Парабола вращается вокруг оси абсцисс. Как вычислить объем тела вращения? Площадь плоской фигуры

Объем тела вращения можно вычислить по формуле:

В формуле перед интегралом обязательно присутствует число . Так повелось – всё, что в жизни крутится, связано с этой константой.

Как расставить пределы интегрирования «а» и «бэ», думаю, легко догадаться из выполненного чертежа.

Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболы сверху. Это и есть та функция, которая подразумевается в формуле.

В практических заданиях плоская фигура иногда может располагаться и ниже оси . Это ничего не меняет – функция в формуле возводится в квадрат: , таким образом объем тела вращения всегда неотрицателен , что весьма логично.

Вычислим объем тела вращения, используя данную формулу:

Как я уже отмечал, интеграл почти всегда получается простой, главное, быть внимательным.

Ответ:

В ответе нужно обязательно указать размерность – кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубические единицы ? Потому что наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.

Пример 2

Найти объем тела, образованного вращением вокруг оси фигуры, ограниченной линиями , ,

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотрим две более сложные задачи, которые тоже часто встречаются на практике.

Пример 3

Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями , , и

Решение: Изобразим на чертеже плоскую фигуру, ограниченную линиями , , , , не забывая при этом, что уравнение задает ось :

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси получается такой сюрреалистический бублик с четырьмя углами.

Объем тела вращения вычислим как разность объемов тел .

Сначала рассмотрим фигуру, которая обведена красным цветом. При её вращении вокруг оси получается усеченный конус. Обозначим объем этого усеченного конуса через .

Рассмотрим фигуру, которая обведена зеленым цветом. Если вращать данную фигуру вокруг оси , то получится тоже усеченный конус, только чуть поменьше. Обозначим его объем через .

И, очевидно, разность объемов – в точности объем нашего «бублика».

Используем стандартную формулу для нахождения объема тела вращения:

1) Фигура, обведенная красным цветом ограничена сверху прямой , поэтому:

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

3) Объем искомого тела вращения:

Ответ:

Любопытно, что в данном случае решение можно проверить, используя школьную формулу для вычисления объема усеченного конуса.

Само решение чаще оформляют короче, примерно в таком духе:

Теперь немного отдохнем, и расскажу о геометрических иллюзиях.

У людей часто возникают иллюзии, связанная с объемами, которую подметил еще Перельман (не тот) в книге Занимательная геометрия . Посмотрите на плоскую фигуру в прорешанной задаче – она вроде бы невелика по площади, а объем тела вращения составляет чуть более 50 кубических единиц, что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 квадратных метров, что, наоборот, кажется слишком маленьким объемом.

Вообще, система образования в СССР действительно была самой лучшей. Та же книга Перельмана, написанная им еще в 1950 году, очень хорошо развивает, как сказал юморист, соображаловку и учит искать оригинальные нестандартные решения проблем. Недавно с большим интересом перечитал некоторые главы, рекомендую, доступно даже для гуманитариев. Нет, не нужно улыбаться, что я предложил беспонтовое времяпровождение, эрудиция и широкий кругозор в общении – отличная штука.

После лирического отступления как раз уместно решить творческое задание:

Пример 4

Вычислить объем тела, образованного вращением относительно оси плоской фигуры, ограниченной линиями , , где .

Это пример для самостоятельного решения. Обратите внимание, что все дела происходят в полосе , иными словами, даны практически готовые пределы интегрирования. Также постарайтесь правильно начертить графики тригонометрических функций, если аргумент делится на два: , то графики растягиваются по оси в два раза. Попробуйте найти хотя бы 3-4 точки по тригонометрическим таблицам и точнее выполнить чертеж. Полное решение и ответ в конце урока. Кстати, задание можно решить рационально и не очень рационально.

Вычисление объема тела, образованного вращением
плоской фигуры вокруг оси

Второй параграф будет еще интереснее, чем первый. Задание на вычисление объема тела вращения вокруг оси ординат – тоже достаточно частый гость в контрольных работах. Попутно будет рассмотрена задача о нахождении площади фигуры вторым способом – интегрированием по оси , это позволит вам не только улучшить свои навыки, но и научит находить наиболее выгодный путь решения. В этом есть и практический жизненный смысл! Как с улыбкой вспоминала мой преподаватель по методике преподавания математики, многие выпускники благодарили её словами: «Нам очень помог Ваш предмет, теперь мы эффективные менеджеры и оптимально руководим персоналом». Пользуясь случаем, я тоже выражаю ей свою большую благодарность, тем более, что использую полученные знания по прямому назначению =).

Пример 5

Дана плоская фигура, ограниченная линиями , , .

1) Найти площадь плоской фигуры, ограниченной данными линиями.
2) Найти объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Внимание! Даже если вы хотите ознакомиться только со вторым пунктом, сначалаобязательно прочитайте первый!

Решение: Задача состоит из двух частей. Начнем с площади.

1) Выполним чертёж:

Легко заметить, что функция задает верхнюю ветку параболы, а функция – нижнюю ветку параболы. Перед нами тривиальная парабола, которая «лежит на боку».

Нужная фигура, площадь которой предстоит найти, заштрихована синим цветом.

Как найти площадь фигуры? Её можно найти «обычным» способом, который рассматривался на уроке Определенный интеграл. Как вычислить площадь фигуры . Причем, площадь фигуры находится как сумма площадей:
– на отрезке ;
– на отрезке .

Поэтому:

Чем в данном случае плох обычный путь решения? Во-первых, получилось два интеграла. Во-вторых, под интегралами корни, а корни в интегралах – не подарок, к тому же можно запутаться в подстановке пределов интегрирования. На самом деле, интегралы, конечно, не убийственные, но на практике всё бывает значительно печальнее, просто я подобрал для задачи функции «получше».

Есть более рациональный путь решения: он состоит в переходе к обратным функциям и интегрированию по оси .

Как перейти к обратным функциям? Грубо говоря, нужно выразить «икс» через «игрек». Сначала разберемся с параболой:

Этого достаточно, но убедимся, что такую же функцию можно вывести из нижней ветки:

С прямой всё проще:

Теперь смотрим на ось : пожалуйста, периодически наклоняйте голову вправо на 90 градусов по ходу объяснений (это не прикол!). Нужная нам фигура лежит на отрезке , который обозначен красным пунктиром. При этом на отрезке прямая расположена выше параболы , а значит, площадь фигуры следует найти по уже знакомой вам формуле: . Что поменялось в формуле? Только буква, и не более того.

! Примечание: Пределы интегрирования по оси следует расставлять строго снизу вверх !

Находим площадь:

На отрезке , поэтому:

Обратите внимание, как я осуществил интегрирование, это самый рациональный способ, и в следующем пункте задания будет понятно – почему.

Для читателей, сомневающихся в корректности интегрирования, найду производные:

Получена исходная подынтегральная функция, значит интегрирование выполнено правильно.

Ответ:

2) Вычислим объем тела, образованного вращением данной фигуры, вокруг оси .

Перерисую чертеж немного в другом оформлении:

Итак, фигура, заштрихованная синим цветом, вращается вокруг оси . В результате получается «зависшая бабочка», которая вертится вокруг своей оси.

Для нахождения объема тела вращения будем интегрировать по оси . Сначала нужно перейти к обратным функциям. Это уже сделано и подробно расписано в предыдущем пункте.

Теперь снова наклоняем голову вправо и изучаем нашу фигуру. Очевидно, что объем тела вращения, следует найти как разность объемов.

Вращаем фигуру, обведенную красным цветом, вокруг оси , в результате получается усеченный конус. Обозначим этот объем через .

Вращаем фигуру, обведенную зеленым цветом, вокруг оси и обозначаем через объем полученного тела вращения.

Объем нашей бабочки равен разности объемов .

Используем формулу для нахождения объема тела вращения:

В чем отличие от формулы предыдущего параграфа? Только в букве.

А вот и преимущество интегрирования, о котором я недавно говорил, гораздо легче найти , чем предварительно возводить подынтегральную функцию в 4-ую степень.

Ответ:

Однако нехилая бабочка.

Заметьте, что если эту же плоскую фигуру вращать вокруг оси , то получится совершенно другое тело вращения, другого, естественно, объема.

Пример 6

Дана плоская фигура, ограниченная линиями , и осью .

1) Перейти к обратным функциям и найти площадь плоской фигуры, ограниченной данными линиями, интегрированием по переменной .
2) Вычислить объем тела, полученного вращением плоской фигуры, ограниченной данными линиями, вокруг оси .

Это пример для самостоятельного решения. Желающие также могут найти площадь фигуры «обычным» способом, выполнив тем самым проверку пункта 1). А вот если, повторюсь, будете вращать плоскую фигуру вокруг оси , то получится совершенно другое тело вращения с другим объемом, кстати, правильный ответ (тоже для любителей порешать).

Полное же решение двух предложенных пунктов задания в конце урока.

Да, и не забывайте наклонять голову направо, чтобы разобраться в телах вращения и в пределах интегрирования!

Хотел, было уже, закончить статью, но сегодня принесли интересный пример как раз на нахождение объема тела вращения вокруг оси ординат. Свежачок:

Пример 7

Вычислить объем тела, образованного вращением вокруг оси фигуры, ограниченной кривыми и. Левой неиспользуемой ветке параболы соответствует обратная функция – на отрезке над осью расположен график функции ;

Логично предположить, что объем тела вращения нужно искать уже как сумму объемов тел вращений!

Используем формулу:

В данном случае:

Ответ:

В задаче нахождения площади фигуры суммирование площадей используется часто, а суммирование объемов тел вращения, видимо, редкость, раз такая разновидность чуть было не выпала из моего поля зрения. Все-таки хорошо, что своевременно подвернулся рассмотренный пример – удалось вытащить немало полезного.

Успешной раскрутки фигур!

Цилиндр представляет собой простое геометрическое тело, получаемое при вращении прямоугольника вокруг одной из его сторон. Другое определение: цилиндр - это геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые ее пересекают.

объем цилиндра формула

Если вы хотите знать, как вычислить объем цилиндра,то все, что вам нужно сделать - найти высоту (h) и радиус (r) и и подставить их в формулу:

Если внимательно посмотреть на эту формулу, то можно заметить, что {\pi r^2} - это формула площади круга, а в нашем случае - площадь основания.

Поэтому формулу объема цилиндра можно записать через площадь основания и высоту:

Произвести расчет объема цилиндра вам поможет наш калькулятор онлайн. Просто введите указанные параметры цилиндра и получите его объем.

Ваша оценка

[Оценок: 168 Средняя: 3.4]

Объем цилиндра формула (через радиус основания и высоту)

{V=\pi r^2 h}, где

r - радиус основания цилиндра,

h - высота цилиндра

Объем цилиндра формула (через площадь основания и высоту)

S - площадь основания цилиндра,

h - высота цилиндра

Объем цилиндра калькулятор онлайн

Как найти объём тела вращения с помощью интеграла

С помощью определённого интеграла можно вычислять не только площади плоских фигур , но и объёмы тел, образованных вращением этих фигур вокруг осей координат.

Тело, которое образуется вращением вокруг оси Ox криволинейной трапеции, ограниченной сверху графиком функции y= f(x), имеет объём

Аналогично объём v тела, полученного вращением вокруг оси ординат (Oy) криволинейной трапеции выражается формулой

При вычислении площади плоской фигуры мы узнали, что площади некоторых фигур могут быть найдены как разность двух интегралов, в которых подынтегральные функции — те функции, которые ограничивают фигуру сверху и снизу. Похоже обстоит дело и с некоторыми телами вращения, объёмы которых вычисляются как разность объёмов двух тел, такие случаи разобраны в примерах 3, 4 и 5.

Пример 1.

Найти объём тела, образованного вращением вокруг оси абсцисс (Ox) фигуры, ограниченной гиперболой , осью абсцисс и прямыми , .

Решение. Объём тела вращения найдём по формуле (1), в которой , а пределы интегрирования a = 1, b = 4:

Пример 2.

Найти объём шара радиуса R.

Решение. Рассмотрим шар как тело, получащееся при вращении вокруг оси абсцисс полукруга радиуса R с центром в начале координат. Тогда в формуле (1) подынтегральная функция запишется в виде , а пределами интегрирования служат -R и R. Следовательно,

Нет времени вникать в решение?

Можно заказать работу!

Пример 3. Найти объём тела, образованного вращением вокруг оси абсцисс (Ox) фигуры, заключённой между параболами и .

Представим искомый объём как разность объёмов тел, полученных вращением вокруг оси абсцисс криволинейных трапеций ABCDE и ABFDE. Объёмы этих тел найдём по формуле (1), в которой пределы интегрирования равны и — абсциссам точек B и D пересечения парабол. Теперь можем найти объём тела:

Пример 4.

Вычислить объём тора (тором называется тело, получающееся при вращении круга радиуса a вокруг оси, лежащей в его плоскости на расстоянии b от центра круга ().

Форму тора имеет, например, баранка).

Решение. Пусть круг вращается вокруг оси Ox (рис.

Формулы площадей и объёмов геометрических фигур

20). Объём тора можно представить как разности объёмов тел, полученных от вращения криволинейных трапеций ABCDE и ABLDE вокруг оси Ox.

Уравнение окружности LBCD имеет вид

причём уравнение кривой BCD

а уравнение кривой BLD

Используя разность объёмов тел, получаем для объёма тора v выражение



Пример 5.

Найти объём тела, образованного вращением вокруг оси ординат (Oy) фигуры, ограниченной линиями и .

Представим искомый объём как разность объёмов тел, полученных вращением вокруг оси ординат треугольника OBA и криволинейной трапеции OnBA.

Объёмы этих тел найдём по формуле (2). Пределами интегрирования служат и — ординаты точек O и B пересечения параболы и прямой.

Таким образом, получаем объём тела:

К началу страницы

Пройти тест по теме Интеграл

Начало темы «Интеграл»

Неопределённый интеграл: основные понятия, свойства, таблица неопределённых интегралов

Найти неопределённый интеграл: начала начал, примеры решений

Метод замены переменной в неопределённом интеграле

Интегрирование подведением под знак дифференциала

Метод интегрирования по частям

Интегрирование дробей

Интегрирование рациональных функций и метод неопределённых коэффициентов

Интегрирование некоторых иррациональных функций

Интегрирование тригонометрических функций

Определённый интеграл

Площадь плоской фигуры с помощью интеграла

Несобственные интегралы

Вычисление двойных интегралов

Длина дуги кривой с помощью интеграла

Площадь поверхности вращения с помощью интеграла

Определение работы силы с помощью интеграла

Лучшая кроватка в математике. Качественный. Ничего лишнего.

Объем геометрической фигуры — количественная характеристика пространства, занимаемого телом или веществом. Объем тела или емкости судна определяется его формой и линейными размерами.

Объем куба

Объем куба равна кубу длины ее лица.

Формула Куб

где — объем куба,
— длина куба.

Область призмы

Область призмы равна произведению поверхности дна призмы на высоту.

Формула объема призмы

где — степень призмы,

— основание призмы,

— высота призмы.

Объем паралелепипедов

Объем паралелепипедов равна произведению поверхности основания относительно высоты.

Объем формулы паралелепипеда

где — объем паралелепипедов,

— базовая площадь,

— высота высота.

Объем прямоугольного параллелепипеда это то же самое, что и произведение его длины, ширины и высоты.

Формула для объема прямоугольного параллелепипеда

где — объем прямоугольного параллелепипеда,
— длина,

— ширина

— высота.

Объем пирамиды

Объем пирамиды составляет одну треть продукта в базовой области по высоте.

Формула объема пирамиды

где — объем пирамиды,

— основание основания пирамиды,

— длина пирамиды.

Объем правильного тетраэдра

Формула для объема правильного тетраэдра

Пусть линия огранич. плоскую фигуру задана в полярной системе координат.

Пример : Вычислить длину окружности: x 2 +y 2 =R 2

Вычислить длину 4-ой части окружности, расположенной в I квадранте(х≥0, y≥0):

Если уравнение кривой задано в параметр-ой форме:
, функции x(t), y(t) определены и непрерывны вместе со своими производными на отрезке [α,β]. Производная , тогда сделав подстановку в формулу:
и учитывая что

получим
внесем множитель
под знак корня и получим окончательно

Замечание: Задана плоская кривая, можно также рассматривать функцию, заданную параметр-ки в пространстве, тогда добавится функция z=z(t) и формула

Пример: Вычислить длину астроиды, которая задаётся уравнением: x=a*cos 3 (t), y=a*sin 3 (t), a>0

Вычислить длину 4-ой части:

по формуле

Длина дуги плоской кривой, заданной в полярной системе координат:

Пусть в полярной системе координат задано уравнение кривой:
- непрерывная функция, вместе со своей производной на отрезке [α,β].

Формулы перехода от полярных координат:

рассматривать как параметрические:

ϕ - параметр, по ф-ле

2

Пр: Вычислить длину кривой:
>0

З -ние: вычислим половину длины окружности:

Объём тела, вычисляемый по площади поперечного сечения тела.

Пусть задано тело, ограниченное замкнутой поверхностью и пусть известна площадь любого сечения этого тела плоскостью, перпендикулярной к оси Ох. Эта площадь будет зависеть от положения секущей плоскости.

пусть все тело заключено между 2-мя перпендикулярными к оси Ох плоскостями, пересекающими её в точках х=а, х=b (a

Для определения объёма такого тела разобьём его на слои с помощью секущих плоскостей, перпендикулярных к оси Ох и пересекающих её в точках . В каждом частичном промежутке
. Выберем

и для каждого значения i=1,….,n построим цилиндрическое тело, образующая которого параллельна Ох, а направляющая представляет собой контур сечения тела плоскостью х=С i , объем такого элементарного цилиндра с площадью основания S=C i и высотой ∆х i . V i =S(C i)∆x i . Объём всех таких элементарных цилиндров будет
. Предел этой суммы, если он существует и конечен при max ∆х  0 называется объёмом данного тела.

. Так как V n интегральная сумма для непрерывной на отрезке функции S(x) то указанный предел существует (т-ма существования) и выражается опр. Интегралом.

- объём тела, вычисляемый по площади поперечного сечения.

Объём тела вращения:

Пусть тело образовано вращением вокруг оси Ох криволинейной трапеции, ограниченной графиком функции y=f(x), осью Ох и прямыми x=a, x=b.

Пусть функция y=f(x) определена и непрерывна на отрезке и неотрицательна на нем, тогда сечение этого тела плоскостью, перпендикулярной Ох есть круг, радиусом R=y(x)=f(x) . Площадью круга S(x)=Пy 2 (x)=П 2 .Подставляя формулу
получим формулу для вычисления объёма тела вращения вокруг оси Ох:

Если же вокруг оси Оу вращается криволинейная трапеция, ограниченная графиком непрерывной на функцией , то объём такого тела вращения:

Этот же объём может быть вычислен по формуле:
. Если линия задана параметрическими уравнениями:

Делая замену переменной получим:

Если линия задана параметрическими уравнениями:

y (α)= c , y (β)= d . Делая замену y = y (t) получим:

Вычислить тела вращения вокруг оси ОУ параболы , .

2)Вычислить V тела вращения вокруг оси ОХ криволинейной трапеции, ограниченной прямой у=0, дугой (с центом в точке(1;0), и радиусом=1), при .

Площадь поверхности тела вращения

Пусть заданна поверхность образованная вращением кривой у =f(х)вокруг оси Ох. Необходимо определить S этой поверхности при .

Пусть функция у =f(х) определенна и непрерывна, имеет неприр.и неотрицательна во всех точках отрезка [а;в]

Проведем хорды длины которых обозначим соответственно (n-хорд)

по теореме Лагранжа:

Площадь поверхности всей описанной ломанной будет равна

Определение: предел этой суммы, если он и конечен, когда наибольшее звено ломаной max , называется площадью рассматриваемой поверхности вращения.

Можно доказать, сто предел суммы равен приделу интегрированной суммы для р-ий

Формула для S поверхности тела вращения =

S поверхности образованной Вращением дуги кривой х=g(x) вокруг оси Оу при

Непрерывна со своей производной

Если кривая заданна параметрически ур-ми x =x(t) , y = t (t ) ф-ии x ’(t ), y ’(t ), x (t ), y (t ) определенны на отрезке [ a ; b ], x (a )= a , x (b )= b то сделав замену переменой x = x (t )

Если кривая заданна параметрически сделав замену в формуле получим:

Если уравнение кривой заданно в полярной системе координат

S поверхности вращения вокруг оси будет равно

Использование интегралов для нахождения объемов тел вращения

Практическая полезность математики обусловлена тем, что без

конкретных математических знаний затруднено понимание принципов устройства и использование современной техники. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, пользоваться общеупотребительной техникой, находить в справочниках применять нужные формулы, составлять несложные алгоритмы для решения задач. В современном обществе все больше специальностей, требующих высокого уровня образования, связано с непосредственным применением математики. Таким образом, для школьника математика становится профессиональным значимым предметом. Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитывает умение действовать по заданному алгоритму и конструировать новые алгоритмы.

Изучая тему о применении интеграла для вычисления объемов тел вращения, я предлагаю учащимся на факультативных занятиях рассмотреть тему: «Объемы тел вращения с применением интегралов». Ниже привожу методические рекомендации по рассмотрению данной темы:

1.Площадь плоской фигуры.

Из курса алгебры мы знаем, что к понятию определенного интеграла привели задачи практического характера. Один из них, это вычисления площади плоской фигуры, ограниченной непрерывной линией y=f(x) (где f(x)DIV_ADBLOCK243">

Вычислим площадь криволинейной трапеции по формуле , если основание трапеции лежит на оси абсцисс или по формуле https://pandia.ru/text/77/502/images/image004_49.jpg" width="526" height="262 src=">

https://pandia.ru/text/77/502/images/image006_95.gif" width="127" height="25 src=">.

Для нахождения объема тела вращения, образованного вращением криволинейной трапеции вокруг оси Оx, ограниченной прерывной линией y=f(x), осью Оx, прямыми x=a и x=b вычислим по формуле

https://pandia.ru/text/77/502/images/image008_26.jpg" width="352" height="283 src=">Y

3.Объем цилиндра.

https://pandia.ru/text/77/502/images/image011_58.gif" width="85" height="51">..gif" width="13" height="25">..jpg" width="401" height="355">Конус получается путем вращения прямоугольного треугольника АВС(С=90) вокруг оси Оx на котором лежит катет АС.

Отрезок АВ лежит на прямой y=kx+c, где https://pandia.ru/text/77/502/images/image019_33.gif" width="59" height="41 src=">.

Пусть а=0, b=H (Н- высота конуса), тогда Vhttps://pandia.ru/text/77/502/images/image021_27.gif" width="13" height="23 src=">.

5.Объем усеченного конуса.

Усеченный конус можно получить путем вращения прямоугольной трапецией АВСD (СDOx) вокруг оси Оx.

Отрезок АВ лежит на прямой y=kx+c, где , c=r.

Так как прямая проходит через точку А (0;r).

Таким образом прямая имеет вид https://pandia.ru/text/77/502/images/image027_17.gif" width="303" height="291 src=">

Пусть а=0, b=H (Н- высота усеченного конуса), тогда https://pandia.ru/text/77/502/images/image030_16.gif" width="36" height="17 src=">= .

6. Объем шара.

Шар можно получить путем вращения круга с центром (0;0) вокруг оси Оx. Полуокружность, расположенная над осью Оx, задается уравнением

https://pandia.ru/text/77/502/images/image034_13.gif" width="13" height="16 src=">x R.

Помимо нахождения площади плоской фигуры с помощью определенного интеграла важнейшим приложением темы является вычисление объема тела вращения . Материал простой, но читатель должен быть подготовленным: необходимо уметь решатьнеопределенные интегралы средней сложности и применять формулу Ньютона-Лейбница в определенном интеграле . Как и для задачи нахождения площади, нужны уверенные навыки построения чертежей – это чуть ли не самое важное (поскольку интегралы сами по себе чаще будут лёгкими). Освоить грамотную и быструю технику построения графиков можно с помощью методического материала . Но, собственно, о важности чертежей я уже неоднократно говорил на уроке .

Вообще в интегральном исчислении очень много интересных приложений, с помощью определенного интеграла можно вычислить площадь фигуры, объем тела вращения, длину дуги, площадь поверхности тела и многое другое. Поэтому будет весело, пожалуйста, настройтесь на оптимистичный лад!

Представьте некоторую плоскую фигуру на координатной плоскости. Представили? ... Интересно, кто что представил… =))) Её площадь мы уже находили. Но, кроме того, данную фигуру можно ещё и вращать, причем вращать двумя способами:

вокруг оси абсцисс ; – вокруг оси ординат .

В данной статье будут разобраны оба случая. Особенно интересен второй способ вращения, он вызывает наибольшие затруднения, но на самом деле решение практически такое же, как и в более распространенном вращении вокруг оси абсцисс. В качестве бонуса я вернусь кзадаче нахождения площади фигуры , и расскажу вам, как находить площадь вторым способом – по оси . Даже не столько бонус, сколько материал удачно вписывается в тему.

Начнем с наиболее популярной разновидности вращения.

Вычисление объема тела, образованного вращением плоской фигуры вокруг оси

Пример 1

Вычислить объем тела, полученного вращением фигуры, ограниченной линиями , вокруг оси .

Решение: Как и в задаче на нахождение площади, решение начинается с чертежа плоской фигуры . То есть, на плоскости необходимо построить фигуру, ограниченную линиями , , при этом не забываем, что уравнение задаёт ось . Как рациональнее и быстрее выполнить чертёж, можно узнать на страницах Графики и свойства Элементарных функций и Определенный интеграл. Как вычислить площадь фигуры . Это китайское напоминание, и на данном моменте я больше не останавливаюсь.

Чертёж здесь довольно прост:

Искомая плоская фигура заштрихована синим цветом, именно она и вращается вокруг оси . В результате вращения получается такая немного яйцевидная летающая тарелка, которая симметрична относительно оси . На самом деле у тела есть математическое название, но в справочнике что-то лень смотреть, поэтому едем дальше.

Как вычислить объем тела вращения?

Объем тела вращения можно вычислить по формуле:

В формуле перед интегралом обязательно присутствует число . Так повелось – всё, что в жизни крутится, связано с этой константой.

Как расставить пределы интегрирования «а» и «бэ», думаю, легко догадаться из выполненного чертежа.

Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболы сверху. Это и есть та функция, которая подразумевается в формуле.

В практических заданиях плоская фигура иногда может располагаться и ниже оси . Это ничего не меняет – функция в формуле возводится в квадрат: , таким образом объем тела вращения всегда неотрицателен , что весьма логично.

Вычислим объем тела вращения, используя данную формулу:

Как я уже отмечал, интеграл почти всегда получается простой, главное, быть внимательным.

Ответ:

В ответе нужно обязательно указать размерность – кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубические единицы ? Потому что наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.

Пример 2

Найти объем тела, образованного вращением вокруг оси фигуры, ограниченной линиями , ,

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотрим две более сложные задачи, которые тоже часто встречаются на практике.

Пример 3

Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями , , и

Решение: Изобразим на чертеже плоскую фигуру, ограниченную линиями , , , , не забывая при этом, что уравнение задает ось :

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси получается такой сюрреалистический бублик с четырьмя углами.

Объем тела вращения вычислим как разность объемов тел .

Сначала рассмотрим фигуру, которая обведена красным цветом. При её вращении вокруг оси получается усеченный конус. Обозначим объем этого усеченного конуса через .

Рассмотрим фигуру, которая обведена зеленым цветом. Если вращать данную фигуру вокруг оси , то получится тоже усеченный конус, только чуть поменьше. Обозначим его объем через .

И, очевидно, разность объемов – в точности объем нашего «бублика».

Используем стандартную формулу для нахождения объема тела вращения:

1) Фигура, обведенная красным цветом ограничена сверху прямой , поэтому:

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

3) Объем искомого тела вращения:

Ответ:

Любопытно, что в данном случае решение можно проверить, используя школьную формулу для вычисления объема усеченного конуса.

Само решение чаще оформляют короче, примерно в таком духе:

Теперь немного отдохнем, и расскажу о геометрических иллюзиях.

У людей часто возникают иллюзии, связанная с объемами, которую подметил еще Перельман (не тот) в книге Занимательная геометрия . Посмотрите на плоскую фигуру в прорешанной задаче – она вроде бы невелика по площади, а объем тела вращения составляет чуть более 50 кубических единиц, что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 квадратных метров, что, наоборот, кажется слишком маленьким объемом.

Вообще, система образования в СССР действительно была самой лучшей. Та же книга Перельмана, написанная им еще в 1950 году, очень хорошо развивает, как сказал юморист, соображаловку и учит искать оригинальные нестандартные решения проблем. Недавно с большим интересом перечитал некоторые главы, рекомендую, доступно даже для гуманитариев. Нет, не нужно улыбаться, что я предложил беспонтовое времяпровождение, эрудиция и широкий кругозор в общении – отличная штука.

После лирического отступления как раз уместно решить творческое задание:

Пример 4

Вычислить объем тела, образованного вращением относительно оси плоской фигуры, ограниченной линиями , , где .

Это пример для самостоятельного решения. Обратите внимание, что все дела происходят в полосе , иными словами, даны практически готовые пределы интегрирования. Также постарайтесь правильно начертить графики тригонометрических функций, если аргумент делится на два: , то графики растягиваются по оси в два раза. Попробуйте найти хотя бы 3-4 точки по тригонометрическим таблицам и точнее выполнить чертеж. Полное решение и ответ в конце урока. Кстати, задание можно решить рационально и не очень рационально.

Loading...Loading...