Что такое излучение в физике? Определение, особенности, применение излучения в физике. Что такое тепловое излучение в физике. Излучение

Все атомы в возбужденном состоянии способны излучать электромагнитные волны. Для этого им необходимо перейти в основное состояние, в котором их внутренняя энергия приобретает . Процесс подобного перехода сопровождается испусканием электромагнитной волны. В зависимости от длины, она обладает различными свойствами. Существует несколько видов такого излучения.

Видимый свет

Длиной волны называется кратчайшее расстояние между поверхностью равных фаз. Видимый свет - это электромагнитные волны, которые могут восприниматься человеческим глазом. Длина световых волн варьируется от 340 (фиолетовый свет) до 760 нанометров (красный свет). Лучше всего глаз человека ощущает желто-зеленую область спектра.

Инфракрасное излучение

Все, что окружает человека, включая его самого, - источники инфракрасного или теплового излучения (длина волны до 0,5 мм). Атомы излучают электромагнитные волны в этом диапазоне при хаотическом столкновении друг с другом. При каждом столкновении их кинетическая энергия переходит в тепловую. Атом возбуждается и излучает волны в инфракрасном диапазоне.

От Солнца до поверхности Земли доходит лишь небольшая часть инфракрасного излучения. До 80% поглощается молекулами воздуха и особенно углекислого газа, который вызывает парниковый эффект.

Ультрафиолетовое излучение

Длина волны ультрафиолетового излучения значительно меньше, чем инфракрасного. В спектре Солнца также имеется ультрафиолетовая составляющая, но она блокируется озоновым слоем Земли и не доходит до ее поверхности. Такое излучение очень вредно для всех живых организмов.

Длина ультрафиолетового излучения лежит в области от 10 до 740 нанометров. Та небольшая его доля, которая доходит до поверхности Земли вместе с видимым светом, вызывает у людей загар, как защитную реакцию кожи на вредное для нее воздействие.

Радиоволны

С помощью радиоволн длиной до 1,5 км можно передавать информацию. Это используется в радиоприемниках и телевидении. Такая большая длина позволяет им огибать поверхность Земли. Наиболее короткие радиоволны могут отражаться от верхних слоев атмосферы и доходить до станций, расположенных на противоположной стороне земного шара.

Гамма-лучи

Гамма-лучи относят к особо жесткому ультрафиолетовому излучению. Они образуются при взрыве атомной бомбы, а также при протекании процессов на поверхности звезд. Это излучение губительно для живых организмов, но магнитосфера Земли не пропускает их. Фотоны гамма-лучей обладают сверхвысокими энергиями.

Радиоактивное излучение (или ионизирующее) – это энергия, которая высвобождается атомами в форме частиц или волн электромагнитной природы. Человек подвергается такому воздействию как через природные, так и через антропогенные источники.

Полезные свойства излучения позволили успешно использовать его в промышленности, медицине, научных экспериментах и исследованиях, сельском хозяйстве и других областях. Однако с распространением применения этого явления возникла угроза здоровью людей. Малая доза радиоактивного облучения способна повысить риск приобретения серьёзных заболеваний.

Отличие радиации от радиоактивности

Радиация, в широком смысле, означает излучение, то есть распространение энергии в виде волн или частиц. Радиоактивные излучения делят на три вида:

  • альфа-излучение – поток ядер гелия-4;
  • бета-излучение – поток электронов;
  • гамма-излучение – поток высокоэнергетических фотонов.

Характеристика радиоактивных излучений основана на их энергии, пропускных свойствах и виде испускаемых частиц.

Альфа-излучение, которое представляет собой поток корпускул с положительным зарядом, может быть задержано толщей воздуха или одеждой. Этот вид практически не проникает через кожный покров, но при попадании в организм, например, через порезы, очень опасен и пагубно действует на внутренние органы.

Бета-излучение обладает большей энергией – электроны движутся с высокой скоростью, а их размеры малы. Поэтому данный вид радиации проникает через тонкую одежду и кожу глубоко в ткани. Экранировать бета-излучение можно при помощи алюминиевого листа в несколько миллиметров или толстой деревянной доски.

Гамма-излучение – это высокоэнергетическое излучение электромагнитной природы, которое обладает сильной проникающей способностью. Для защиты от него нужно использовать толстый слой бетона или пластину из тяжёлых металлов таких, как платина и свинец.

Феномен радиоактивности был обнаружен в 1896 году. Открытие сделал французский физик Беккерель. Радиоактивность – способность предметов, соединений, элементов испускать ионизирующее изучение, то есть радиацию. Причина явления заключается в нестабильности атомного ядра, которое при распаде выделяет энергию. Существует три вида радиоактивности:

  • естественная – характерна для тяжёлых элементов, порядковый номер которых больше 82;
  • искусственная – инициируется специально с помощью ядерных реакций;
  • наведённая – свойственна объектам, которые сами становятся источником радиации, если их сильно облучить.

Элементы, обладающие радиоактивностью, называют радионуклидами. Каждый из них характеризуется:

  • периодом полураспада;
  • видом испускаемой радиации;
  • энергией радиации;
  • и другими свойствами.

Источники радиации

Человеческий организм регулярно подвергается действию радиоактивного излучения. Приблизительно 80% ежегодно получаемого количества приходится на космические лучи. В воздухе, воде и почве содержатся 60 радиоактивных элементов, являющихся источниками естественной радиации. Основным природным источником излучения считается инертный газ радон, высвобождающийся из земли и горных пород. Радионуклиды также проникают в организм человека с пищей. Часть ионизирующего облучения, которому подвергаются люди, исходит от антропогенных источников, начиная от атомных генераторов электричества и ядерных реакторов до используемой для лечения и диагностики радиации. На сегодняшний день распространёнными искусственными источниками излучения являются:

  • медицинское оборудование (основной антропогенный источник радиации);
  • радиохимическая промышленность (добыча, обогащение ядерного топлива, переработка ядерных отходов и их восстановление);
  • радионуклиды, применяющиеся в сельском хозяйстве, лёгкой промышленности;
  • аварии на радиохимических предприятиях, ядерные взрывы, радиационные выбросы
  • строительные материалы.

Радиационное облучение по способу проникновения в организм делится на два типа: внутреннее и внешнее. Последнее характерно для распылённых в воздухе радионуклидов (аэрозоль, пыль). Они попадают на кожу или одежду. В таком случае источники радиации можно удалить, смыв их. Внешнее же облучение вызывает ожоги слизистых оболочек и кожных покровов. При внутреннем типе радионуклид попадает в кровоток, например, введением в вену или через раны, и удаляется путём экскреции или с помощью терапии. Такое облучение провоцирует злокачественные опухоли.

Радиоактивный фон существенно зависит от географического положения – в некоторых регионах уровень радиации может превышать средний в сотни раз.

Влияние радиации на здоровье человека

Радиоактивное излучение из-за ионизирующего действия приводит к образованию в организме человека свободных радикалов – химически активных агрессивных молекул, которые вызывают повреждение клеток и их гибель.

Особенно чувствительны к ним клетки ЖКТ, половой и кроветворной систем. Радиоактивное облучение нарушает их работу и вызывает тошноту, рвоту, нарушение стула, температуру. Воздействуя на ткани глаза, оно может привести к лучевой катаракте. К последствиям ионизирующего излучения также относят такие повреждения, как склероз сосудов, ухудшение иммунитета, нарушение генетического аппарата.

Система передачи наследственных данных имеет тонкую организацию. Свободные радикалы и их производные способны нарушать структуру ДНК – носителя генетической информации. Это приводит к возникновению мутаций, которые сказываются на здоровье последующих поколений.

Характер воздействия радиоактивного излучения на организм определяется рядом факторов:

  • вид излучения;
  • интенсивность радиации;
  • индивидуальные особенности организма.

Результаты радиоактивного излучения могут проявиться не сразу. Иногда его последствия становятся заметны через значительный промежуток времени. При этом большая однократная доза радиации более опасна, чем долговременное облучение малыми дозами.

Поглощённое количество радиации характеризуется величиной, называемой Зиверт (Зв).

  • Нормальный радиационный фон не превышает 0,2 мЗв/ч, что соответствует 20 микрорентгенам в час. При рентгенографии зуба человек получает 0,1 мЗв.
  • Смертельная разовая доза составляет 6-7 Зв.

Применение ионизирующих излучений

Радиоактивное излучение широко применяется в технике, медицине, науке, военной и атомной промышленности и других сферах человеческой деятельности. Явление лежит в основе таких устройств, как датчики задымления, генераторы электроэнергии, сигнализаторы обледенения, ионизаторы воздуха.

В медицине радиоактивное излучение используется в лучевой терапии для лечения онкологических заболеваний. Ионизирующая радиация позволила создать радиофармацевтические препараты. С их помощью проводят диагностические обследования. На базе ионизирующего излучения устроены приборы для анализа состава соединений, стерилизации.

Открытие радиоактивного излучения было без преувеличения революционным – применение этого явления вывело человечество на новый уровень развития. Однако это также стало причиной возникновения угрозы экологии и здоровью людей. В связи с этим поддержание радиационной безопасности является важной задачей современности.

Введение

Ионизирующее излучение, если говорить о нем в общем виде, - это различные виды микрочастиц и физических полей способных ионизировать вещество. Основными видами ионизирующего излучения является электро-магнитное излучение (рентгеновское и гамма-излучение), а также потоки заряженных частиц - альфа-частицы и бета-частицы, которые возникают при ядерном взрыве. Защита от поражающих факторов является основой гражданской обороны страны. Рассмотрим основные виды ионизирующего излучения.

Типы излучений

Альфа-излучение

Альфа излучение - поток положительно заряженных частиц, образованная 2 протонами и 2 нейтронами. Частица идентична ядру атома гелия-4 (4He2+). Образуется при альфа-распаде ядер. Впервые альфа-излучение открыл Э. Резерфорд. Изучая радиоактивные элементы, в частности изучая такие радиоактивные элементы как уран радий и актиний, Э. Резерфорд пришел к выводу что все радиоактивные элементы испускают альфа- и бета-лучи. И, что еще более важно, радиоактивность любого радиоактивного элемента через определенный конкретный период времени уменьшается. Источником альфа-излучения являются радиоактивные элементы. В отличие от других видов ионизирующего излучения альфа-излучение является наиболее безобидным. Оно опасно лишь при попадании в организм такого вещества (вдыхание, съедание, выпивание, втирание и т.д.), так как пробег альфа частицы, например с энергией 5 МэВ, в воздухе составляет 3,7 см, а в биологической ткани 0,05 мм. Альфа-излучение попавшего в организм радионуклида наносит поистине кошмарные разрушения, т.к. коэффициент качества альфа излучения с энергией меньше 10 МэВ равен 20 мм. а потери энергии происходят в очень тонком слое биологической ткани. Оно практически сжигает его. При поглощении альфа-частиц живыми организмами могут возникнуть мутагенные (факторы, вызывающий мутацию), канцерогенные (вещества или физический агент (излучение), способные вызвать развитие злокачественных новообразований) и другие отрицательные эффекты. Проникающая способность А.-и. невелика т.к. задерживается листом бумаги.

Бета-излучение

Бета-частица (в-частица), заряженная частица, испускаемая в результате бета-распада. Поток бета-частиц называется бета-лучи или бета-излучение.

Отрицательно заряженные бета-частицы являются электронами (в-), положительно заряженные - позитронами (в+).

Энергии бета-частиц распределены непрерывно от нуля до некоторой максимальной энергии, зависящей от распадающегося изотопа; эта максимальная энергия лежит в диапазоне от 2,5 кэВ (для рения-187) до десятков МэВ (для короткоживущих ядер, далёких от линии бета-стабильности).

Бета-лучи под действием электрического и магнитного полей отклоняются от прямолинейного направления. Скорость частиц в бета-лучах близка к скорости света.

Бета-лучи способны ионизировать газы, вызывать химические реакции, люминесценцию, действовать на фотопластинки.

Значительные дозы внешнего бета-излучения могут вызвать лучевые ожоги кожи и привести к лучевой болезни. Ещё более опасно внутреннее облучение от бета-активных радионуклидов, попавших внутрь организма. Бета-излучение имеет значительно меньшую проникающую способность, чем гамма-излучение (однако на порядок большую, чем альфа-излучение). Слой любого вещества с поверхностной плотностью порядка 1 г/см2 (например, несколько миллиметров алюминия или несколько метров воздуха) практически полностью поглощает бета-частицы с энергией около 1 МэВ.

Гамма-излучение

Гамма - излучение вид электромагнитного излучения с чрезвычайно маленькой длиной волны - < 5Ч10-3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Обычно считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке-то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях (см. Синхротронное излучение).

Гамма-лучи в отличие от б-лучей и в-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект (гамма-квант поглощается электроном атомной оболочки, передавая ему всю энергию и ионизируя атом).

Комптоновское рассеяние (гамма-квант рассеивается на электроне, передавая ему часть своей энергии).

Рождение электрон-позитронных пар (в поле ядра гамма-квант с энергией не ниже 2mec2=1,022 МэВ превращается в электрон и позитрон).

Фотоядерные процессы (при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра).

Гамма-кванты, как и любые другие фотоны, могут быть поляризованы.

Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.

Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).

Сегодня поговорим о том, что такое излучение в физике. Расскажем о природе электронных переходов и приведем электромагнитную шкалу.

Божество и атом

Строение вещества стало предметом интереса ученых более двух тысяч лет назад. Древнегреческие философы задавались вопросами, чем воздух отличается от огня, а земля от воды, почему мрамор белый, а уголь черный. Они создавали сложные системы взаимозависимых компонентов, опровергали или поддерживали друг друга. А самые непонятные явления, например, удар молнии или восход солнца приписывали действию богов.

Однажды, долгие годы наблюдая за ступенями храма, один ученый заметил: каждая нога, встающая на камень, уносит крошечную частичку вещества. Со временем мрамор менял форму, прогибался посередине. Имя этого ученого - Левкипп, и он назвал мельчайшие частицы атомами, неделимыми. С этого начался путь к изучению того, что такое излучение в физике.

Пасха и свет

Затем настали темные времена, науку забросили. Всех, кто пытался изучать силы природы, окрестили ведьмами и колдунами. Но, как ни странно, именно религия дала толчок к дальнейшему развитию науки. Исследование о том, что такое излучение в физике, началось с астрономии.

Время празднования Пасхи вычислялось в те времена каждый раз по-разному. Сложная система взаимоотношений между днем весеннего равноденствия, 26-дневным лунным циклом и 7-дневной неделей не позволяла составлять таблицы дат для празднования Пасхи более чем на пару лет. Но церкви надо было все планировать заранее. Поэтому Папа Римский Лев X заказал составление более точных таблиц. Это потребовало тщательно наблюдения за движением Луны, звезд и Солнца. И в конце концов Николай Коперник понял: Земля не плоская и не центр вселенной. Планета - шар, который вращается вокруг Солнца. А Луна - сфера на орбите Земли. Конечно, можно спросить: «Какое отношение все это имеет к тому, что такое излучение в физике?» Сейчас раскроем.

Овал и луч

Позже Кеплер дополнил систему Коперника, установив, что планеты движутся по овальным орбитам, и движение это неравномерное. Но именно тот первый шаг привил человечеству интерес к астрономии. А там недалеко было и до вопросов: «Что такое звезда?», «Почему люди видят ее лучи?» и «Чем одно светило отличается от другого?». Но сначала придется перейти от огромных объектов к самым маленьким. И затем подойдем к излучению, понятию в физике.

Атом и изюм

В конце девятнадцатого века накопилось достаточно знаний о малейших химических единицах вещества - атомах. Было известно, что они электронейтральны, но содержат как положительно, так и отрицательно заряженные элементы.

Предположений выдвигалось множество: и что положительные заряды распределены в отрицательном поле, как изюм в булке, и что атом - это капля из разнородно заряженных жидких частей. Но все прояснил опыт Резерфорда. Он доказал, что в центре атома находится положительное тяжелое ядро, а вокруг него располагаются легкие отрицательные электроны. И конфигурация оболочек для каждого атома своя. Тут-то и кроются особенности излучения в физике электронных переходов.

Бор и орбита

Когда ученые выяснили, что легкие отрицательные части атома - это электроны, встал другой вопрос - почему они не падают на ядро. Ведь, согласно теории Максвелла, любой движущийся заряд излучает, следовательно, теряет энергию. Но атомы существовали столько же, сколько вселенная, и не собирались аннигилировать. На выручку пришел Бор. Он постулировал, что электроны находятся на некоторых стационарных орбитах вокруг атомного ядра, и находиться могут только на них. Переход электрона между орбитами осуществляется рывком с поглощением или испусканием энергии. Этой энергией может быть, например, квант света. По сути, мы сейчас изложили определение излучения в физике элементарных частиц.

Водород и фотография

Изначально технология фотографии была придумана как коммерческий проект. Люди хотели остаться в веках, но заказать портрет у художника было не каждому по карману. А фотографии были дешевыми и не требовали таких больших вложений. Потом искусство стекла и нитрата серебра поставило себе на службу военное дело. А затем и наука стала пользоваться преимуществами светочувствительных материалов.

В первую очередь фотографировать стали спектры. Уже давно было известно, что горячий водород испускает конкретные линии. Расстояние между ними подчинялось определенному закону. Но вот спектр гелия был более сложным: он содержал тот же набор линий, что и водород, и еще один. Вторая серия уже не подчинялась закону, выведенному для первой серии. Тут на помощь пришла теория Бора.

Выяснилось, что электрон в атоме водорода один, и он может переходить из всех высших возбужденных орбит на одну нижнюю. Это и была первая серия линий. Более тяжелые атомы устроены сложнее.

Линза, решетка, спектр

Таким образом было положено начало применению излучения в физике. Спектральный анализ - один из самых мощных и надежных способов определения состава, количества и структуры вещества.

  1. Электронный эмиссионный спектр расскажет, что содержится в объекте и каков процент того или иного компонента. Этот способ используют абсолютно все области науки: от биологии и медицины до квантовой физики.
  2. Спектр поглощения расскажет, какие ионы и на каких позициях присутствуют в решетке твердого тела.
  3. Вращательный спектр продемонстрирует, насколько далеко находятся молекулы внутри атома, сколько и каких связей присутствует у каждого элемента.

А уж диапазонов применения электромагнитного излучения и не счесть:

  • радиоволны исследуют структуру очень далеких объектов и недра планет;
  • тепловое излучение расскажет об энергии процессов;
  • видимый свет подскажет, в каких направлениях лежат самые яркие звезды;
  • ультрафиолетовые лучи дадут понять, что происходят высокоэнергетические взаимодействия;
  • рентгеновский спектр сам по себе позволяет людям изучать структуру вещества (в том числе и человеческого тела), а наличие этих лучей в космических объектах известят ученых, что в фокусе телескопа нейтронная звезда, вспышка сверхновой или черная дыра.

Абсолютно черное тело

Но есть особый раздел, который изучает, что такое тепловое излучение в физике. В отличие от атомного, тепловое испускание света имеет непрерывный спектр. И наилучшим модельным объектом для расчетов является абсолютно черное тело. Это такой объект, который «ловит» весь попадающий на него свет, но не выпускает обратно. Как ни странно, абсолютно черное тело излучает, и максимум длины волны будет зависеть от температуры модели. В классической физике тепловое излучение порождало парадокс Выходило, что любая нагретая вещь должна была излучать все больше и больше энергии, пока в ультрафиолетовом диапазоне ее энергия не разрушила бы вселенную.

Разрешить парадокс смог Макс Планк. В формулу излучения он ввел новую величину, квант. Не придавая ей особенного физического смысла, он открыл целый мир. Сейчас квантование величин - основа современной науки. Ученые поняли, что поля и явления состоят из неделимых элементов, квантов. Это привело к более глубоким исследованиям материи. Например, современный мир принадлежит полупроводникам. Раньше все было просто: металл проводит ток, остальные вещества - диэлектрики. А вещества типа кремния и германия (как раз полупроводники) ведут себя непонятно по отношению к электричеству. Чтобы научиться управлять их свойствами, потребовалось создать целую теорию и рассчитать все возможности p-n переходов.

Ранее люди, чтобы объяснить то, что они не понимают, придумывали различные фантастические вещи - мифы, богов, религию, волшебных существ. И хотя в эти суеверия всё ещё верит большое количество людей, сейчас нам известно, что у всего есть своё объяснение. Одной из наиболее интересных, таинственных и удивительных тем является излучение. Что оно собой представляет? Какие его виды существуют? Что такое излучение в физике? Как оно поглощается? Можно ли защититься от излучения?

Общая информация

Итак, выделяют следующие виды излучений: волновое движение среды, корпускулярное и электромагнитное. Наибольшее внимание будет уделено последнему. Относительно волнового движения среды можно сказать, что оно возникает как результат механического движения определённого объекта, что вызывает последовательное разрежение или сжатие среды. В качестве примера можно привести инфразвук или ультразвук. Корпускулярное излучение - это поток атомных частиц, таких как электроны, позитроны, протоны, нейтроны, альфа, что сопровождается естественным и искусственным распадом ядер. Об этих двух пока и поговорим.

Влияние

Рассмотрим солнечное излучение. Это мощный оздоровительный и профилактический фактор. Совокупность сопутствующих физиологических и биохимических реакций, что протекают при участии света, назвали фотобиологическими процессами. Они берут участие в синтезе биологически важных соединений, служат для получения информации и ориентации в пространстве (зрение), а также могут вызывать вредные последствия, как то появление вредных мутаций, разрушение витаминов, ферментов, белков.

Об электромагнитном излучении

В дальнейшем статья будет посвящена исключительно нему. Что такое излучение в физике делает, как влияет на нас? ЭМИ представляет собой электромагнитные волны, что испускаются заряженными молекулами, атомами, частицами. В качестве крупных источников могут выступать антенны или другие излучающие системы. Длина волны излучения (частота колебания) вместе с источников оказывает решающее значение. Так, в зависимости от этих параметров выделяют гамма, рентгеновское, оптическое излучение. Последнее делится на целый ряд других подвидов. Так, это инфракрасное, ультрафиолетовое, радиоизлучение, а также свет. Диапазон находится в пределах до 10 -13 . Гамма-излучение генерируют возбуждённые атомные ядра. Рентгеновские лучи можно получить при торможении ускоренных электронов, а также при их переходе не свободные уровни. Радиоволны оставляют свой след во время движения по проводникам излучающих систем (например, антенн) переменных электрических токов.

Об ультрафиолетовом излучении

В биологическом отношении наиболее активными являются УФ-лучи. При попадании на кожу они могут вызывать местные изменения тканевых и клеточных белков. Кроме этого, фиксируется воздействие на рецепторы кожи. Оно рефлекторным путём влияет на целый организм. Поскольку это неспецифический стимулятор физиологических функций, то он оказывает благоприятное влияние на иммунную систему организма, а также на минеральный, белковый, углеводный и жировой обмен. Всё это проявляется в виде общеоздоровительного, тонизирующего и профилактического действия солнечного излучения. Следует упомянуть и об отдельных специфических свойствах, что есть у определённого диапазона волн. Так, влияние излучений на человека при длине от 320 до 400 нанометров способствует эритемно-загарному действию. При диапазоне от 275 до 320 нм фиксируются слабо бактерицидный и антирахитический эффекты. А вот ультрафиолетовое излучение от 180 до 275 нм повреждает биологическую ткань. Поэтому, следует соблюдать осторожность. Длительное прямое солнечное излучение даже в безопасном спектре может привести к выраженной эритеме с отеками кожного покрова и существенному ухудшению состояния здоровья. Вплоть до повышения вероятности развития рака кожи.

Реакция на солнечный свет

В первую очередь следует упомянуть инфракрасное излучение. На организм оно оказывает тепловое воздействие, что зависит от степени поглощения лучей кожей. Для характеристики его влияния используется слово «ожог». Видимый спектр влияет на зрительный анализатор и функциональное состояние центральной нервной системы. А посредством ЦНС и на все системы и органы человека. Следует отметить, что на нас оказывает влияние не только степень освещенности, но и цветовая гамма солнечного света, то есть, весь спектр излучения. Так, от длины волны зависит цветоощущение и оказывается влияние на нашу эмоциональную деятельность, а также функционирование различных систем организма.

Красный цвет возбуждает психику, усиливает эмоции и дарит ощущение тепла. Но он быстро утомляет, способствует напряжению мускулатуры, учащению дыхания и повышению артериального давления. Оранжевый цвет вызывает ощущение благополучия и веселья, желтый поднимает настроение и стимулирует нервную систему и зрение. Зелёный успокаивает, полезен во время бессонницы, при переутомлении, повышает общий тонус организма. Фиолетовый цвет оказывает расслабляющее влияние на психику. Голубой успокаивает нервную систему и поддерживает мышцы в тонусе.

Небольшое отступление

Почему рассматривая, что такое излучение в физике, мы говорим в большей степени про ЭМИ? Дело в том, что именно его в большинстве случаев и подразумевают, когда обращаются к теме. То же корпускулярное излучение и волновое движение среды является на порядок менее масштабным и известным. Очень часто, когда говорят про виды излучений, то подразумевают исключительно те, на которые делится ЭМИ, что в корне не верно. Ведь говоря о том, что такое излучение в физике, следует уделять внимание всем аспектам. Но одновременно делается упор именно на наиболее важных моментах.

Об источниках излучения

Продолжаем рассматривать электромагнитное излучение. Мы знаем, что оно собой представляет волны, что возникают при возмущении электрического или магнитного поля. Этот процесс современной физикой трактуется с точки зрения теории корпускулярно-волнового дуализма. Так признаётся, что минимальная порция ЭМИ - это квант. Но вместе с этим считается, что у него есть и частотно-волновые свойства, от которых зависят основные характеристики. Для улучшения возможностей классификации источников выделяют разные спектры излучения частот ЭМИ. Так это:

  1. Жесткое излучение (ионизированное);
  2. Оптическое (видимое глазом);
  3. Тепловое (оно же инфракрасное);
  4. Радиочастотное.

Часть из них уже была рассмотрена. Каждый спектр излучения обладает своими уникальными характеристиками.

Природа источников

Зависимо от своего происхождения, электромагнитные волны могут возникать в двух случаях:

  1. Когда наблюдается возмущение искусственного происхождения.
  2. Регистрация излучения, идущего от естественного источника.

Что можно сказать о первых? Искусственные источники чаще всего представляют собой побочное явление, что возникает вследствие работы различных электрических приборов и механизмов. Излучение естественного происхождения генерирует магнитное поле Земли, электропроцессы в атмосфере планеты, ядерный синтез в недрах солнца. От уровня мощности источника зависит степень напряженности электромагнитного поля. Условно, излучение, что регистрируется, разделяют на низкоуровневое и высокоуровневое. В качестве первых можно привести:

  1. Практически все устройства, оборудованные ЭЛТ дисплеем (как, пример, компьютер).
  2. Различная бытовая техника, начиная от климатических систем и заканчивая утюгами;
  3. Инженерные системы, что обеспечивают подачу электроэнергии к разным объектам. В качестве примера можно привести кабель электропередач, розетки, электросчетчики.

Высокоуровневым электромагнитным излучением обладают:

  1. Линии электропередачи.
  2. Весь электротранспорт и его инфраструктура.
  3. Радио- и телевышки, а также станции мобильной и передвижной связи.
  4. Лифты и иное подъемное оборудование, где применяются электромеханические силовые установки.
  5. Приборы преобразования напряжения в сети (волны, исходящие от распределяющей подстанции или трансформатора).

Отдельно выделяют специальное оборудование, что используется в медицине и испускает жесткое излучение. В качестве примера можно привести МРТ, рентгеновские аппараты и тому подобное.

Влияние электромагнитного излучения на человека

В ходе многочисленных исследований ученые пришли к печальному выводу - длительное влияние ЭМИ способствует настоящему взрыву болезней. При этом многие нарушение происходят на генетическом уровне. Поэтому актуальной является защита от электромагнитного излучения. Это происходит из-за того, что ЭМИ обладает высоким уровнем биологической активности. При этом результат влияния зависит от:

  1. Характера излучения.
  2. Продолжительности и интенсивности влияния.

Специфические моменты влияния

Всё зависит от локализации. Поглощение излучения может быть местным или общим. В качестве примера второго случая можно привести эффект, что оказывают линии электропередачи. В качестве примера местного воздействия можно привести электромагнитные волны, что испускают электронные часы или мобильный телефон. Следует упомянуть и о термальном воздействии. За счет вибрации молекул энергия поля преобразуется в тепло. По этому принципу работают СВЧ излучатели, что используются для нагревания различных веществ. Следует отметить, что при влиянии на человека, термальный эффект всегда является негативным, и даже пагубным. Следует отметить, что мы постоянно облучаемся. На производстве, дома, перемещаясь по городу. Со временем негативный эффект только усиливается. Поэтому, все актуальнее становится защита от электромагнитного излучения.

Как же можно обезопасить себя?

Первоначально необходимо знать, с чем приходится иметь дело. В этом поможет специальный прибор для измерения излучения. Он позволит оценить ситуацию с безопасностью. На производстве для защиты используются поглощающие экраны. Но, увы, на использование в домашних условиях они не рассчитаны. В качестве начала можно соблюдать три рекомендации:

  1. Следует пребывать на безопасном расстоянии от устройств. Для ЛЭП, теле- и радиовышек это как минимум 25 метров. С ЭЛТ мониторами и телевизорами достаточно тридцати сантиметров. Электронные часы должны быть не ближе 5 см. А радио и сотовые телефоны не рекомендуется подносить ближе, чем на 2,5 сантиметра. Подобрать место можно с помощью специального прибора - флюксметра. Допустимая доза излучения, фиксируемая ним, не должна превышать 0,2мкТл.
  2. Старайтесь сократить время, когда приходится облучаться.
  3. Всегда следует выключать неиспользуемые электроприборы. Ведь даже будучи неактивными, они продолжают испускать ЭМИ.

О тихом убийце

И завершим статью важной, хотя и довольно слабо известной в широких кругах темой - радиационным излучением. На протяжении всей своей жизни, развития и существования, человек облучался естественным природным фоном. Естественное радиационное излучение может быть условно поделено на внешнее и внутреннее облучение. К первому относятся космическое излучение, солнечная радиация, влияние земной коры и воздуха. Даже строительные материалы, из которых создаются дома и сооружения, генерируют определённый фон.

Радиационное излучение обладает значительной проникающей силой, поэтому остановить его проблематично. Так, чтобы полностью изолировать лучи, необходимо укрыться за стеной из свинца, толщиной в 80 сантиметров. Внутреннее облучение возникает в тех случаях, когда естественные радиоактивные вещества попадают внутрь организма вместе с продуктами питания, воздухом, водой. В земных недрах можно найти радон, торон, уран, торий, рубидий, радий. Все они поглощаются растениями, могут быть в воде - и при употреблении пищевых продуктов попадают в наш организм.

Loading...Loading...