Альтернативный способ теплосбережения. Энергосбережение и теплосбережение при строительстве дома

Для нормального самочувствия семьи большую роль играют благоприятный микроклимат в помещениях, хорошая освещенность, наличие необходимых устройств для личной гигиены и т. д. Все это обеспечивается оборудованием домов и квартир различными санитарно-техническими приборами, к которым относятся установки газо- и водоснабжения, канализации, отопительное и водонагревательное оборудование.

При оснащении дома установками для отопления, вентиляции и подогрева воды или при их переоборудовании нелишне рассмотреть различные аспекты экономного расходования энергетических ресурсов. Необходимо учитывать, что способы ведения домашнего хозяйства связаны с расходом энергии. Из 238 видно, что преобладающее количество энергии расходуется на отопление. Следовательно, ему и должно быть уделено наибольшее внимание. При этом вопрос следует рассматривать комплексно. Это значит, что необходимо учесть все факторы, влияющие на расход энергии, и разработать мероприятия по ее экономии. И дело не только в выборе установок отопления. Тепловую энергию значительно труднее экономить, чем, например, энергию, расходуемую на освещение. Большинство мероприятий по экономии энергии заключается в тесной взаимосвязи между конструктивными строительными решениями и типом установок отопления и вентиляции. На что же необходимо обратить внимание?

Улучшение теплоизоляции, например путем увеличения слоя используемого материала или применения окон с многослойным остеклением, уменьшает мощность отопительного оборудования. Это значит, что можно уменьшить мощность применяемых котлов, изменить площадь поверхности нагрева отопительных приборов и т.д. Перед тем, как устанавливать в доме новые отопительные устройства, следует прежде всего улучшить теплоизоляцию дома, что существенно уменьшит расходы на оборудование. Это важное обстоятельство следует особо учитывать при использовании высокоэффективного вида энергии (электроэнергии и газа), а также энергии окружающей среды. Режим работы отопительных устройств позволяет сделать правильные выводы относительно выполнения теплоизоляции дома (239). При прерывистой работе отопительных установок, например при газовом обогреве, для краткосрочной компенсации теплопотерь следует предусмотреть внутреннюю теплоизоляцию. Для предотврашения больших колебаний температуры в помещении при непрерывной работе отопительных устройств, например водяного отопления, необходимо предусмотреть наружную теплоизоляцию стен, что повышает их аккумулирующую способность. Окна и двери можно уплотнить отходами войлока или полосами пенопласта (240). Но следует при этом предусмотреть минимально возможную вентиляцию, необходимую для работы установок с открытым огнем: печей на угольном топливе, плит на угле и газе, газовых отопительных приборов и водогрейных колонок на угольном топливе.

Теплоизоляция элементов оборудования. Часто оконные ниши имеют более тонкие наружные стенки по сравнению с общей толщиной стен. Если в такой нише установлен нагревательный прибор, то излишние теплопотери достаточно ощутимы. Теплота посредством теплоизлучения и конвекции передается радиатором окружающим внутренним конструкциям, при этом температура поверхности стен может повыситься до 50 °С. Из-за недостаточной теплоизоляции стена в оконной нише теряет в пять раз больше тепла, чем другие участки стены такой же площади. В любом случае внутренняя теплоизоляция, устанавливаемая за нагревательным прибором с внутренней стороны стены, уменьшает тепловые потери. Такая же теплоизоляция (241) должна быть устроена при установке газо- и электронагревательных приборов у стен с нормальной толщиной кладки, учитывая, что газ, и электроэнергия являются дорогими источниками энергии.

При устройстве дополнительного слоя теплоизоляции следует иметь в виду, что расстояние между нагревательным прибором и стеной (242) должно составлять не менее 40 мм с тем, чтобы не ухудшить конвекцию (движение воздуха). Из-за несоблюдения этого условия часто приходится демонтировать нагревательные приборы и заново укладывать теплоизоляцию. Теплоизоляцию внутренней поверхности стен где отсутствуют нагревательные приборы, можно выполнять любым способом. Это может быть, например, облицовка ниши газобетоном, применение древесноволокнистых легких плит (ДВП) и использование легкого теплоизоляционного материала с закреплением его плитами типа гипсокартона.


Оправдало себя также применение теплоотражающих пленок, возвращающих большую часть тепла в помещение. Если расстояние между стеной и нагревательным прибором ограничено, то в этом случае даже одна только пленка может дать значительный эффект. Можно руководствоваться следующим практическим правилом: все стены толщиной менее 1,5 кирпича необходимо дополиительно теплоизолировать.

Отопительные котлы, нагреватели воды, трубопроводы горючей воды и прочие устройства при недостаточной их теплоизоляции также отдают теплоту в окружающую среду. Это значительно ухудшает коэффициент полезного действия нагревательных устройств. В качестве теплоизоляции котлов (243), нагревателей воды и трубопроводов можно использовать маты из стекловолокна и минеральной ваты, изоляционные шнуры или же оболочки (скорлупы) заводского изготовления. Толщина теплоизоляционного слоя для наружной поверхности котлов и баков принимается от 50 до 70 мм, для теплоизоляции трубопроводов - около 30-40 мм. Поверх теплоизоляции устраивается защитное покрытие из кровельной стали или слоя асбестогипсовой штукатурки.

Энергосберегающие способы монтажа отопительных установок. Общий расход энергии зависит от правильного выбора размеров установки и соответствующей технической увязки всех ее элементов. Конструктивное исполнение индивидуальной системы отопления часто является решающим с точки зрения экономного расхода энергии. При печном отоплении нескольких комнат размеры воздушных каналов могут быть выбраны неправильно, что может привести к разной степени обогрева отдельных комнат. Тогда приходится несколько усиливать топку, чтобы обеспечить во всех комнатах нормальную температуру воздуха. Поэтому необходимо иметь закрывающиеся воздушные решетки на всех отверстиях для выхода теплого воздуха в помещение. Газовоздухонагреватель из соображений экономии энергии целесообразно устанавливать у внутренней стены

Дымоходы неработающих печей должны быть по возможности закрыты, чтобы исключить неконтролируемые потери теплоты с уходящим воздухом из помещения. При газовом отоплении комнат, совмещенном с дымоходом камина, следует рекомендовать устройство клапанов на дымоходе (245). Такой клапан открывается и закрывается автоматически в зависимости от работы отопительной установки. Датчиком служит биметаллический чувствительный элемент.

Наилучшее использование отопительного котла на твердом топливе достигается при длительной его работе и загрузке на 90 % его номинальной мощности. Если наружная температура не слишком низка и не нужно усиленно топить, то котел используется на 50 % своей номинальной мощности.

Благодаря правильно организованному режиму отопления становится излишним дополнительный подогрев. Это значит, что при необходимости отопления всех помещений дома вначале следует включить отопление основных комнат, а остальные помещения подключить в систему отопления несколько позже. При этом температура теплоносителя - воды не должна достигать температуры кипения.

Если при испытании отопительного котла будет установлено, что он имеет излишнюю поверхность нагрева, то с помощью специалиста следует или удалить некоторые элементы (секции) котла, или же уменьшить поверхность нагрева посредством дополнительной внутренней обмуровки огнеупорным кирпичом. При этом нужно учитывать вид топлива, ибо чем меньше его теплота сгорания, тем больше должна быть поверхность нагрева котла.

Для правильного выполнения ограждения радиаторов (246) нужно руководствоваться следующими основными принципами:

циркуляция воздуха у радиатора должна ^быть свободной, не уменьшать теплоотдачу конвекцией;

фронтальную часть ограждения следует выполнять по возможности из тонколистовой стали и изнутри красить в черный или другой темный цвет, чтобы уменьшить составляющую лучистой энергии;

между поверхностью нагрева и наружной стеной следует предусмотреть дополнительную теплоизоляцию или отражающую поверхность, чтобы не увеличить теплопотери через наружную стену.

Возможность одновременного подогрева воды и отопления помещений следует предусмотреть при выборе мощности котла. Для летнего периода такой режим работы неприемлем, так. как использование отопительного котла только для горячего водоснабжения оказывается неэффективным. Здесь возможны следующие решения:

дополнительное оснащение бака для воды электронагревателем мощностью 1500-3000 Вт для постоянной работы или для работы в,ночное время;

установка дополнительных местных водонагрева-тельных устройств, например водогрейных колонок на твердом топливе, электрических или газовых водогрейных колонок;

устройство солнечного подогревателя воды, соединенного с водонагревателем другого типа.

Нужно иметь в виду, что вместимость бака для воды должна быть значительно большей, чем при подогреве воды в отопительном котле, а именно 600 л вместо 200-300 л, так как тепло должно сохраняться в течение нескольких дней. Равным образом теплоизоляция бака должна быть эффективной.

При местном подогреве воды посредством газовых или электрических нагревателей следует определить тип и схему установки,-место размещения водогрейных устройств. Как правило, их устанавливают вблизи устройств водоразбора. Трубопроводы горячей воды должны быть как можно короче (3-6 м) и теплоизолированы. При необходимости устанавливают дополнительно меньшие по мощности вторичные водогрейные устройства, которые могут оказаться более экономичными в общем энергетическом балансе.

В процессе эксплуатации топочного оборудования возникают неплотности, через которые подсасывается воздух. По этой причине топливо в топке сгорает неэффективно. Местами подсоса воздуха могут быть у кафельных печей - швы в кладке, у отопительных котлов - соединительные швы между элементами, неуплотненные дверцы, неплотно закрывающиеся дверцы топок и дверцы золоудаления, места соединения печей или котлов с дымоходами, прогоревшие или проржавевшие газоходные трубы, трещины в дымоходах и дымовых трубах

После окончания отопительного сезона следует провести осмотр печей, отопительных котлов, дымоходов и труб. Обнаруженные неплотности можно устранить самостоятельно, например заделать швы у печей и мест подключения к дымоходам и т.д.

Методический материал для самостоятельного расчета толщины стен дома с примерами и теоретической частью.

Часть 1. Сопротивление теплопередаче - первичный критерий определения толщины стены

Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.

Сопротивление теплопередаче - это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента - тем «теплее» материал.

Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:

R=δ/λ (м 2 ·°С/Вт), где:

δ - толщина материала, м;

λ - удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).

Полученную величину R общ сравнивают с табличным значением в СП 23-101-2004.

Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.

Материал стены

Сопротивление теплопередаче (м 2 ·°С/Вт) / область применения (°С·сут)

конструкционный

теплоизоляционный

Двухслойные с наружной теплоизоляцией

Трехслойные с изоляцией в середине

С невентили- руемой атмосферной прослойкой

С вентилируемой атмосферной прослойкой

Кирпичная кладка

Пенополистирол

Минеральная вата

Керамзитобетон (гибкие связи, шпонки)

Пенополистирол

Минеральная вата

Блоки из ячеистого бетона с кирпичной облицовкой

Ячеистый бетон

Примечание. В числителе (перед чертой) - ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) - предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены.

Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».

Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором - можно оставить «как есть», в третьем - обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.

Часть 2. Коэффициент теплопроводности материалов стен

Коэффициент теплопроводности материалов стен - эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен - тем здание получится теплее, чем выше значение - тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.

Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче R о (м 2 ·°С/Вт) ограждающей конструкции рассчитывается как

R о = R 1 + R 2 +R 3 , где:

R 1 =1/α вн, где α вн - коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;

R 2 = 1/α внеш, где α внеш - коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м 2 × °С), принимаемый по таблице 8 СП 23-101-2004;

R 3 - общее термосопротивление, расчет которого описан в части 1 настоящей статьи.

При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи α внеш равным 10,8 Вт/(м 2 ·°С).

Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.

Уточненные значения градусо-суток отопительного периода, указаны в таблице 4.1 справочного пособия к СНиП 23-01-99* Москва, 2006.

Часть 4. Расчет минимально допустимой толщины стены на примере газобетона для Московской области.

Рассчитывая толщину стеновой конструкции, берем те же данные, что указаны в Части 1 настоящей статьи, но перестраиваем основную формулу: δ = λ·R, где δ - толщина стены, λ - теплопроводность материала, а R - норма теплосопротивления по СНиП.

Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С.

  1. Берем нормируемое теплосопротивление для стен в Московском регионе для температуры +22°C: R req = 0,00035·5400 + 1,4 = 3,29 м 2 °C/Вт
  2. Коэффициент теплопроводности λ для газобетона марки D400 (габариты 625х400х250 мм) при влажности 5% = 0,147 Вт/м∙°С.
  3. Минимальная толщина стены из газобетонного камня D400: R·λ = 3,29·0,147 Вт/м∙°С=0,48 м.

Вывод: для Москвы и области для возведения стен с заданным параметром теплосопротивления нужен газобетонный блок с габаритом по ширине не менее 500 мм, либо блок с шириной 400 мм и последующим утеплением (минвата+оштукатуривание, например), для обеспечения характеристик и требований СНиП в части энергоэффективности стеновых конструкций.

Таблица 3. Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.

Материал

Толщина стены, м

проводность,

Керамзитоблоки

Для строительства несущих стен используют марку не менее D400.

Шлакоблоки

Силикатный кирпич

Газосиликатные блоки d500

Использую марку от D400 и выше для домостроения

Пеноблок

строительство только каркасным способом

Ячеистый бетон

Теплопроводность ячеистого бетона прямо пропорциональна его плотности: чем «теплее» камень, тем он менее прочен.

Минимальный размер стен для каркасных сооружений

Кирпич керамический полнотелый

Песко-бетонные блоки

При 2400 кг/м³ в условиях нормальной температуры и влажности воздуха.

Часть 5. Принцип определения значения сопротивления теплопередачи в многослойной стене.

Если вы планируете построить стену из нескольких видов материала (например, строительный камень+минеральный утеплитель+штукатурка), то R рассчитывается для каждого вида материала отдельно (по этой же формуле), а потом суммируется:

R общ = R 1 + R 2 +…+ R n + R a.l где:

R 1 -R n - термосопротивления различных слоев

R a.l - сопротивление замкнутой воздушной прослойки, если она присутствует в конструкции (табличные значения берутся в СП 23-101-2004, п. 9, табл. 7)

Пример расчета толщины минераловатного утеплителя для многослойной стены (шлакоблок - 400 мм, минеральная вата - ? мм, облицовочный кирпич - 120 мм) при значении сопротивления теплопередаче 3,4 м 2 *Град С/Вт (г. Оренбург).

R=Rшлакоблок+Rкирпич+Rвата=3,4

Rшлакоблок = δ/λ = 0,4/0,45 = 0,89 м 2 ×°С/Вт

Rкирпич = δ/λ = 0,12/0,6 = 0,2 м 2 ×°С/Вт

Rшлакоблок+Rкирпич=0,89+0,2 = 1,09 м 2 ×°С/Вт (<3,4).

Rвата=R-(Rшлакоблок+Rкирпич) =3.4-1,09=2,31 м 2 ×°С/Вт

δвата=Rвата·λ=2,31*0,045=0,1 м=100 мм (принимаем λ=0,045 Вт/(м×°С) - среднее значение теплопроводности для минеральной ваты различных видов).

Вывод: для соблюдения требований по сопротивлению теплопередачи можно использовать керамзитобетонные блоки в качестве основной конструкции с облицовкой ее керамическим кирпичом и прослойкой из минеральной ваты теплопроводностью не менее 0,45 и толщиной от 100 мм.

Вопросы и ответы по теме

По материалу пока еще не задан ни один вопрос, у вас есть возможность сделать это первым

ТЕПЛОСБЕРЕЖЕНИЕ В СТРОИТЕЛЬСТВЕ

Технологии утепления, теплотехнический расчет

Теплосбережение - самая важная задача, которая ставится перед строителями во время работ по строительству любого здания , будь то новостройка, административное здание, промышленное предприятие или реконструкция зданий или домов. Современные строительные нормы по мере роста технического прогресса увеличивают в 3 раза сопротивление теплопередаче . Нужный результат можно достичь только путем использования качественного теплоизоляционного утеплителя

Система изоляции фасада так называемого "мокрого" типа с нанесением тонкого декоративного штукатурного покрытия. Такая технология утепления , позволяет снизить затраты на отопление (до 60%), делает возможным использование лёгких ограждающих конструкций без потерь теплоустойчивости, своевременно удаляется влага, сконцентрированная внутри системы наружной теплоизоляции , благодаря чему не образуется грибок и плесень на поверхности стены, «продлевается» срок службы несущих стен благодаря малому количеству возникающих температурных деформаций (любое резкое колебание температуры воздуха на улице воспринимает утеплитель), улучшается звукоизоляция наружных стен.

Такая технология утепления может применяться как на новостройках, так и на зданиях находящихся под реконструкцией. Единственное ограничение при использовании такой системы, является сезонность выполнения работ, т.к. данная технология утепления подразумевает проведение мокрых процессов, которые следует проводить только при теплой погоде (до +5 °С). В зимнее время при использовании тепловых завес допускается выполнение таких работ как дюбелирование, установка утеплителя, армирование, но окончательную отделку все же придется выполнить при плюсовой температуре воздуха.

Энергоэффективность зданий. Энергосберегающий дом

Концепция энергосберегающего дома хоть и с заметным запозданием, но находит признание и в России. До недавнего времени дешевизна энергоносителей в нашей стране не позволяла ощутить максимальный экономический эффект от использования современных теплосберегающих материалов и соответствующих инженерных решений. Наблюдался такой парадокс: стоимость строительства в России ниже уровня мировых цен всего на 20-30%, а стоимость энергоресурсов отличалась в 6-7 раз. Но поскольку Россия взяла курс на построение эффективной экономики и вхождение в мировое сообщество, баланс цен на энергоносители начал восстанавливаться стремительными темпами. Только за два последних года цены на электроэнергию выросли на 45,8%, а на газ - на 63,5%.

Утепление стен, фасадов зданий

Утепление фасада - задача важная, требующая правильного подхода, с учетом точной конструкции здания. Работы по утеплению фасада должны проводить только профессионалы строители. Существует несколько групп фасадных систем утепления : Утепление фасадов зданий при помощи легких штукатурных систем, Утепление фасада зданий при помощи тяжелых штукатурных систем, Утепление фасадов зданий при помощи колодцевой кладки и трехслойной системы, Наружное утепление фасада с вентилируемой воздушной прослойкой.

В случаях, когда при строительстве не было предусмотрено утепление стен или когда утепление стен было проведено без учета особенностей сооружения, то есть не качественно, потери тепла могут быть очень значительными и в ряде случаев составляют до 40%.. Выполняя утепление стен , необходимо в точности соблюдать все технологические операции и использовать только сертифицированные материалы, обладающие соответствующими гигиеническими, экологическими и пожаробезопасными характеристиками (т.е. обладать повышенной горючестойкостью). Наиболее распространено утепление стен пенополистиролом

Как утеплить стену дома под сайдингом

Нужно ли утеплять стены дома? Как правильно утеплить ? Какие материалы использовать? Для домов сезонного проживания (май-сентябрь) теплотехнический расчет не требуется. Каких-либо требований к утеплению такого дома нет. Здесь все зависит от вашего желания — если температура в доме для вас комфортна, утеплять не обязательно.

Для домов постоянного проживания (круглый год) необходимость утепления определяется по расчету требуемого сопротивления теплопередаче (Rтр) и его фактического значения.

Предлагается пошаговая инструкция с фотографиями: утепление фасада из кирпича с толщиной утеплителя 50 мм.

Как утеплить свой дом. Виды утеплителей. Свойства утеплителей. Применение утеплителей

При выборе утеплителей, прежде всего, следует учитывать его теплопроводность. Чем она ниже, тем меньший слой материала необходим для защиты дома.

По механическим свойствам утеплители можно разделить на 6 разновидностей: «засыпки» - гранулы различной плотности и величины из вспененного вещества; «вата» - волокна; маты - простеганная «вата», иногда подшитая к синтетической основе; пластины из мягкого пористого органического материала; «плита-вата», скрепленная пропиткой из органического связующего и сформированная в пластины различного размера или пластины жесткого пористого органического материала; легкие стеновые блоки из вспененного различными способами стекла или бетона.

Предоставлены ответы на вопросы: Как правильно осуществить теплоизоляцию кровли? Что предпринять, если происходит увлажнение и промерзание теплоизоляционного слоя? Отчего образуются вмятины, складки и трещины над стыками теплоизоляционных плит? Каким образом их устранить? Чем объяснить появление цветных пятен над стыками теплоизоляционных плит? Как производится пенополистирол ? и др.

Утепление фасадов

Штукатурный фасад представляет собой систему наружного утепления фасадов , выполненную из различных по своей структуре материалов:

теплоизоляционный слой (пенополистирол или минеральная вата) , армированный слой (минерально-клеевой состав, армированный устойчивой к щелочи сеткой) , защитно-декоративный слой (штукатурка и окраска ).

Утепление фасада можно выполнить тремя способами:

1. утепление фасада (дома) наружнее .

1.1. (Штукатурные системы утепле-ния так называемого мокрого типа )

1.2. (Навесные вентилируемые системы )

2. внутреннее утепление . (утепление фасада изнутри имеет ряд недостатков, таких как уменьшение жилого помещения за счет увеличения толщины стены, понижение эффективности теплоизоляции в связи с тем, что хорошо аккумулирующая часть стены в результате оказывается в зоне низких температур, помимо этого не происходит защиты несущей стены. Таким образом, на утепление изнутри можно идти только тогда, когда невозможно это сделать снаружи (исторические памятники со сложным архитектурным рельефом) или когда это экономически целесообразно).

3. утепление внутри стены . (утепление фасада внутри стены применял-ся еще с середины XIX века. На-ружная и внутренняя части стены выполнялись из кирпича, а в качестве утеплителя служи-ли опилки, торф, мох и даже пробковые плиты).

Утепление фасада. Фасад от MUREXIN . Мокрый фасад.

При всем многообразии предлагаемых на рынке систем утепления фасадов , системы теплый фасад от MUREXIN остаются, пожалуй, лучшими в Европе и России!

Все, что может понадобиться Вам для теплоизоляции фасада - клеевая смесь, клей для теплоизоляции , клей для пенополистирола и минеральной ваты, теплоизоляция , утеплитель , армирующие клеевые составы, щелочестойкая стеклосетка, грунтовка, фасадная штукатурка, финишная декоративная штукатурка, фактурная штукатурка - весь комплекс материалов предоставит Вам MUREXIN - австрийское качество по лучшим в России ценам!

Внутреннее утепление фасадов

Стены - утепление изнутри, обычно утепление выполняли из кирпича, керамзитобетона, а в качестве утеплителя исполь-зовали легкие бетоны: ячеистый бетон, перлитобетон, а также пенополистирол, минеральную или стекловолоконную вату. В последних случаях слои утеп-лителя закрывали гипсовыми па-нелями или плитами из гипсокартона - сухой штукатуркой. В последние годы эти решения несколько модифицировали, по-скольку появились более совре-менные и эффективные материа-лы.

Для утепления используются базальтовая вата, паронепрони-цаемая пленка, а весь этот "пи-рог" закрывают гипсокартонном. Размещение теплоизоляционно-го материала с внутренней сто-роны ограждающей конструкции специалисты считают оправ-данным в редких случаях. Напри-мер, если здание является па-мятником архитектуры, и раз-мещение утеплителя снаружи может изменить его облик. Еще одним из наиболее значи-мых плюсов внутренней тепло-изоляции является то, что утепление можно произвести лишь в некоторых помещениях.

Также при перечне достоинств упоминают возможность реали-зации в любое время года и су-ток, поскольку работы ведутся внутри помещения. И, наконец, последнее: внутренне-е утепление относится к кате-гории дешевых, поэтому ряд известных строитель-ных компаний несколько лет на-зад широко применяла эту сис-тему, но в связи с тем, что недостатки существенно превыша-ют достоинства, в настоящее время от нее отказалась. Изъяны внутреннего утепления очень весомы.

Утепление внутри стены

Утепление при котором утеплитель разме-щают внутри стены применял-ся еще с середины XIX века. На-ружная и внутренняя части стены выполнялись из кирпича, а в качестве утеплителя служи-ли опилки, торф, мох и даже пробковые плиты. В настоящее время трехслой-ный "сандвич " зачастую выгля-дит следующим образом:

Внутренний слой, определяю-щий прочность стены, выпол-няют из кирпича или блоков (бетонных, керамзитобетонных, шлакобетонных, гипсобетонных, газосиликатных, керамических и т. д.);

Средний слой - теплоизоля-ционный (используют мине-ральную или стекловолоконную вату, пенополистирол, или керамзитовый гравий);

Наружный изготавливают из керамического или силикат-ного кирпича (облицовочного или рядового), блоков из ячеи-стого бетона с обязательной отделкой штукатуркой. Ино-гда используют бетонные и керамзитобетонные блоки со штукатуркой. Преимущества колодцевой клад-ки немногочисленны, но при этом есть и весьма существенные.

Утепление крыш, мансард, чердаков с применением утеплителя ПЕНОФОЛ

Влага в виде водяного пара может попасть из чердачного помещения в составные элементы крыши и причинить ущерб. Влажный воздух из помещения может проникнуть в конструкцию крыши; при снижении температуры произойдет выпадение конденсата.

Должны быть два вентиляционных слоя.

Слой 1 вентилирует кровлю, слой 2 - гидроизоляционную, либо потолочную часть и обеспечивает воздухообмен над теплоизоляционным слоем. Если влага все-таки проникла - система вентиляции должна ее вывести. Отражающая изоляция Пенофол отражает до 97% теплового потока. Пенофол обладает свойствами как теплозащиты от этих нежелательных эффектов, так и парозащиты. Его установка помогает избавиться.

Советы по утеплению дома. Что делать и с чего начать

Какой-то универсальный рецепт существует от увеличения затрат на отопления в связи с удорожанием энергоресурсов ?

Да, такой рецепт есть, и он достаточно прост. Энергосбережением надо заниматься постоянно, потому что перспектива только одна - энергоносители будут неуклонно дорожать. Второй аспект - это повышение комфортности жилища. Поэтому гражданам я бы посоветовал обратиться к специалистам, которые могли бы помочь сделать их домик более энергоэффективным .

Если у людей есть средства, чтобы произвести комплексное утепление сразу, то лучше воспользоваться моментом. Это касается утепления стен , чердачных перекрытий или мансард, коммуникаций. Кроме того, хорошо было бы утеплить фундамент . Если денег не хватает, тогда можно утеплять дом постепенно.

Считается, что если грамотно утеплить здание , то потери тепла можно сократить вдвое. Так ли это? …

Термоизоляционные фасадные панели ПО “KIT-термо”

Термоизоляционные панели разработаны, как материал высоких энергосберегающих
технологий, который по своим конструктивным и технологическим особенностям не имеет себе равных среди изоляционно-облицовочных материалов, использующих в качестве внешнего слоя единой изоляционно-фасадной системы облицовочную плитку.

Таким образом, два пункта в строительстве - утепление фасада здания и облицовка фасада, сводятся к одному.

Жаростойкие теплоизоляционные материалы из муллитокремнеземистой ваты

Высокие функциональные и строительно-эксплуатационные свойства волокнистых жаростойких теплоизоляционных материалов определили их широкое производство и применение в технике высоких температур. Мировая практика свидетельствует о чрезвычайно высокой эффективности этих материалов.

Почти все выпускаемое в России и странах СНГ жаростойкое муллитокремнеземистое волокно (каолиновая вата) перерабатывается в готовые смеси и изделия, применяемые в практике индустриального строительства и ремонта тепловых агрегатов. Исключение составляет вата, используемая для заполнения температурных швов между сборными панелями и для других подобных целей.

ТЕРМОБАЗАЛЬТ - высокотемпературная негорючая теплоизоляция, утеплитель XXI века

Утепление дома негорючими, экологически чистыми теплоизоляционными материалами , способными создать не только тепло- звуко, но и огнезащиту жилья в любых экстремальных условиях - эта задача была решена с созданием базальтовой теплоизоляции!

ИЗ ЗАГРАНИЧНОГО ОПЫТА

Дом с малым потреблением энергии - начало переворота в жилищном строительстве

Описание энергосберегающих мероприятий, позволяющих резко снизить теплопотери в индивидуальном частном доме.

(Гражданское строительство, США, 1980. Скачать файл описания)

www.mensh.ru/dom_s_malym_potrebleniem_energii

Объёмно-планировочное решение жилых домов с гелиосистемами

Основные требования по размещению гелиоприёмников : солнечный дом Дугласа Балкомба в Санта-Фе, солнечный дом Эверетта Барбера в Гилфорде.

Сведения по использованию систем гелиотеплообеспечения в застройке.

(1983. Скачать файл описания)

http://www.mensh.ru/obiyomno_planirovochnoe_reshenie_solnechnyh_domov

УЧЕТ ТЕПЛА

Общие проблемы поквартирного учета тепла

По конструкции счетчики тепла делятся на тахометрические, электромагнитные, вихревые и ультразвуковые; они различаются по принципу работы расходомеров, которые уже были описаны выше. Тахометрические счетчики тепла могут устанавливаться в квартирах, построенных по проектам с горизонтальной разводкой. Электромагнитные счетчики также применяются для поквартирного и домового учета тепла. Использование ультразвуковых и вихревых теплосчетчиков с небольшим диаметром трубы (бытовое назначение) будет неоправданным из-за довольно высокой их стоимости, к тому же, ультразвуковые требуют повышенного внимания с точки зрения их обслуживания.

http://www.energosber.74.ru/uchet/uchet02.htm

Описание системы индивидуального учета тепла

Одним из важнейших пунктов реформы жилищно-коммунального хозяйства является энергосбережение. Во многих городах, в соответствии с городскими программами по энергосбережению , происходит установка теплосчетчиков на объектах муниципального значения , таких как детские сады, школы, больницы и пр. Однако, наиболее энергоемкими объектами являются жилые дома. В них, в отличие от первой группы объектов, необходим монтаж теплосчетчиков не только на вводах общих трубопроводов, но и монтаж индивидуальных приборов учета в квартирах.

Одним из вариантов внедрения индивидуального учета тепла является оснащение каждой квартиры жилого дома теплосчетчиками . Вторым вариантом, позволяющим внедрить индивидуальный учет, является метод распределения потребленного тепла, используемый в большинстве Западных стран. Упрощенно такой метод называется методом распределения, а приборы, с помощью которых достигается учет, распределителями .

На данный момент, в качестве недостатка такого метода можно назвать невозможность наладить автоматизированный учет. Хотя этот недостаток присутствует только у простых и дешевых типов распределителей , но которые из-за своих ценовых параметров являются наиболее привлекательными.

Технология распределения потребленного тепла заключается в следующем: на каждый радиатор в квартирах жилого здания крепятся распределители. В течение расчетного периода распределители накапливают информацию о фактической теплоотдаче отопительного прибора, но не в физических (Кал, Дж или Вт*ч), а в безразмерных (условных) единицах. По истечении расчётного периода, общее количество тепловой энергии, учтённое с помощью теплосчётчика на вводе в здание, дробится в долевом соотношении к показаниям всех распределителей. Таким образом, подсчитывается фактическое теплопотребление в каждой квартире. Поскольку все типы радиаторов обладают разными конструктивными и теплофизическими особенностями, все они испытываются на теплообмен в специальной аккредитованной лаборатории с присвоением оценочных коэффициентов.

http://www.rosteplo.ru/Tech_stat/stat_shablon.php?id=209

Как правильно выбрать теплосчетчик?

Счетчик тепла - это сложный комплекс приборов, требующий грамотного подбора, установки и обслуживания. Современный теплосчетчик работает в полностью автоматическом режиме, регистрируя все параметры теплоносителя, вычисляя количество тепла и архивируя данные в энергонезависимой памяти. Пользоваться теплосчетчиком не сложней, чем обычным бытовым электросчетчиком.

Принцип работы теплосчетчика заключается в измерении объема, поступившего в систему отопления и вытекшего из нее теплоносителя, его температуру на входе и выходе и расчете, на основании этих данных, количества потребленного тепла и тепло носителя.

Для подбора оборудования теплосчетчика необходимо знать параметры теплоносителя и схему теплового ввода.

http://www.vgs.ru/produkt/detail.php?ID=1115

Учет тепловой энергии

Теплосчетчик - это средство измерений, состоящее, как правило, из преобразователей расхода, температуры, давления, а также тепловычислителя. Преобразователи монтируются на трубопроводах и поставляют информацию, соответственно, о расходе, температуре и давлении теплоносителя в данных трубопроводах, а вычислитель по определенным алгоритмам рассчитывает на основе этих данных величину потребленной тепловой энергии

Теплосчетчики , представленные на рынке, имеют относительную погрешность измерений тепловой энергии не более ±4 % при разности температур в трубопроводах более 20 °С, что соответствует установленной норме…

Как известно, все задачи и проблемы учета можно разделить на несколько групп: измерительные (задачи собственно измерений физических величин), процедурные (задачи обработки результатов измерений в контексте учета), информационные (задачи обмена данными между компонентами системы учета) и эволюционные (задачи обеспечения возможности развития средств и систем учета)…

http://www.abok.ru/for_spec/articles.php?nid=3029

ВИДЕО

Ролик по монтажу систем теплоизоляции

http://www.lkgstroi.ru/rolik1.html

Как не замерзнуть зимой в своей квартире?

http://www.youtube.com/watch?v=G4WB7v5qRzA

Видео урок: утепление стен Полимин

Утепление стен термопеной

Утепление мансардного этажа


Теплосохранение как способ экономить на отоплении частного дома

Одной из главных финансовых составляющих эксплуатации своего дома является плата за тепло. Мы тратим большие деньги на создание системы отопления и на ее бесперебойную работу. В то же время траты на обогрев здания будут значительно снижены, если мы своевременно позаботимся о тщательной теплоизоляции дома.

1. Сохранение тепла в доме

Нагреть воздух в жилище до комфортной температуры – половина дела. Сохранить тепло в течение как можно большего промежутка времени – не менее важная задача. Наши предки недаром выбирали для укрытия пещеры с толстыми каменными сводами. Они сохраняли тепло даже ночью, когда вокруг становилось холодно. А если разжечь хотя бы небольшой костерок, такие укрытия служили для обогрева даже при наступлении сезона дождей, когда температура воздуха опускалась ниже обычной.

Сегодня существует много способов обогреть жилье – от аккумулирования прямой солнечной энергии до традиционного сжигания топлива. Строительные методики в части удержания тепла в жилище стараются не отставать. Ведь запасы источников тепла на нашей планете не так уж и безграничны.

2. Потери тепла в закрытом пространстве дома

Потеря тепла в замкнутом пространстве минимальна – если стенки воображаемой емкости являются хорошим теплоизолятором. На этом принципе построена система термоса. Дом в идеальном варианте тоже должен представлять собой термос, и чем меньше тепла отводят его стены, пол и потолок, тем дольше сохраняется внутренняя температура. Это же касается и сохранения в доме прохлады – когда теплый воздух снаружи не попадает в замкнутое пространство.

Тепло в доме – это прежде всего температура воздуха, заключенного в закрытом объеме здания. Из курса физики мы знаем, что движение слоев воздуха происходит вследствие конвекции – более теплый газ расширяется и более плотные нижние слои выталкивают его вверх.

В идеальном состоянии движения газа в замкнутой системе не происходит, давление и температура его во всех точках объема одинакова. Однако в реальности в закрытый объем помещения всегда поступает воздух извне – как минимум через щели в дверных проемах, окнах, к тому же охлаждаемые (или нагреваемые) снаружи стены обычно отличаются температурой от температуры воздуха. Теплообмен с окружающей средой при этом неизбежен, а воздухообмен необходим как минимум для нормального дыхания человека.


рис.1. Конвекция воздуха в замкнутом объеме

Склонность зданий к теплопотерям учитывается в строительных нормах. Существуют определенные правила, обеспечивающие максимальные допустимые потери тепла для зданий того или иного назначения.

3 Теплопроводность строительных материалов

Из вышесказанного очевидно, что основным параметром, определяющим степень сохранения тепла в доме, является теплопроводность всех элементов конструкции дома, заключающих его в замкнутый объем – это материалы, из которых сделаны стены дома, пол, потолок, двери и окна. Наибольший вклад в теплообмен несут стены – площадь их соприкосновения с внутренним объемом воздуха максимальна.

В качестве стеновых материалов используется большое многообразие материалов, среди которых наиболее популярны:

  • Кирпич на глиняной основе
  • Стеновые блоки на основе цемента
  • Древесина

На рис.2 представлены значения теплопроводности различных строительных материалов, а также наглядно показано, какой толщины должны быть стены для нормального теплосбережения внутри дома.


Во все века строители подбирали оптимальное сочетание конструкционной прочности дома и его теплосбережения, поэтому применение любых стройматериалов сочетается только с определенными технологиями утепления. Очевидно, что чем монолитнее материал, тем он лучше проводит тепло. Менее плотные материалы хуже проводят тепло из-за повышенного содержания в них воздушных прослоек – а воздух является отличным теплоизолятором, с коэффициентом теплопроводности…..

4. Строительные нормы

Значения теплопроводности определяют пригодность материала в строительстве. Строительные нормы и правила (СНИП) используют в расчетах так называемый коэффициент теплозащиты – величина, обратная коэффициенту теплопроводности материала. Его умножают на толщину стены и получают сопротивление теплопередаче строительной конструкции, обозначается латинской буквой R. Физический смысл ее – в расчете удельного теплового потока через стену за единицу времени.

Проще говоря, строительные нормы определяют, какой толщина должна быть стена, чтобы удержать тепло в какой-то промежуток времени.

В общем смысле нормативы (ГОСТ-16381-77) характеризуют материалы по их теплопроводности, виду сырья, горючести и прочности.

5. Виды утеплителей

Понятно, что развитие строительства шло в направлении оптимального сочетания прочности стен и их утепления. Времена, когда строили замки и дома со стенами толщиной в метр прошли, массовое строительство не может быть столь расточительно.

Чтобы уменьшить толщину стен при сохранении достаточной прочности необходимо применение дополнительного утепления.

Первыми опытами в этом направлении была прокладка пеньки, пакли, мочала между отдельными бревнами срубов – люди обратили внимание, что это улучшает теплосбережение даже в деревянных домах, хотя древесина само по себе отличный теплоизлятор. Сегодня промышленность шагнула далеко от тех первых минеральных утеплителей.

Наиболее часто встречающиеся утеплители сегодня это:

  • Минеральная вата
  • Стекловата
  • Эковата
  • Пенополистирол

Видам утеплителя посвящены отдельные статьи на нашем сайте. Применение того или иного вида теплоизоляции может зависеть от материала, из которого построен дом и от технологии строительства.

Наиболее распространенные утеплители имеют примерно одинаковый уровень теплопроводности (см. рис2), и различаются в плотности, в соответствии с конструкционными нормами.


рис.3 Самые популярные утеплители

6. Каркасный дом – новый шаг в теплосбережении

Особняком в ряду технологий строительства стоит каркасное домостроение. И не только в смысле создания конструкции зданий, а и с точки зрения их утеплительных свойств. Собственно оптимальное сочетание конструкции дома и его способности держать тепло и выделяет каркасное строительство из всех других видов.


Дело в том, что стена каркасного дома – это одновременно и элемент конструкционной прочности здания, и элемент дополнительного утепления. Каркасные дома состоят больше чем наполовину из утеплителя – такова их конструкция.

Каркас здания – это хребет, который обеспечивает его прочность и устойчивость. Он может быть выполнен из дерева или металла. В полости между элементами каркаса заложен теплоизолирующий материал. Сама конструкция «скелета» здания достаточно прочна при использовании отдельных элементов, и места для удержания теплоизолятора достаточно. Если даже утеплитель представляет собой рыхлый неплотный материал, его удерживает внутренняя и внешняя обшивка из прочного, но тонкого материала, например, плиты ОСП.


рис.5 Схема утепления каркасного дома

7. Куда уходит тепло?

Конечно, не только стены участвуют в процессе теплообмена внутреннего объема помещений и окружающей среды, но и остальные элементы, из которых построено здание. Рассмотрим наиболее «проблемные» места, через которые тепло уходит из дома. Строительный опыт и расчеты показали соотношение теплопотерь относительно элементов его конструкции:

  1. 35% — стены, как наиболее утепленная часть здания
  2. 25% — потолок и крыша
  3. 25% — окна и двери
  4. 15% — черновой пол и фундамент

Понятно, что усилия по утеплению разных составляющих здания могут существенно различаться. Достаточно легко утеплить пол, уложив его теплоизоляционным материалом, и куда как труднее монтировать утеплитель на крышу. А как утеплить окна, если они представляют собой лист из стекла?

8. Особенности монтажа утеплителя для разных элементов дома

Об утеплении каркасных стен мы вкратце рассказали.

Стены из монолитных материалов утепляют снаружи ли изнутри дома. Для конструкций из бревен и бруса зачастую достаточно проложить между венцами минеральную вату или другой рыхлый материал. А кирпичные или блочные дома утепляют монтажом дополнительных внутренних или внешних утепленных слоев. Поскольку поверхности стен вертикальны, утеплять кладку лучше более прочным материалом, нежели рыхлая минвата. Чаще всего в качестве утеплителя выбирают плиты из пенополистирола. Они легки, хорошо крепятся к кирпичной или бетонной стене специальными дюбелями. Их легко резать под любой размер. Утепление минватой или другим рыхлым материалом требует монтажа обрешетки, куда укладывается утеплитель, а также обшивки плотными листами (гипсоволокнистый лист, ОСП, фанера и проч.).

Кстати, дополнительное утепление иногда целесообразно и в каркасных домах – чтобы уменьшить влияние «мостиков холода», например в стойках, о чем мы рассказывали в соответствующей статье нашего сайта.


Утепление пола обычно состоит в прокладке пенополистироловых матов под чистовым полом. Зачастую черновой пол утепляют эковатой или запенивают строительной пеной – отличным теплоизолятором. Сверху слоя утеплителя кладутся листы фанеры, а на них настилается чистовое покрытие.


На потолок проще всего монтировать плиты пенополистирола. Что качается крыши, то чаще всего в домах круглогодичного проживания она утепляется по типу утепления стен каркаса. Собственно, можно сказать, что идея каркасного утепления и появилась из способа утепления стропильной системы. Минвата или плотный утеплитель уклабывается между стропилами, имеющими вид стоек в каркасной стене. Сверху и снизу идет обшивка. Получается своеобразный пирог, подобный каркасному.


рис.8 Каркасный «пирог»

Окна и двери дополнительно утеплить проблематично. Впрочем, сегодня входные двери делаются по каркасному принципу – между жеезных листов проложен утеплитель. Современные оконные блоки изготавливают в виде двух и терхслойнх стеклопакетов – теплоизолятором между стеклами служит воздух. Главное в данном случае хорошо устанавливать окна – без стыкоав и щелей.

9. Вентиляция, пароотведение и утепление

Помимо сохранения тепла в здании существенными моментами является его вентиляция и сохранение уровня влажности. Эти параметры взаимосвязаны, и оптимальное утепление должно проводиться в комплексе с достаточной вентиляцией и пароизолицией дома.

Конструкция дома-термоса хорошо сохраняет тепло, но противостоит нормальной вентиляции воздуха в нем. Это требует оборудования дополнительной приточной системы вентилирования.

Кроме того, нормальный воздухообмен способствует отведению водяных паров, неизбежно образующихся при нагревании воздуха. Вентиляция и паропроницаемость утеплителя – важнейшие параметры и требуют учета при выборе способа теплоизоляции.

Этим вопросам посвящены разделы нашего сайта, где подробно рассмотрены способы оптимального вентилирования зданий в соответствии с материалом, выбранном в качестве утеплителя.

10. Заключение

Теплосбережение домов – это не только экономия хозяина на эксплуатации своего жилища. В конечном счете – это глобальная проблема, так как ресурсы тепловой энергии на земле не бездонны. Поэтому технологии сохранения тепла постоянно развиваются.

Специалисты фирмы «К-ДОМ» стараются идти в ногу с прогрессом и используют в своей работе самые передовые материалы и разработки. Мы готовы оказать вам помощь в строительстве домов под ключ с оптимальной системой теплосохранения.

Большой дом - большие затраты, но и в маленьком доме затраты не всегда меньше. Поэтому в самом начале отопительного сезона самое время задуматься о способах экономии драгоценного топлива.

Куда уходит «лето»?

Наш дом призван ограждать своих обитателей от всяческих погодных и бытовых невзгод, дарить полноценный отдых. К сожалению, низкая культура строительства и незнание современных технологий частенько приводят к тому, что вместо теплого и уютного гнёздышка загородный дом становится «чёрной дырой» в кошельке незадачливого домовладельца.

Зачастую, для того чтобы обеспечить тепловой комфорт дома мы идем по пути наращивания мощности обогревательного оборудования, ставим более мощные котлы, предусматриваем конвекторы в каждой комнате, хотя можно идти по пути сбережения тепла за счёт правильной теплоизоляции.

Просчёты утепления

Вроде бы, любому понятно, как построить тёплый и уютный дом. Сделать стены потолще, да систему отопления помощнее - и всего-то делов! Но на практике всё оказывается совсем не так просто. Любой застройщик помимо строительных норм и климатических условий вынужден учитывать собственные финансовые возможности. И частенько желание сократить затраты берёт верх над здравым смыслом. От такой недальновидной экономии в первую очередь страдает столь важная в нашем суровом климате способность дома сохранять тепло.

Часто к повышенному энергопотреблению приводят ошибки проектирования будущего дома. Специалисты выделяют несколько причин повышенного энергопотребления: неправильный теплотехнический расчет ограждающих конструкций (стен, кровли, окон), их некачественный монтаж, а также ошибки в устройстве системы отопления. К сожалению, владельцы строящихся домов редко обращаются к специалистам, руководствуясь своими представлениями о разумном и достаточном строительстве.

Одной из самых распространённых проблем частных домов считается недостаточные теплозащитные характеристики внешних стен. Согласно исследованиям, среднестатистический дом теряет до 40% тепла именно через слабо утепленные стены. При этом на кровлю приходится 20% теплопотерь, на окна 15%, на подвал 10%, и до 15% тепловой энергии утекает наружу через вентиляцию. Всё это приводит к астрономическим тратам на отопление. Причина же всех этих неприятностей в неверной оценке теплозащитных свойств строительных материалов.

Если направить тепловизор на фасад дома, он покажет, откуда идут мощные потери тепла. То есть ограждающие конструкции дома не справляется со своей функцией и выпускают драгоценное тепло наружу. С точки зрения теплотехники и экономии без современных теплоизоляционных материалов с низким коэффициентом теплопроводности действительно тёплых стен не построить. Качественная теплоизоляция поддерживает конструктивные элементы дома (стены, фундамент, внутренние элементы кровли) в зоне плюсовых температур, при этом разница температуры воздуха и стен, пола, потолка не должна превышать 3°С, иначе появляется дискомфорт.

Теплопотери дома обусловлены двумя факторами, первый это собственно процесс передачи тепла от более теплых элементов к более холодным, тем самым объекты стремятся установить температурное равновесие. Соответственно чем выше показатель теплопроводности, тем ниже способность материала удерживать тепло. Второй фактор это конвекционные потоки воздуха, которые замещают теплый воздух холодным, при этом теплый воздух движется по направлению вверх, этот процесс еще называют инфильтрацией. Холодный воздух попадает в дом через ограждающие конструкции, вентиляцию и неплотные прилегания конструктивных элементов дома.

Правильный выбор теплоизоляции для всех уровней дома (подвала, стен, кровли) и грамотный её монтаж позволяют свести к минимуму расходы на поддержание комфортной температуры зимой и летом. Наилучший способ сохранить в доме тепло и гарантировать благоприятный микроклимат – внешнее утепление при помощи многослойных фасадных систем.

Очень важно выбрать теплоизоляцию с высоким показателем сопротивления теплопередаче. Минвата - старый проверенный материал. Вместе с тем, она требует очень качественной укладки, дефект которой, может свести на нет эффект от применения данного материала. Относительно низкая цена оборачивается небольшим сроком службы. Материал резко теряет свойства после намокания или нескольких лет эксплуатации. Пенополистирол - относительно современный материал с высоким показателем сопротивлению теплопередаче. Применяется при утеплении фундаментов и фасадов. Имеет невысокое водопоглощение.

Тут нужно заметить, что любой плитный или рулонный материал неплотно прилегает к конструкциям дома, то есть весь периметр прилегания теплоизоляции к конструкциям дома пропускает тепло на улицу. С годами стыки и щели увеличиваются выпуская все больше и больше тепла. Строительная физика позволяет учитывать эти теплопотери в виде понижающего коэффициента теплотехнической однородности. В среднем можно его выразить в числе 0,9, то есть система утепления на основе плитных и рулонных материалов создает на 10% меньшее сопротивление теплопередаче, чем определено производителем.

Бесшовные утеплители, эковата и напыляемый пенополиуретан, обладают большим преимуществом, так как не имеют стыков и щелей с конструктивными элементами дома. За счёт многократного расширения при нанесении материал заполняет все пустоты и полости, устраняя тем самым проблему мостиков холода.

Тёплый дом

Сухая статистика утверждает, что российские жилые здания в среднем потребляют 300-600 кВт*ч/м 2 тепловой энергии в год. Для сравнения, «пассивные» здания, во множестве возводимые сейчас по всей Европе, тратят на отопление в 10-15 раз меньше энергоресурсов, их энергопотребление не превышает 34 кВт*ч/м 2 в год! В чём же дело? Неужели отечественным домовладельцам нравится в несколько раз переплачивать за постоянно дорожающий комфорт?

Немалое влияние на соотечественников оказала архитектура европейских стран. Для этого не обязательно выезжать за рубеж, в любом импортном фильме что ни дом - то чуть ли не дворец. Просторный, с огромными остеклёнными стенами, мансардами, открытой планировкой. Единственное, что не учитывается, так это то, что их климат гораздо теплее. На большей части Европы и снег-то редкость.

Средняя температура в той части Финляндии, где проживает основная часть населения, зимой минус 3°С! У нас же средняя температура января ниже -20°С, а ночная под -30°С практически норма жизни. Попробуй в таких условиях найти тёплое местечко в просторном, без перегородок и дверей стеклянном кубе. У камина, сжигая тонны дров? Дом в нашем климате должен быть предельно практичен. Стоит вспомнить северные крестьянские дома, где первый этаж был отдан под загон для животных («тёплый пол» к тому же). Центр жилой зоны занимала огромная печь, а весь периметр дома был отдан под амбары и хозяйственные помещения (своего рода фасадная система).

Популярные сегодня в Европе «пассивные» дома в России пока строятся в единичных экземплярах. Нулевой энергозатратностью здания считается такое его годовое потребление энергии, которое не превышает производимого на месте объёма энергии от возобновляемых источников (солнечными батареями, ветряками, тепловыми насосами). Основная нагрузка на ГВС возложена на солнечные коллекторы. Кроме этого, они частично обеспечивают работу системы отопления. Недостающую часть теплового баланса дома компенсирует тепловой насос. Система отопления на базе геотермальных тепловых насосов получает энергию от солнечных панелей. Вентиляция принудительная, с рекуперацией тепла в мороз и в жару.

Для обогрева жилых зон большое значение имеет солнечное излучение, эффект от воздействия которого усиливается энергосберегающими окнами, пропускающими тепло внутрь и не выпускающими его обратно за счет селективного покрытия. Для этого задействованы все окна: мансардные и вертикальные. Последние играют особую роль зимой. Они улавливают лучи зимнего солнца, имеющего низкий угол подъёма над горизонтом. Однако эти автономные системы в пересчёте на наши климатические условия оказываются на порядок дороже. Да и с эксплуатацией таких систем порой возникают проблемы.

Чтобы зимой солнечные батареи или водонагревательные коллекторы не накрывало снегом, их размещают не на крыше, а на стенах здания. Огромные же энергосберегающие окна при очень низких ночных температурах становятся излучателями тепла наружу. Селективные покрытия не особо помогают. При всём при этом у нас сегодня есть на вооружении не только мировой опыт строительства зданий с повышенной энергетической эффективностью, но и налаженное серийное производство всех комплектующих для них: от материалов для ограждающих конструкций до инженерного оборудования любых систем. Дело за малым: начать.

Loading...Loading...