среднюю нижнюю колонну. Именно ее и следует рассчитывать на прочность. Нагрузка на колонну зависит от множества факторов, в частности от района строительства. Например, Санкт-Петербурге составляет 180 кг/м 2 , а в Ростове-на-Дону - 80 кг/м 2 . С учетом веса самой кровли 50-75 кг/м 2 нагрузка на колонну от кровли для Пушкина Ленинградской области может составить:

N с кровли = (180·1.25 + 75)·5·8/4 = 3000 кг или 3 тонны

Так как действующие нагрузки от материала перекрытия и от людей, восседающих на террасе, мебели и др. пока не известны, но железобетонная плита точно не планируется, а предполагается, что перекрытие будет деревянным, из отдельно лежащих обрезных досок, то для расчетов нагрузки от террасы можно принять равномерно распределенную нагрузку 600 кг/м 2 , тогда сосредоточенная сила от террасы, действующая на центральную колонну, составит:

N с террасы = 600·5·8/4 = 6000 кг или 6 тонн

Собственный вес колонн длиной 3 м будет составлять:

N с колонны = 1500·3·0.38·0.38 = 649.8 кг или 0.65 тонн

Таким образом суммарная нагрузка на среднюю нижнюю колонну в сечении колонны возле фундамента составит:

N с об = 3000 + 6000 + 2·650 = 10300 кг или 10.3 тонн

Однако в данном случае можно учесть, что существует не очень большая вероятность того, что временная нагрузка от снега, максимальная в зимнее время, и временная нагрузка на перекрытие, максимальная в летнее время, будут приложены одновременно. Т.е. сумму этих нагрузок можно умножить на коэффициент вероятности 0.9, тогда:

N с об = (3000 + 6000)·0.9 + 2·650 = 9400 кг или 9.4 тонн

Расчетная нагрузка на крайние колонны будет почти в два раза меньше:

N кр = 1500 + 3000 + 1300 = 5800 кг или 5.8 тонн

2. Определение прочности кирпичной кладки.

Марка кирпича М75 означает, что кирпич должен выдерживать нагрузку 75 кгс/см 2 , однако прочность кирпича и прочность кирпичной кладки - разные вещи. Понять это поможет следующая таблица:

Таблица 1 . Расчетные сопротивления сжатию для кирпичной кладки (согласно СНиП II-22-81 (1995))

Но и это еще не все. Все тот же СНиП II-22-81 (1995) п.3.11 а) рекомендует при площади столбов и простенков менее 0.3 м 2 умножать значение расчетного сопротивления на коэффициент условий работы γ с =0.8 . А так как площадь сечения нашей колонны составляет 0.25х0.25 = 0.0625 м 2 , то придется этой рекомендацией воспользоваться. Как видим, для кирпича марки М75 даже при использовании кладочного раствора М100 прочность кладки не будет превышать 15 кгс/см 2 . В итоге расчетное сопротивление для нашей колонны составит 15·0.8 = 12 кг/см 2 , тогда максимальное сжимающее напряжение составит:

10300/625 = 16.48 кг/см 2 > R = 12 кгс/см 2

Таким образом для обеспечения необходимой прочности колонны нужно или использовать кирпич большей прочности, например М150 (расчетное сопротивление сжатию при марке раствора М100 составит 22·0.8 = 17.6 кг/см 2) или увеличивать сечение колонны или использовать поперечное армирование кладки. Пока остановимся на использовании более прочного лицевого кирпича.

3. Определение устойчивости кирпичной колонны.

Прочность кирпичной кладки и устойчивость кирпичной колонны - это тоже разные вещи и все тот же СНиП II-22-81 (1995) рекомендует определять устойчивость кирпичной колонны по следующей формуле :

N ≤ m g φRF (1.1)

где m g - коэффициент, учитывающий влияние длительной нагрузки. В данном случае нам, условно говоря, повезло, так как при высоте сечения h ≈ 30 см, значение данного коэффициента можно принимать равным 1.

Примечание : Вообще-то с коэффициентом m g все не так просто, подробности можно посмотреть в комментариях к статье.

φ - коэффициент продольного изгиба, зависящий от гибкости колонны λ . Чтобы определить этот коэффициент, нужно знать расчетную длину колонны l 0 , а она далеко не всегда совпадает с высотой колонны. Тонкости определения расчетной длины конструкции изложены отдельно , здесь лишь отметим, что согласно СНиП II-22-81 (1995) п.4.3: "Расчетные высоты стен и столбов l 0 при определении коэффициентов продольного изгиба φ в зависимости от условий опирания их на горизонтальные опоры следует принимать:

а) при неподвижных шарнирных опорах l 0 = Н ;

б) при упругой верхней опоре и жестком защемлении в нижней опоре: для однопролетных зданий l 0 = 1,5H , для многопролетных зданий l 0 = 1,25H ;

в) для свободно стоящих конструкций l 0 = 2Н ;

г) для конструкций с частично защемленными опорными сечениями — с учетом фактической степени защемления, но не менее l 0 = 0,8Н , где Н — расстояние между перекрытиями или другими горизонтальными опорами, при железобетонных горизонтальных опорах расстояние между ними в свету."

На первый взгляд, нашу расчетную схему можно рассматривать, как удовлетворяющую условиям пункта б). т.е можно принимать l 0 = 1.25H = 1.25·3 = 3.75 метра или 375 см . Однако уверенно использовать это значение мы можем лишь в том случае, когда нижняя опора действительно жесткая. Если кирпичная колонна будет выкладываться на слой гидроизоляции из рубероида, уложенный на фундамент, то такую опору скорее следует рассматривать как шарнирную, а не жестко защемленную. И в этом случае наша конструкция в плоскости, параллельной плоскости стены, является геометрически изменяемой , так как конструкция перекрытия (отдельно лежащие доски) не обеспечивает достаточную жесткость в указанной плоскости. Из подобной ситуации возможны 4 выхода:

1. Применить принципиально другую конструктивную схему

например - металлические колонны, жестко заделанные в фундамент, к которым будут привариваться ригеля перекрытия, затем из эстетических соображений металлические колонны можно обложить лицевым кирпичом любой марки, так как всю нагрузку будет нести металл. В этом случае, правда нужно рассчитывать металлические колонны, но расчетную длину можно приниматьl 0 = 1.25H .

2. Сделать другое перекрытие ,

например из листовых материалов, что позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, в этом случае l 0 = H .

3. Сделать диафрагму жесткости

в плоскости, параллельной плоскости стены. Например по краям выложить не колонны, а скорее простенки. Это также позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, но в этом случае необходимо дополнительно рассчитывать диафрагму жесткости.

4. Не обращать внимания на вышеприведенные варианты и рассчитывать колонны, как отдельно стоящие с жесткой нижней опорой, т.е l 0 = 2Н

В конце концов древние греки ставили свои колонны (правда, не из кирпича) без каких-либо знаний о сопротивлении материалов, без использования металлических анкеров, да и столь тщательно выписанных строительных норм и правил в те времена не было, тем не менее некоторые колонны стоят и по сей день.

Теперь, зная расчетную длину колонны, можно определить коэффициент гибкости:

λ h = l 0 /h (1.2) или

λ i = l 0 /i (1.3)

где h - высота или ширина сечения колонны, а i - радиус инерции.

Определить радиус инерции в принципе не сложно, нужно разделить момент инерции сечения на площадь сечения, а затем из результата извлечь квадратный корень, однако в данном случае в этом нет большой необходимости. Таким образом λ h = 2·300/25 = 24 .

Теперь, зная значение коэффициента гибкости, можно наконец-то определить коэффициент продольного изгиба по таблице:

Таблица 2 . Коэффициенты продольного изгиба для каменных и армокаменных конструкций (согласно СНиП II-22-81 (1995))

При этом упругая характеристика кладки α определяется по таблице:

Таблица 3 . Упругая характеристика кладки α (согласно СНиП II-22-81 (1995))

В итоге значение коэффициента продольного изгиба составит около 0.6 (при значении упругой характеристики α = 1200, согласно п.6). Тогда предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1х0.6х0.8х22х625 = 6600 кг < N с об = 9400 кг

Это означает, что принятого сечения 25х25 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны недостаточно. Для увеличения устойчивости наиболее оптимальным будет увеличение сечения колонны. Например, если выкладывать колонну с пустотой внутри в полтора кирпича, размерами 0.38х0.38 м, то таким образом не только увеличится площадь сечения колонны до 0.13 м 2 или 1300 см 2 , но увеличится и радиус инерции колонны до i = 11.45 см . Тогда λ i = 600/11.45 = 52.4 , а значение коэффициента φ = 0.8 . В этом случае предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1х0.8х0.8х22х1300 = 18304 кг > N с об = 9400 кг

Это означает, что сечения 38х38 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны хватает с запасом и даже можно уменьшить марку кирпича. Например, при первоначально принятой марке М75 предельная нагрузка составит:

N р = m g φγ с RF = 1х0.8х0.8х12х1300 = 9984 кг > N с об = 9400 кг

Вроде бы все, но желательно учесть еще одну деталь. Фундамент в этом случае лучше делать ленточным (единым для всех трех колонн), а не столбчатым (отдельно для каждой колонны), в противном случае даже небольшие просадки фундамента приведут к дополнительным напряжениям в теле колонны и это может привести к разрушению. С учетом всего вышеизложенного наиболее оптимальным будет сечение колонн 0.51х0.51 м, да и с эстетической точки зрения такое сечение является оптимальным. Площадь сечения таких колонн составит 2601 см 2 .

Пример расчета кирпичной колонны на устойчивость при внецентренном сжатии

Крайние колонны в проектируемом доме не будут центрально сжатыми, так как на них будут опираться ригеля только с одной стороны. И даже если ригеля будут укладываться на всю колонну, то все равно из-за прогиба ригелей нагрузка от перекрытия и кровли будет передаваться крайним колоннам не по центру сечения колонны. В каком именно месте будет передаваться равнодействующая этой нагрузки, зависит от угла наклона ригелей на опорах, модулей упругости ригелей и колонн и ряда других факторов, которые подробно рассматриваются в статье "Расчет опорного участка балки на смятие ". Это смещение называется эксцентриситетом приложения нагрузки е о. В данном случае нас интересует наиболее неблагоприятное сочетание факторов, при котором нагрузка от перекрытия на колонны будет передаваться максимально близко к краю колонны. Это означает, что на колонны кроме самой нагрузки будет также действовать изгибающий момент, равный M = Ne о , и этот момент нужно учесть при расчетах. В общем случае проверку на устойчивость можно выполнять по следующей формуле:

N = φRF - MF/W (2.1)

где W - момент сопротивления сечения. В данном случае нагрузку для нижних крайних колонн от кровли можно условно считать центрально приложенной, а эксцентриситет будет создавать только нагрузка от перекрытия. При эксцентриситете 20 см

N р = φRF - MF/W = 1х0.8х0.8х12х2601 - 3000·20·2601 · 6/51 3 = 19975, 68 - 7058.82 = 12916.9 кг > N кр = 5800 кг

Таким образом даже при очень большом эксцентриситете приложения нагрузки у нас имеется более чем двукратный запас по прочности.

Примечание: СНиП II-22-81 (1995) "Каменные и армокаменные конструкции" рекомендует использовать другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же, поэтому методику расчета, рекомендуемую СНиПом здесь не привожу.

Кирпич - достаточно прочный строительный материал, особенно полнотелый, и при строительстве домов в 2-3 этажа стены из рядового керамического кирпича в дополнительных расчетах как правило не нуждаются. Тем не менее ситуации бывают разные, например, планируется двухэтажный дом с террасой на втором этаже. Металлические ригеля, на которые будут опираться также металлические балки перекрытия террасы, планируется опереть на кирпичные колонны из лицевого пустотелого кирпича высотой 3 метра, выше будут еще колонны высотой 3 м, на которые будет опираться кровля:

При этом возникает естественный вопрос: какое минимальное сечение колонн обеспечит требуемую прочность и устойчивость? Конечно же, идея выложить колонны из глиняного кирпича, а тем более стены дома, является далеко не новой и все возможные аспекты расчетов кирпичных стен, простенков, столбов, которые есть суть колонны, достаточно подробно изложены в СНиП II-22-81 (1995) "Каменные и армокаменные конструкции". Именно этим нормативным документом и следует руководствоваться при расчетах. Приводимый ниже расчет, не более, чем пример использования указанного СНиПа.

Чтобы определить прочность и устойчивость колонн, нужно иметь достаточно много исходных данных, как то: марка кирпича по прочности, площадь опирания ригелей на колонны, нагрузка на колонны, площадь сечения колонны, а если на этапе проектирования ничего из этого не известно, то можно поступить следующим образом:


при центральном сжатии

Проектируется: Терраса размерами 5х8 м. Три колонны (одна посредине и две по краям) из лицевого пустотелого кирпича сечением 0,25х0,25 м. Расстояние между осями колонн 4 м. Марка кирпича по прочности М75.

При такой расчетной схеме максимальная нагрузка будет на среднюю нижнюю колонну. Именно ее и следует рассчитывать на прочность. Нагрузка на колонну зависит от множества факторов, в частности от района строительства. Например, снеговая нагрузка на кровлю в Санкт-Петербурге составляет 180 кг/м², а в Ростове-на-Дону - 80 кг/м². С учетом веса самой кровли 50-75 кг/м² нагрузка на колонну от кровли для Пушкина Ленинградской области может составить:

N с кровли = (180·1,25 +75)·5·8/4 = 3000 кг или 3 тонны

Так как действующие нагрузки от материала перекрытия и от людей, восседающих на террасе, мебели и др. пока не известны, но железобетонная плита точно не планируется, а предполагается, что перекрытие будет деревянным, из отдельно лежащих обрезных досок, то для расчетов нагрузки от террасы можно принять равномерно распределенную нагрузку 600 кг/м², тогда сосредоточенная сила от террасы, действующая на центральную колонну, составит:

N с террасы = 600·5·8/4 = 6000 кг или 6 тонн

Собственный вес колонн длиной 3 м будет составлять:

N с колонны = 1500·3·0,38·0,38 = 649,8 кг или 0,65 тонн

Таким образом суммарная нагрузка на среднюю нижнюю колонну в сечении колонны возле фундамента составит:

N с об = 3000 + 6000 + 2·650 = 10300 кг или 10,3 тонн

Однако в данном случае можно учесть, что существует не очень большая вероятность того, что временная нагрузка от снега, максимальная в зимнее время, и временная нагрузка на перекрытие, максимальная в летнее время, будут приложены одновременно. Т.е. сумму этих нагрузок можно умножить на коэффициент вероятности 0,9, тогда:

N с об = (3000 + 6000)·0.9 + 2·650 = 9400 кг или 9,4 тонн

Расчетная нагрузка на крайние колонны будет почти в два раза меньше:

N кр = 1500 + 3000 + 1300 = 5800 кг или 5,8 тонн

2. Определение прочности кирпичной кладки.

Марка кирпича М75 означает, что кирпич должен выдерживать нагрузку 75 кгс/см², однако прочность кирпича и прочность кирпичной кладки - разные вещи. Понять это поможет следующая таблица:

Таблица 1 . Расчетные сопротивления сжатию для кирпичной кладки

Но и это еще не все. Все тот же СНиП II-22-81 (1995) п.3.11 а) рекомендует при площади столбов и простенков менее 0.3 м² умножать значение расчетного сопротивления на коэффициент условий работы γ с =0,8 . А так как площадь сечения нашей колонны составляет 0,25х0,25 = 0,0625 м², то придется этой рекомендацией воспользоваться. Как видим, для кирпича марки М75 даже при использовании кладочного раствора М100 прочность кладки не будет превышать 15 кгс/см². В итоге расчетное сопротивление для нашей колонны составит 15·0,8 = 12 кг/см², тогда максимальное сжимающее напряжение составит:

10300/625 = 16,48 кг/см² > R = 12 кгс/см²

Таким образом для обеспечения необходимой прочности колонны нужно или использовать кирпич большей прочности, например М150 (расчетное сопротивление сжатию при марке раствора М100 составит 22·0,8 = 17,6 кг/см²) или увеличивать сечение колонны или использовать поперечное армирование кладки. Пока остановимся на использовании более прочного лицевого кирпича.

3. Определение устойчивости кирпичной колонны.

Прочность кирпичной кладки и устойчивость кирпичной колонны - это тоже разные вещи и все тот же СНиП II-22-81 (1995) рекомендует определять устойчивость кирпичной колонны по следующей формуле :

N ≤ m g φRF (1.1)

m g - коэффициент, учитывающий влияние длительной нагрузки. В данном случае нам, условно говоря, повезло, так как при высоте сечения h ≤ 30 см, значение данного коэффициента можно принимать равным 1.

φ - коэффициент продольного изгиба, зависящий от гибкости колонны λ . Чтобы определить этот коэффициент, нужно знать расчетную длину колонны l o , а она далеко не всегда совпадает с высотой колонны. Тонкости определения расчетной длины конструкции здесь не изложены, лишь отметим, что согласно СНиП II-22-81 (1995) п.4.3: "Расчетные высоты стен и столбов l o при определении коэффициентов продольного изгиба φ в зависимости от условий опирания их на горизонтальные опоры следует принимать:

а) при неподвижных шарнирных опорах l o = Н ;

б) при упругой верхней опоре и жестком защемлении в нижней опоре: для однопролетных зданий l o = 1,5H , для многопролетных зданий l o = 1,25H ;

в) для свободно стоящих конструкций l o = 2Н ;

г) для конструкций с частично защемленными опорными сечениями — с учетом фактической степени защемления, но не менее l o = 0,8Н , где Н — расстояние между перекрытиями или другими горизонтальными опорами, при железобетонных горизонтальных опорах расстояние между ними в свету."

На первый взгляд, нашу расчетную схему можно рассматривать, как удовлетворяющую условиям пункта б). т.е можно принимать l o = 1,25H = 1,25·3 = 3,75 метра или 375 см . Однако уверенно использовать это значение мы можем лишь в том случае, когда нижняя опора действительно жесткая. Если кирпичная колонна будет выкладываться на слой гидроизоляции из рубероида, уложенный на фундамент, то такую опору скорее следует рассматривать как шарнирную, а не жестко защемленную. И в этом случае наша конструкция в плоскости, параллельной плоскости стены, является геометрически изменяемой, так как конструкция перекрытия (отдельно лежащие доски) не обеспечивает достаточную жесткость в указанной плоскости. Из подобной ситуации возможны 4 выхода:

1. Применить принципиально другую конструктивную схему , например - металлические колонны, жестко заделанные в фундамент, к которым будут привариваться ригеля перекрытия, затем из эстетических соображений металлические колонны можно обложить лицевым кирпичом любой марки, так как всю нагрузку будет нести металл. В этом случае, правда нужно рассчитывать металлические колонны, но расчетную длину можно принимать l o = 1,25H .

2. Сделать другое перекрытие , например из листовых материалов, что позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, в этом случае l o = H .

3. Сделать диафрагму жесткости в плоскости, параллельной плоскости стены. Например по краям выложить не колонны, а скорее простенки. Это также позволит рассматривать и верхнюю и нижнюю опору колонны, как шарнирные, но в этом случае необходимо дополнительно рассчитывать диафрагму жесткости.

4. Не обращать внимания на вышеприведенные варианты и рассчитывать колонны, как отдельно стоящие с жесткой нижней опорой, т.е l o = 2Н . В конце концов древние греки ставили свои колонны (правда, не из кирпича) без каких-либо знаний о сопротивлении материалов, без использования металлических анкеров, да и столь тщательно выписанных строительных норм и правил в те времена не было, тем не менее некоторые колонны стоят и по сей день.

Теперь, зная расчетную длину колонны, можно определить коэффициент гибкости:

λ h = l o / h (1.2) или

λ i = l o (1.3)

h - высота или ширина сечения колонны, а i - радиус инерции.

Определить радиус инерции в принципе не сложно, нужно разделить момент инерции сечения на площадь сечения, а затем из результата извлечь квадратный корень, однако в данном случае в этом нет большой необходимости. Таким образом λ h = 2·300/25 = 24 .

Теперь, зная значение коэффициента гибкости, можно наконец-то определить коэффициент продольного изгиба по таблице:

Таблица 2 . Коэффициенты продольного изгиба для каменных и армокаменных конструкций
(согласно СНиП II-22-81 (1995))

При этом упругая характеристика кладки α определяется по таблице:

Таблица 3 . Упругая характеристика кладки α (согласно СНиП II-22-81 (1995))

В итоге значение коэффициента продольного изгиба составит около 0,6 (при значении упругой характеристики α = 1200, согласно п.6). Тогда предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1·0,6·0,8·22·625 = 6600 кг < N с об = 9400 кг

Это означает, что принятого сечения 25х25 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны недостаточно. Для увеличения устойчивости наиболее оптимальным будет увеличение сечения колонны. Например, если выкладывать колонну с пустотой внутри в полтора кирпича, размерами 0,38х0,38 м, то таким образом не только увеличится площадь сечения колонны до 0,13 м² или 1300 см², но увеличится и радиус инерции колонны до i = 11,45 см . Тогда λ i = 600/11,45 = 52,4 , а значение коэффициента φ = 0,8 . В этом случае предельная нагрузка на центральную колонну составит:

N р = m g φγ с RF = 1·0,8·0,8·22·1300 = 18304 кг > N с об = 9400 кг

Это означает, что сечения 38х38 см для обеспечения устойчивости нижней центральной центрально-сжатой колонны хватает с запасом и даже можно уменьшить марку кирпича. Например, при первоначально принятой марке М75 предельная нагрузка составит:

N р = m g φγ с RF = 1·0,8·0,8·12·1300 = 9984 кг > N с об = 9400 кг

Вроде бы все, но желательно учесть еще одну деталь. Фундамент в этом случае лучше делать ленточным (единым для всех трех колонн), а не столбчатым (отдельно для каждой колонны), в противном случае даже небольшие просадки фундамента приведут к дополнительным напряжениям в теле колонны и это может привести к разрушению. С учетом всего вышеизложенного наиболее оптимальным будет сечение колонн 0,51х0,51 м, да и с эстетической точки зрения такое сечение является оптимальным. Площадь сечения таких колонн составит 2601 см².

Пример расчета кирпичной колонны на устойчивость
при внецентренном сжатии

Крайние колонны в проектируемом доме не будут центрально сжатыми, так как на них будут опираться ригеля только с одной стороны. И даже если ригеля будут укладываться на всю колонну, то все равно из-за прогиба ригелей нагрузка от перекрытия и кровли будет передаваться крайним колоннам не по центру сечения колонны. В каком именно месте будет передаваться равнодействующая этой нагрузки, зависит от угла наклона ригелей на опорах, модулей упругости ригелей и колонн и ряда других факторов. Это смещение называется эксцентриситетом приложения нагрузки е о. В данном случае нас интересует наиболее неблагоприятное сочетание факторов, при котором нагрузка от перекрытия на колонны будет передаваться максимально близко к краю колонны. Это означает, что на колонны кроме самой нагрузки будет также действовать изгибающий момент, равный M = Ne о , и этот момент нужно учесть при расчетах. В общем случае проверку на устойчивость можно выполнять по следующей формуле:

N = φRF - MF/W (2.1)

W - момент сопротивления сечения. В данном случае нагрузку для нижних крайних колонн от кровли можно условно считать центрально приложенной, а эксцентриситет будет создавать только нагрузка от перекрытия. При эксцентриситете 20 см

N р = φRF - MF/W = 1·0,8·0,8·12·2601 - 3000·20·2601 · 6/51 3 = 19975,68 - 7058,82 = 12916,9 кг > N кр = 5800 кг

Таким образом даже при очень большом эксцентриситете приложения нагрузки у нас имеется более чем двукратный запас по прочности.

Примечание: СНиП II-22-81 (1995) "Каменные и армокаменные конструкции" рекомендует использовать другую методику расчета сечения, учитывающую особенности каменных конструкций, однако результат при этом будет приблизительно таким же, поэтому методика расчета, рекомендуемая СНиПом здесь не приводится.

Loading...Loading...