Решение рациональных и иррациональных неравенств. Иррациональные неравенства

Для того чтобы хорошо решать задания данной темы нужно отлично усвоить теорию из некоторых предыдущих тем, особенно из тем "Иррациональные уравнения и системы " и "Рациональные неравенства ". Теперь запишем одну из основных теорем используемых при решении иррациональных неравенств (т.е. неравенств с корнями). Итак, если обе функции f (x ) и g (x) неотрицательны, то неравенство:

Равносильно следующему неравенству:

Иначе говоря, если слева и справа в неравенстве стоят неотрицательные выражения, то это неравенство можно смело возводить в любую степень . Ну а если нужно возвести всё неравенство в нечётную степень, то в таком случае необязательно даже требовать неотрицательности левой и правой частей неравенства. Таким образом, любое неравенство без ограничений можно возводить в нечетную степень . Подчеркнем еще раз, что для возведения неравенства в четную степень, необходимо убедиться в неотрицательности обеих сторон этого неравенства.

Эта теорема становится очень актуальной именно в иррациональных неравенствах, т.е. в неравенствах с корнями, где для решения большинства примеров приходится именно возводить неравенства в некоторую степень. Конечно в иррациональных неравенствах нужно очень внимательно учитывать ОДЗ, которое в основном формируется из двух стандартных условий:

  • под корнями четных степеней должны стоять неотрицательные выражения;
  • в знаменателях дробей не должны получаться ноли.

Также вспомним, что и само значение корня четной степени всегда неотрицательно.

В соответствии со сказанным, в случае если иррациональное неравенство имеет более двух квадратных корней, то перед возведением неравенства в квадрат (или другую четную степень), необходимо убедиться, что с каждой из сторон неравенства стоят неотрицательные выражения, т.е. суммы квадратных корней. Если с одной из сторон неравенства есть разность корней, то про знак такой разности заранее не может быть ничего известно, а значит возводить неравенство в четную степень нельзя. В таком случае, нужно корни перед которыми стоят знаки "минус" перенести на противоположные стороны неравенства (слева направо или наоборот), таким образом знаки "минус" перед корнями поменяются на "плюсы", и с обеих сторон неравенства будут получены только суммы корней. Только после этого можно возводить всё неравенство в квадрат.

Как и в остальных темах по математике, при решении иррациональных неравенств можно применять метод замены переменной . Главное не забывать, что после введения замены, новое выражение должно стать проще и не содержать старой переменной. Кроме того, нужно не забывать выполнять обратную замену.

Остановимся на нескольких относительно простых но распространённых типах иррациональных неравенств. Первый тип таких неравенств, это когда сравниваются два корня четной степени , т.е. имеется неравенство вида:

Данное неравенство содержит неотрицательные выражения с обоих сторон, поэтому его можно смело возвести в степень 2n , после чего с учетом ОДЗ получим:

Обратите внимание, что ОДЗ записано только для того подкоренного выражения, которое меньше. Другое выражение автоматически получится больше ноля, так как оно больше первого выражения, которое в свою очередь больше ноля.

В случае когда корень четной степени полагается большим чем некоторое рациональное выражение

То решение такого неравенства выполняется с помощью перехода к совокупности двух систем:

Ну и наконец, в случае, когда корень четной степени полагается меньшим чем некоторое рациональное выражение , т.е. в случае когда имеется иррациональное неравенство вида:

То решение такого неравенства выполняется с помощью перехода к системе:

В случаях когда сравниваются два корня нечётной степени, или корень нечетной степени полагается большим либо меньшим некоторого рационального выражения можно просто возвести всё неравенство в нужную нечетную степень, и таким образом избавиться от всех корней. В этом случае не возникает никакого дополнительного ОДЗ, так как в нечетную степень можно возводить неравенства без ограничений, и под корнями нечётных степеней могут стоять выражения любого знака.

Обобщенный метод интервалов

В случае когда имеется сложное иррациональное уравнение, не подпадающее ни под один из случаев описанных выше, и которое нельзя решить возведением в некоторую степень, нужно применять обобщенный метод интервалов , который состоит в следующем:

  • Определите ОДЗ;
  • Преобразуйте неравенство так, чтобы в правой части был ноль (в левой части, если это возможно, приведите к общему знаменателю, разложите на множители и т.д.);
  • Найдите все корни числителя и знаменателя и нанесите их на числовую ось, причём, если неравенство нестрогое, закрасьте корни числителя, ну а корни знаменателя в любом случае оставьте выколотыми точками;
  • Найдите знак всего выражения на каждом из интервалов, подставляя в преобразованное неравенство число из данного интервала. При этом уже больше нельзя никаким образом чередовать знаки переходя через точки на оси. Определять знак выражения на каждом интервале нужно именно подстановкой значения из интервала в это выражение, и так для каждого интервала. Больше никак нельзя (в этом то и состоит, по большому счету, отличие обобщенного метода интервалов от обычного);
  • Найдите пересечение ОДЗ и удовлетворяющих неравенству промежутков, при этом не потеряйте отдельные точки, удовлетворяющие неравенству (корни числителя в нестрогих неравенствах), и не забудьте исключить из ответа все корни знаменателя во всех неравенствах.
  • Назад
  • Вперёд

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

В данном уроке мы рассмотрим решение иррациональных неравенств, приведем различные примеры.

Тема: Уравнения и неравенства. Системы уравнений и неравенств

Урок: Иррациональные неравенства

При решении иррациональных неравенств довольно часто необходимо возводить обе части неравенства в некоторую степень, это довольно ответственная операция. Напомним особенности.

Обе части неравенства можно возвести в квадрат, если обе они неотрицательны, только тогда мы получаем из верного неравенства верное неравенство.

Обе части неравенства можно возвести куб в любом случае, если исходное неравенство было верным, то при возведении в куб мы получим верное неравенство.

Рассмотрим неравенство вида:

Подкоренное выражение должно быть неотрицательным. Функция может принимать любые значения, необходимо рассмотреть два случая.

В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) больше отрицательного выражения, значит, неравенство выполняется всегда.

Итак, имеем следующую схему решения:

В первой системе мы не защищаем отдельно подкоренное выражение, т. к. при выполнении второго неравенства системы подкоренное выражение автоматически должно быть положительно.

Пример 1 - решить неравенство:

Согласно схеме, переходим к эквивалентной совокупности двух систем неравенств:

Проиллюстрируем:

Рис. 1 - иллюстрация решения примера 1

Как мы видим, при избавлении от иррациональности, например, при возведении в квадрат, получаем совокупность систем. Иногда эту сложную конструкцию можно упростить. В полученной совокупности мы имеем право упростить первую систему и получить эквивалентную совокупность:

В качестве самостоятельного упражнения необходимо доказать эквивалентность данных совокупностей.

Рассмотрим неравенство вида:

Аналогично предыдущему неравенству, рассматриваем два случая:

В первом случае обе части неравенства неотрицательны, имеем право возвести в квадрат. Во втором случае правая часть отрицательна, и мы не имеем права возводить в квадрат. В таком случае необходимо смотреть на смысл неравенства: здесь положительное выражение (квадратный корень) меньше отрицательного выражения, значит, неравенство противоречиво. Вторую систему рассматривать не нужно.

Имеем эквивалентную систему:

Иногда иррациональное неравенство можно решить графическим методом. Данный способ применим, когда соответствующие графики можно достаточно легко построить и найти их точки пересечения.

Пример 2 - решить неравенства графически:

а)

б)

Первое неравенство мы уже решали и знаем ответ.

Чтобы решить неравенства графически, нужно построить график функции, стоящей в левой части, и график функции, стоящей в правой части.

Рис. 2. Графики функций и

Для построения графика функции необходимо преобразовать параболу в параболу (зеркально отобразить относительно оси у), полученную кривую сместить на 7 единиц вправо. График подтверждает, что данная функция монотонно убывает на своей области определения.

График функции - это прямая, ее легко построить. Точка пересечения с осью у - (0;-1).

Первая функция монотонно убывает, вторая монотонно возрастает. Если уравнение имеет корень, то он единственный, по графику легко его угадать: .

Когда значение аргумента меньше корня, парабола находится выше прямой. Когда значение аргумента находится в пределах от трех до семи, прямая проходит выше параболы.

Имеем ответ:

Эффективным методом решения иррациональных неравенств является метод интервалов.

Пример 3 - решить неравенства методом интервалов:

а)

б)

согласно методу интервалов, необходимо временно отойти от неравенства. Для этого перенести в заданном неравенстве все в левую часть (получить справа ноль) и ввести функцию, равную левой части:

теперь необходимо изучить полученную функцию.

ОДЗ:

Данное уравнение мы уже решали графически, поэтому не останавливаемся на определении корня.

Теперь необходимо выделить интервалы знакопостоянства и определить знак функции на каждом интервале:

Рис. 3. Интервалы знакопостоянства к примеру 3

Напомним, что для определения знаков на интервале необходимо взять пробную точку и подставить ее в функцию, полученный знак функция будет сохранять на всем интервале.

Проверим значение в граничной точке:

Очевиден ответ:

Рассмотрим следующий тип неравенств:

Сначала запишем ОДЗ:

Корни существуют, они неотрицательны, обе части можем возвести в квадрат. Получаем:

Получили эквивалентную систему:

Полученную систему можно упростить. При выполнении второго и третьего неравенств первое истинно автоматически. Имеем::

Пример 4 - решить неравенство:

Действуем по схеме - получаем эквивалентную систему.

Всякое неравенство, в состав которого входит функция, стоящая под корнем, называется иррациональным . Существует два типа таких неравенств:

В первом случае корень меньше функции g (x ), во втором - больше. Если g (x ) - константа , неравенство резко упрощается. Обратите внимание: внешне эти неравенства очень похожи, но схемы решения у них принципиально различаются.

Сегодня научимся решать иррациональные неравенства первого типа - они самые простые и понятные. Знак неравенства может быть строгим или нестрогим. Для них верно следующее утверждение:

Теорема. Всякое иррациональное неравенство вида

Равносильно системе неравенств:

Неслабо? Давайте рассмотрим, откуда берется такая система:

  1. f (x ) ≤ g 2 (x ) - тут все понятно. Это исходное неравенство, возведенное в квадрат;
  2. f (x ) ≥ 0 - это ОДЗ корня. Напомню: арифметический квадратный корень существует только из неотрицательного числа;
  3. g (x ) ≥ 0 - это область значений корня. Возводя неравенство в квадрат, мы сжигаем минусы. В результате могут возникнуть лишние корни. Неравенство g (x ) ≥ 0 отсекает их.

Многие ученики «зацикливаются» на первом неравенстве системы: f (x ) ≤ g 2 (x ) - и напрочь забывают два других. Результат предсказуем: неправильное решение, потерянные баллы.

Поскольку иррациональные неравенства - достаточно сложная тема, разберем сразу 4 примера. От элементарных до действительно сложных. Все задачи взяты из вступительных экзаменов МГУ им. М. В. Ломоносова.

Примеры решения задач

Задача. Решите неравенство:

Перед нами классическое иррациональное неравенство : f (x ) = 2x + 3; g (x ) = 2 - константа. Имеем:

Из трех неравенств к концу решения осталось только два. Потому что неравенство 2 ≥ 0 выполняется всегда. Пересечем оставшиеся неравенства:

Итак, x ∈ [−1,5; 0,5]. Все точки закрашены, поскольку неравенства нестрогие .

Задача. Решите неравенство:

Применяем теорему:

Решаем первое неравенство. Для этого раскроем квадрат разности. Имеем:

2x 2 − 18x + 16 < (x − 4) 2 ;
2x 2 − 18x + 16 < x 2 − 8x + 16:
x 2 − 10x < 0;
x (x − 10) < 0;
x ∈ (0; 10).

Теперь решим второе неравенство. Там тоже квадратный трехчлен :

2x 2 − 18x + 16 ≥ 0;
x 2 − 9x + 8 ≥ 0;
(x − 8)(x − 1) ≥ 0;
x ∈ (−∞; 1]∪∪∪∪}

Loading...Loading...