Модуль силы гравитационного притяжения формула. Сила тяготения на Земле. Сила гравитации Земли. Гравитация как проявление геометрических свойств пространства-времени

Человечество издревле задумывалось о том, как устроен окружающий мир. Почему растет трава, почему светит Солнце, почему мы не можем летать… Последнее, кстати, всегда особенно интересовало людей. Сейчас мы знаем, что причина всему - гравитация. Что это такое, и почему данное явление настолько важно в масштабах Вселенной, мы сегодня и рассмотрим.

Вводная часть

Ученые выяснили, что все массивные тела испытывают взаимное притяжение друг к другу. Впоследствии оказалось, что эта таинственная сила обуславливает и движение небесных тел по их постоянным орбитам. Саму же теорию гравитации сформулировал гениальный чьи гипотезы предопределили развитие физики на много веков вперед. Развил и продолжил (хотя и в совершенно другом направлении) это учение Альберт Эйнштейн - один из величайших умов минувшего века.

На протяжении столетий ученые наблюдали за притяжением, пытались понять и измерить его. Наконец, в последние несколько десятилетий поставлено на службу человечеству (в определенном смысле, конечно же) даже такое явление, как гравитация. Что это такое, каково определение рассматриваемого термина в современной науке?

Научное определение

Если изучить труды древних мыслителей, то можно выяснить, что латинское слово «gravitas» означает «тяжесть», «притяжение». Сегодня ученые так называют универсальное и постоянное взаимодействие между материальными телами. Если эта сила сравнительно слабая и действует только на объекты, которые движутся значительно медленнее то к ним применима теория Ньютона. Если же дело обстоит наоборот, следует пользоваться эйнштейновскими выводами.

Сразу оговоримся: в настоящее время сама природа гравитации до конца не изучена в принципе. Что это такое, мы все еще полностью не представляем.

Теории Ньютона и Эйнштейна

Согласно классическому учению Исаака Ньютона, все тела притягиваются друг к другу с силой, прямо пропорциональной их массе, обратно пропорциональной квадрату того расстояния, которое пролегает между ними. Эйнштейн же утверждал, что тяготение между объектами проявляется в случае искривления пространства и времени (а кривизна пространства возможна только в том случае, если в нем имеется материя).

Мысль эта была очень глубокой, но современные исследования доказывают ее некоторую неточность. Сегодня считается, что гравитация в космосе искривляет только лишь пространство: время можно затормозить и даже остановить, но реальность изменения формы временной материи теоретически не подтверждена. А потому классическое уравнение Эйнштейна не предусматривает даже шанса на то, что пространство будет продолжать влиять на материю и на возникающее магнитное поле.

В большей степени известен закон гравитации (всемирного тяготения), математическое выражение которого принадлежит как раз-таки Ньютону:

\[ F = γ \frac[-1.2]{m_1 m_2}{r^2} \]

Под γ понимается гравитационная постоянная (иногда используется символ G), значение которой равно 6,67545×10−11 м³/(кг·с²).

Взаимодействие между элементарными частицами

Невероятная сложность окружающего нас пространства во многом связана с бесконечным множеством элементарных частиц. Между ними также существуют различные взаимодействия на тех уровнях, о которых мы можем только догадываться. Впрочем, все виды взаимодействия элементарных частиц между собой значительно различаются по своей силе.

Самые мощные из всех известных нам сил связывают между собой компоненты атомного ядра. Чтобы разъединить их, нужно потратить поистине колоссальное количество энергии. Что же касается электронов, то они «привязаны» к ядру только лишь обыкновенным Чтобы его прекратить, порой достаточно той энергии, которая появляется в результате самой обычной химической реакции. Гравитация (что это такое, вы уже знаете) в варианте атомов и субатомных частиц является наиболее легкой разновидностью взаимодействия.

Гравитационное поле в этом случае настолько слабо, что его трудно себе представить. Как ни странно, но за движением небесных тел, чью массу порой невозможно себе вообразить, «следят» именно они. Все это возможно благодаря двум особенностям тяготения, которые особенно ярко проявляются в случае больших физических тел:

  • В отличие от атомных более ощутимо на удалении от объекта. Так, гравитация Земли удерживает в своем поле даже Луну, а аналогичная сила Юпитера с легкостью поддерживает орбиты сразу нескольких спутников, масса каждого из которых вполне сопоставима с земной!
  • Кроме того, оно всегда обеспечивает притяжение между объектами, причем с расстоянием эта сила ослабевает с небольшой скоростью.

Формирование более-менее стройной теории гравитации произошло сравнительно недавно, и именно по результатам многовековых наблюдений за движением планет и прочими небесными телами. Задача существенно облегчалась тем, что все они движутся в вакууме, где просто нет других вероятных взаимодействий. Галилей и Кеплер - два выдающихся астронома того времени, своими ценнейшими наблюдениями помогли подготовить почву для новых открытий.

Но только великий Исаак Ньютон смог создать первую теорию гравитации и выразить ее в математическом отображении. Это был первый закон гравитации, математическое отображение которого представлено выше.

Выводы Ньютона и некоторых его предшественников

В отличие от прочих физических явлений, которые существуют в окружающем нас мире, гравитация проявляется всегда и везде. Нужно понимать, что термин «нулевая гравитация», который нередко встречается в околонаучных кругах, крайне некорректен: даже невесомость в космосе не означает, что на человека или космический корабль не действует притяжение какого-то массивного объекта.

Кроме того, все материальные тела обладают некой массой, выражающейся в виде силы, которая к ним была приложена, и ускорения, полученного за счет этого воздействия.

Таким образом, силы гравитации пропорциональны массе объектов. В числовом отношении их можно выразить, получив произведение масс обоих рассматриваемых тел. Данная сила строго подчиняется обратной зависимости от квадрата расстояния между объектами. Все прочие взаимодействия совершенно иначе зависят от расстояний между двумя телами.

Масса как краеугольный камень теории

Масса объектов стала особым спорным пунктом, вокруг которого выстроена вся современная теория гравитации и относительности Эйнштейна. Если вы помните Второй то наверняка знаете о том, что масса является обязательной характеристикой любого физического материального тела. Она показывает, как будет вести себя объект в случае применения к нему силы вне зависимости от ее происхождения.

Так как все тела (согласно Ньютону) при воздействии на них внешней силы ускоряются, именно масса определяет, насколько большим будет это ускорение. Рассмотрим более понятный пример. Представьте себе самокат и автобус: если прикладывать к ним совершенно одинаковую силу, то они достигнут разной скорости за неодинаковое время. Все это объясняет именно теория гравитации.

Каково взаимоотношение массы и притяжения?

Если говорить о тяготении, то масса в этом явлении играет роль совершенно противоположную той, которую она играет в отношении силы и ускорения объекта. Именно она является первоисточником самого притяжения. Если вы возьмете два тела и посмотрите, с какой силой они притягивают третий объект, который расположен на равных расстояниях от первых двух, то отношение всех сил будет равно отношению масс первых двух объектов. Таким образом, сила притяжения прямо пропорциональна массе тела.

Если рассмотреть Третий закон Ньютона, то можно убедиться, что он говорит точно о том же. Сила гравитации, которая действует на два тела, расположенных на равном расстоянии от источника притяжения, прямо зависит от массы данных объектов. В повседневной жизни мы говорим о силе, с которой тело притягивается к поверхности планеты, как о его весе.

Подведем некоторые итоги. Итак, масса тесно связана и ускорением. В то же время именно она определяет ту силу, с которой будет действовать на тело притяжение.

Особенности ускорения тел в гравитационном поле

Эта удивительная двойственность является причиной того, что в одинаковом гравитационном поле ускорение совершенно различных объектов будет равным. Предположим, что у нас есть два тела. Присвоим одному из них массу z, а другому - Z. Оба объекта сброшены на землю, куда свободно падают.

Как определяется отношение сил притяжения? Его показывает простейшая математическая формула - z/Z. Вот только ускорение, получаемое ими в результате действия силы притяжения, будет абсолютно одинаковым. Проще говоря, ускорение, которое тело имеет в гравитационном поле, никак не зависит от его свойств.

От чего зависит ускорение в описанном случае?

Оно зависит только (!) от массы объектов, которые и создают это поле, а также от их пространственного положения. Двойственная роль массы и равное ускорение различных тел в гравитационном поле открыты уже относительно давно. Эти явления получили следующее название: «Принцип эквивалентности». Указанный термин еще раз подчеркивает, что ускорение и инерция зачастую эквивалентны (в известной мере, конечно же).

О важности величины G

Из школьного курса физики мы помним, что ускорение свободного падения на поверхности нашей планеты (гравитация Земли) равно 10 м/сек.² (9,8 разумеется, но для простоты расчетов используется это значение). Таким образом, если не принимать в расчет сопротивление воздуха (на существенной высоте при небольшом расстоянии падения), то получится эффект, когда тело приобретает приращение ускорения в 10 м/сек. ежесекундно. Так, книга, которая упала со второго этажа дома, к концу своего полета будет двигаться со скоростью 30-40 м/сек. Проще говоря, 10 м/с - это «скорость» гравитации в пределах Земли.

Ускорение свободного падения в физической литературе обозначается буквой «g». Так как форма Земли в известной степени больше напоминает мандарин, чем шар, значение этой величины далеко не во всех ее областях оказывается одинаковым. Так, у полюсов ускорение выше, а на вершинах высоких гор оно становится меньше.

Даже в добывающей промышленности не последнюю роль играет именно гравитация. Физика этого явления порой позволяет сэкономить много времени. Так, геологи особенно заинтересованы в идеально точном определении g, поскольку это позволяет с исключительной точностью производить разведку и нахождение залежей полезных ископаемых. Кстати, а как выглядит формула гравитации, в которой рассмотренная нами величина играет не последнюю роль? Вот она:

Обратите внимание! В этом случае формула гравитации подразумевает под G «гравитационную постоянную», значение которой мы уже приводили выше.

В свое время Ньютон сформулировал вышеизложенные принципы. Он прекрасно понимал и единство, и всеобщность но все аспекты этого явления он описать не мог. Эта честь выпала на долю Альберта Эйнштейна, который смог объяснить также принцип эквивалентности. Именно ему человечество обязано современным пониманием самой природы пространственно-временного континуума.

Теория относительности, работы Альберта Эйнштейна

Во времена Исаака Ньютона считалось, что точки отсчета можно представить в виде каких-то жестких «стержней», при помощи которых устанавливается положение тела в пространственной системе координат. Одновременно предполагалось, что все наблюдатели, которые отмечают эти координаты, будут находиться в едином временном пространстве. В те годы это положение считалось настолько очевидным, что не делалось никаких попыток его оспорить или дополнить. И это понятно, ведь в пределах нашей планеты никаких отклонений в данном правиле нет.

Эйнштейн доказал, что точность измерения окажется действительно значимой, если гипотетические часы движутся значительно медленнее скорости света. Проще говоря, если один наблюдатель, движущийся медленнее скорости света, будет следить за двумя событиями, то они произойдут для него единовременно. Соответственно, для второго наблюдателя? скорость которого такая же или больше, события могут происходить в различное время.

Но как сила гравитации связана с теорией относительности? Раскроем этот вопрос подробно.

Связь между теорией относительности и гравитационными силами

В последние годы сделано огромное количество открытий в области субатомных частиц. Крепнет убеждение, что мы вот-вот найдем окончательную частицу, дальше которой наш мир дробиться не может. Тем настойчивее становится потребность узнать, как именно влияют на мельчайшие «кирпичики» нашего мироздания те фундаментальные силы, которые были открыты еще в прошлом веке, а то и раньше. Особенно обидно, что сама природа гравитации до сих пор не объяснена.

Именно поэтому после Эйнштейна, который установил «недееспособность» классической механики Ньютона в рассматриваемой области, исследователи сосредоточились на полном переосмыслении полученных ранее данных. Во многом пересмотру подверглась и сама гравитация. Что это такое на уровне субатомных частиц? Имеет ли она хоть какое-то значение в этом удивительном многомерном мире?

Простое решение?

Сперва многие предполагали, что несоответствие тяготения Ньютона и теории относительности можно объяснить довольно просто, проведя аналогии из области электродинамики. Можно бы было предположить, что гравитационное поле распространяется наподобие магнитного, после чего его можно объявить «посредником» при взаимодействиях небесных тел, объяснив многие несоответствия старой и новой теории. Дело в том, что тогда бы относительные скорости распространения рассматриваемых сил оказались значительно ниже световой. Так как связаны гравитация и время?

В принципе, у самого Эйнштейна почти получилось построить релятивистскую теорию на основе именно таких взглядов, вот только одно обстоятельство помешало его намерению. Никто из ученых того времени не располагал вообще никакими сведениями, которые бы могли бы помочь определить «скорость» гравитации. Зато имелось немало информации, связанной с перемещениями больших масс. Как известно, они как раз-таки являлись общепризнанным источником возникновения мощных гравитационных полей.

Большие скорости сильно влияют на массы тел, и это ничуть не похоже на взаимодействие скорости и заряда. Чем скорость выше, тем больше масса тела. Проблема в том, что последнее значение автоматически бы стало бесконечным в случае движения со скоростью света или выше. А потому Эйнштейн заключил, что существует не гравитационное, а тензорное поле, для описания которого следует использовать намного больше переменных.

Его последователи пришли к выводу, что гравитация и время практически не связаны. Дело в том, что само это тензорное поле может действовать на пространство, но на время повлиять не в состоянии. Впрочем, у гениального физика современности Стивена Хокинга есть другая точка зрения. Но это уже совсем другая история...

Не смотря на то, что гравитация - это слабейшее взаимодействие между объектами во Вселенной, ее значение в физике и астрономии огромно, так как она способна оказывать влияние на физические объекты на любом расстоянии в космосе.

Если вы увлекаетесь астрономией, вы наверняка задумывались над вопросом, что собой представляет такое понятие, как гравитация или закон всемирного тяготения. Гравитация - это универсальное фундаментальное взаимодействие между всеми объектами во Вселенной.

Открытие закона гравитации приписывают знаменитому английскому физику Исааку Ньютону. Наверное, многим из вас известна история с яблоком, упавшим на голову знаменитому ученому. Тем не менее, если заглянуть вглубь истории, можно увидеть, что о наличии гравитации задумывались еще задолго до его эпохи философы и ученые древности, например, Эпикур. Тем не менее, именно Ньютон впервые описал гравитационное взаимодействие между физическими телами в рамках классической механики. Его теорию развил другой знаменитый ученый - Альберт Эйнштейн, который в своей общей теории относительности более точно описал влияние гравитации в космосе, а также ее роль в пространственно-временном континууме.

Закон всемирного тяготения Ньютона говорит, что сила гравитационного притяжения между двумя точками массы, разделенными расстоянием обратно пропорциональна квадрату расстояния и прямо пропорциональна обеим массам. Сила гравитации является дальнодействующей. То есть, в независимости от того, как будет двигаться тело, обладающее массой, в классической механике его гравитационный потенциал будет зависеть сугубо от положения этого объекта в данный момент времени. Чем больше масса объекта, тем больше его гравитационное поле - тем более мощной гравитационной силой он обладает. Такие космически объекты, как галактики, звезды и планеты обладают наибольшей силой притяжения и соответственно достаточно сильными гравитационными полями.

Гравитационные поля

Гравитационное поле Земли

Гравитационное поле - это расстояние, в пределах которого осуществляется гравитационное взаимодействие между объектами во Вселенной. Чем больше масса объекта, тем сильнее его гравитационное поле - тем ощутимее его воздействие на другие физические тела в пределах определенного пространства. Гравитационное поле объекта потенциально. Суть предыдущего утверждения заключается в том, что если ввести потенциальную энергию притяжения между двумя телами, то она не изменится после перемещения последних по замкнутому контуру. Отсюда выплывает еще один знаменитый закон сохранения суммы потенциальной и кинетической энергии в замкнутом контуре.

В материальном мире гравитационное поле имеет огромное значения. Им обладают все материальные объекты во Вселенной, у которых есть масса. Гравитационное поле способно влиять не только на материю, но и на энергию. Именно за счет влияния гравитационных полей таких крупных космических объектов, как черные дыры, квазары и сверхмассивные звезды, образуются солнечные системы, галактики и другие астрономические скопления, которым свойственна логическая структура.

Последние научные данные показывают, что знаменитый эффект расширения Вселенной так же основан на законах гравитационного взаимодействия. В частности расширению Вселенной способствуют мощные гравитационные поля, как небольших, так и самых крупных ее объектов.

Гравитационное излучение в двойной системе

Гравитационное излучение или гравитационная волна - термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном. Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением. Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.

Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект. Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение. Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.

В современной физике существует два понятия механики: классическая и квантовая. Квантовая механика была выведена относительно недавно и принципиально отличается от механики классической. В квантовой механике у объектов (квантов) нет определенных положений и скоростей, все здесь базируется на вероятности. То есть, объект может занимать определенное место в пространстве в определенный момент времени. Куда переместиться он дальше, достоверно определить нельзя, а только с высокой долей вероятности.

Интересный эффект гравитации заключается в том, что она способна искривлять пространственно-временной континуум. Теория Эйнштейна гласит, что в пространстве вокруг сгустка энергии или любого материального вещества пространство-время искривляется. Соответственно меняется траектория частиц, которые попадают под воздействие гравитационного поля этого вещества, что позволяет с высокой долей вероятности предсказать траекторию их движения.

Теории гравитации

Сегодня ученым известно свыше десятка различных теорий гравитации. Их подразделяют на классические и альтернативные теории. Наиболее известными представителем первых является классическая теория гравитации Исаака Ньютона, которая была придумана известным британским физиком еще в 1666 году. Суть ее заключается в том, что массивное тело в механике порождает вокруг себя гравитационное поле, которое притягивает к себе менее крупные объекты. В свою очередь последние также обладают гравитационным полем, как и любые другие материальные объекты во Вселенной.

Следующая популярная теория гравитации была придумана всемирно известным германским ученым Альбертом Эйнштейном в начале XX века. Эйнштейну удалось более точно описать гравитацию, как явление, а также объяснить ее действие не только в классической механике, но и в квантовом мире. Его общая теория относительности описывает способность такой силы, как гравитация, влиять на пространственно-временной континуум, а также на траекторию движения элементарных частиц в пространстве.

Среди альтернативных теорий гравитации наибольшего внимания, пожалуй, заслуживает релятивистская теория, которая была придумана нашим соотечественником, знаменитым физиком А.А. Логуновым. В отличие от Эйнштейна, Логунов утверждал, что гравитация - это не геометрическое, а реальное, достаточно сильное физическое силовое поле. Среди альтернативных теорий гравитации известны также скалярная, биметрическая, квазилинейная и другие.

  1. Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
  2. Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.
  3. Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей - Юпитер.
  4. Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.
  5. Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
  6. Сила гравитации на Земле одинакова не во всех уголках нашей планеты. К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.

Определение

Между любыми телами, которые обладают массами, действуют силы, которые притягивают вышеназванные тела друг к другу. Такие силы называют силами взаимного притяжения.

Рассмотрим две материальные точки (рис.1). Они притягиваются с силами прямо пропорциональными произведению масс этих материальных точек и обратно пропорциональными расстоянию между ними. Так, сила тяготения () будет равна:

где материальная точка массы m 2 действует на материальную точку массы m 1 с силой притяжения – радиус – вектор, который проведен из точки 2 в точку 1, модуль этого вектора равен расстоянию между материальными точками (r); G=6,67 10 -11 м 3 кг -1 с -2 (в системе СИ) – гравитационная постоянная (постоянная тяготения).

В соответствии с третьим законом Ньютона сила, с которой материальная точка 2 притягивается к материальной точке 1 () равна:

Тяготение между телами осуществляется посредством гравитационного поля (поля тяготения). Силы тяготения являются потенциальными. Это дает возможность ввести такую энергетическую характеристику гравитационного поля как потенциал, который равен отношению потенциальной энергии материальной точки, находящейся исследуемой точке поля к массе данной точки.

Формула для силы притяжения тел произвольной формы

В двух телах произвольной формы и размера выделим элементарные массы, которые можно считать материальными точками, причем:

где – плотности вещества материальных точек первого и второго тел, dV 1 ,dV 2 - элементарные объемы выделенных материальных точек. В таком случае, сила притяжения (), с которой элемент dm 2 действует на элемент dm 1 , равна:

Следовательно, сила притяжения первого тела вторым может быть найдена по формуле:

где интегрирование необходимо произвести по всему объему первого (V 1) и второго (V 2) тел. Если тела являются однородными, то выражение можно немного преобразовать и получить:

Формула для силы притяжения твердых тел шарообразной формы

Если силы притяжения рассматриваются для двух твердых тел шарообразной формы (или близких к шарам), плотность которых зависит только от расстояний до их центров формула (6) примет вид:

где m 1 ,m 2 – массы шаров, – радиус – вектор, соединяющий центры шаров,

Выражение (7) можно использовать в случае, если одно из тел имеет форму отличную от шарообразной, но его размеры много меньше, чем размеры второго тела - шара. Так, формулой (7) можно пользоваться для вычислений сил притяжения тел к Земле.

Единицы измерения силы притяжения

Основной единицей измерения силы притяжения (как и любой другой силы) в системе СИ является: =H.

В СГС: =дин.

Примеры решения задач

Пример

Задание. Какова сила притяжения двух одинаковых однородных шара масса, которых равна по 1 кг? Расстояние между их центрами равно 1 м.

Решение. Основой для решения задачи служит формула:

Для вычисления модуля силы притяжения формула (1.1) преобразуется к виду:

Проведем вычисления:

Ответ.

Пример

Задание. С какой силой (по модулю) бесконечно длинный и тонкий и прямой стержень притягивает материальную частицу массы m. Частица расположена на расстоянии a от стержня. Линейная плотность массы вещества стержня равна тау

Гравитационная сила – фундамент на котором держится Вселенная. Благодаря силе тяжести Солнце не взрывается, атмосфера не улетучивается в космос, люди и животные свободно передвигаются по поверхности, а растения дают плоды.

Небесная механика и теория относительности

Закон всемирного тяготения изучают в 8-9 классе средней школы. Прилежные ученики знают о знаменитом яблоке упавшем на голову великого Исаака Ньютона и об открытиях, которые за этим последовали. На самом деле, дать четкое определение гравитации гораздо сложнее. Современные ученые продолжают дискуссии на тему, как взаимодействуют тела в открытом космосе и существует ли антигравитация. Изучить данное явление в земных лабораториях крайне сложно, поэтому выделяют несколько базовых теорий гравитации:

Ньютоновская гравитация

В 1687 г. Ньютон заложил основы небесной механики, которая изучает движение тел в пустом пространстве. Он рассчитал силу притяжения Луны к Земле. Согласно формуле, эта сила напрямую зависит от их массы и расстояния между объектами.

F = (G m1 m2)/r2
Гравитационная постоянная G=6.67*10-11

Уравнение не совсем актуально, когда анализируется сильное гравитационное поле или притяжение более двух объектов.

Теория гравитации Эйнштейна

В ходе различных экспериментов ученые пришли к выводу, что в формуле Ньютона есть некоторые погрешности. Основой небесной механики является дальнодействующая сила, срабатывающая моментально в независимости от расстояния, что не соответствует теории относительности.

Согласно разработанной в начале 20 века теории А.Эйнштейна информация не распространяется быстрее скорости света в вакууме, поэтому гравитационные эффекты возникают в результате деформации пространства-времени. Чем больше масса объекта, тем больше искривление в которое скатываются более легкие объекты.

Квантовая гравитация

Очень противоречивая и не до конца сформированная теория, которая объясняет взаимодействие тел, как обмен особыми частицами – гравитонами.

В начале 21 века ученым удалось провести несколько значимых экспериментов, в том числе с помощью адронного коллайдера, и разработать теорию петлевой квантовой гравитации и теорию струн.

Вселенная без гравитации

В фантастических романах часто описываются различные гравитационные искажения, антигравитационные камеры и космические корабли с искусственным гравитационным полем. Читатели иногда даже не задумаются насколько нереальны сюжеты книг и что будет, если сила тяжести уменьшится/увеличится или совершенно исчезнет.

  1. Человек адаптирован к земной гравитации, поэтому в других условиях ему придется кардинально измениться. Невесомость приводит к атрофии мышц, сокращению числа эритроцитов и нарушению в работе всех жизненно важных систем организма, а при увеличении гравитационного поля люди просто не смогут сдвинуться с места.
  2. Воздух и вода, растения и животные, дома и машины улетят в открытый космос. Даже если людям удастся остаться они быстро погибнут без кислорода и еды. Низкая гравитация на Луне – это основная причина отсутствия не ней атмосферы, соответственно и жизни.
  3. Наша планета развалится на части, поскольку исчезнет давление в самом центре Земли, начнется извержение всех существующих вулканов и расхождение тектонических плит.
  4. Звезды взорвутся из-за сильного давления и хаотичного столкновения частиц в ядре.
  5. Вселенная превратится в бесформенное рагу из атомов и молекул, которые неспособны соединиться для создания чего-то большего.


К счастью для человечества, отключение гравитации и страшные события, которые за этим последую никогда не произойдут. Темный сценарий просто демонстрирует насколько важна гравитация. Она значительно слабее чем электромагнетизм , сильное или слабое взаимодействия, но фактически без неё наш мир перестанет существовать.

Гравитация — самая могущественная сила во Вселенной, одна из четырех фундаментальных основ мироздания, определяющая его структуру. Когда-то благодаря ей возникли планеты, звезды и целые галактики. Сегодня она удерживает на орбите Землю в ее нескончаемом путешествии вокруг Солнца.

Притяжение имеет огромное значение и для повседневной жизни человека. Благодаря этой невидимой силе пульсируют океаны нашего мира, текут реки, капли дождя падают на землю. Мы с детства ощущаем вес своего тела и окружающих предметов. Огромно влияние гравитации и на нашу хозяйственную деятельность.

Первая теория гравитации была создана Исааком Ньютоном в конце XVII столетия. Его Закон всемирного тяготения описывает данное взаимодействия в рамках классической механики. Более широко этот феномен был изложен Эйнштейном в его общей теории относительности, увидевшей свет в начале прошлого века. Процессы, происходящие с силой тяготения на уровне элементарных частиц, должна объяснить квантовая теория гравитации, но ее еще только предстоит создать.

Сегодня мы знаем о природе гравитации гораздо больше, чем во времена Ньютона, но, несмотря на столетия изучения, она все еще остается настоящим камнем преткновения современной физики. В существующей теории гравитации есть множество белых пятен, и мы до сих пор точно не понимаем, что ее порождает, и как происходит перенос этого взаимодействия. И уж, конечно, мы очень далеки от возможности управлять силой притяжения, так что антигравитация или левитация еще долго будут существовать только на страницах фантастических романов.

Что же упало на голову Ньютона?

О природе силы, которая притягивает предметы к земле, люди задумывались во все времена, но приоткрыть завесу тайны удалось только в XVII столетии Исааку Ньютону. Основу для его прорыва заложили труды Кеплера и Галилея – блестящих ученых, изучавших движения небесных тел.

Еще полтора века до ньютоновского Закона всемирного тяготения польский астроном Коперник полагал, что притяжение - это «…не что иное, как естественное стремление, которым отец Вселенной одарил все частицы, а именно соединяться в одно общее целое, образуя тела шаровидной формы». Декарт же считал притяжение следствием возмущений в мировом эфире. Греческий философ и ученый Аристотель был уверен, что масса влияет на скорость падения тел. И только Галилео Галилей в конце XVI века доказал, что это неверно: если отсутствует сопротивление воздуха, все объекты ускоряются одинаково.

Вопреки распространенной легенде о голове и яблоке, Ньютон шел к пониманию природы гравитации более двадцати лет. Его закон гравитации – одно из самых значимых научных открытий всех времен и народов. Он универсален и позволяет вычислять траектории небесных тел и точно описывает поведение предметов, окружающих нас. Классическая теория тяготения заложила основы небесной механики. Три закона Ньютона дали ученым возможность открывать новые планеты буквально «на кончике пера», в конце концов благодаря им человек смог преодолеть земную гравитацию и совершить полет в космос. Они подвели строгую научную базу под философскую концепцию о материальном единстве мироздания, в котором все природные явления взаимосвязаны и управляются общими физическими правилами.

Ньютон не просто опубликовал формулу, позволяющую высчитать, чему равна сила, притягивающая тела друг к другу, он создал целостную модель, в которую также вошел математический анализ. Данные теоретические выводы были неоднократно подтверждены на практике, в том числе и с помощью самых современных методов.

В ньютоновской теории любой материальный объект порождает поле притяжения, которое называется гравитационным. Причем сила пропорциональна массе обоих тел и обратно пропорциональна расстоянию между ними:

F = (G m1 m2)/r2

G – это гравитационная постоянная, которая равняется 6,67×10−11 м³/(кг·с²). Первым ее смог высчитать Генри Кавендиш в 1798 году.

В повседневной жизни и в прикладных дисциплинах о силе, с которой земля притягивает тело, говорят как о его весе. Притяжение между двумя любыми материальными объектами во Вселенной – вот что такое гравитация простыми словами.

Сила притяжения – самое слабое из четырех фундаментальных взаимодействий физики, но благодаря своим особенностям она способна регулировать движение звездных систем и галактик:

  • Притяжение работает на любых расстояниях, в этом главное отличие силы тяжести от сильного и слабого ядерного взаимодействия. С увеличением расстояния его действие уменьшается, но оно никогда не становится равным нулю, поэтому можно сказать, что взаимное влияние оказывают даже два атома, находящиеся на разных концах галактики. Просто оно очень мало;
  • Гравитация универсальна. Поле притяжения присуще любому материальному телу. Ученые пока не обнаружили на нашей планете или в космосе объект, который бы не участвовал во взаимодействии данного типа, поэтому роль гравитации в жизни Вселенной огромна. Этим тяготение отличается от электромагнитного взаимодействия, влияние которого на космические процессы минимально, поскольку в природе большинство тел электрически нейтральны. Гравитационные силы нельзя ограничить или экранировать;
  • Тяготение действует не только на материю, но и на энергию. Для него не имеет никакого значения химический состав объектов, играет роль только их масса.

Используя ньютоновскую формулу, силу притяжения можно легко рассчитать. Например, гравитация на Луне в несколько раз меньше земной, потому что наш спутник имеет сравнительно небольшую массу. Но ее достаточно для формирования в Мировом океане регулярных приливов и отливов. На Земле ускорение свободного падения равняется примерно 9,81 м/с2. Причем на полюсах оно несколько больше, чем на экваторе.

Несмотря на огромное значение для дальнейшего развития науки, ньютоновские законы имели целый ряд слабых мест, не дававших покоя исследователям. Было непонятно, как действует гравитация через абсолютно пустое пространство на огромные расстояния, причем с непостижимой скоростью. Кроме того, постепенно стали накапливаться данные, которые противоречили законам Ньютона: например, гравитационный парадокс или смещение перигелия Меркурия . Стало очевидным, что теория всемирного тяготения требует доработки. Эта честь выпала на долю гениального немецкого физика Альберта Эйнштейна.

Притяжение и теория относительности

Отказ Ньютона обсуждать природу гравитации («Я гипотез не измышляю») был очевидной слабостью его концепции. Неудивительно, что в последующие годы появилось множество теорий гравитации.

Большинство из них относились к так называемым гидродинамическим моделям, которые пытались обосновать возникновение тяготения механическим взаимодействием материальных объектов с некой промежуточной субстанцией, имеющей те или иные свойства. Исследователи называли ее по-разному: «вакуум», «эфир», «поток гравитонов» и т. д. В этом случае сила притяжения между телами возникала в результате изменения этой субстанции, при ее поглощении объектами или экранировании потоков. В реальности все подобные теории имели один серьезный недостаток: довольно точно предсказывая зависимость гравитационной силы от расстояния, они должны были приводить к торможению тел, которые двигались относительно «эфира» или «потока гравитонов».

Эйнштейн подошел к решению этого вопроса с другой стороны. В его общей теории относительности (ОТО) гравитация рассматривается не как взаимодействие сил, а как свойство самого пространства-времени. Любой объект, имеющий массу, приводит к его искривлению, что и вызывает притяжение. В этом случае гравитация – это геометрический эффект, который рассматривается в рамках неевклидовой геометрии.

Проще говоря, пространственно-временной континуум воздействует на материю, обуславливая ее движение. А та, в свою очередь, влияет на пространство, «указывая» ему, как искривляться.

Силы притяжения действуют и в микромире, но на уровне элементарных частиц их влияние, по сравнению с электростатическим взаимодействием, ничтожно. Физики считают, что гравитационное взаимодействие не уступало остальным в первые мгновенья (10 -43 сек.) после Большого взрыва.

В настоящее время концепция гравитации, предложенная в общей теории относительности, является основной рабочей гипотезой, принятой большинством научного сообщества и подтвержденной результатами многочисленных опытов.

Эйнштейн в своей работе предвидел удивительные эффекты гравитационных сил, большая часть из которых уже нашла подтверждение. Например, возможность массивных тел искривлять световые лучи и даже замедлять течение времени. Последний феномен обязательно учитывается при работе глобальных спутниковых систем навигации, таких как ГЛОНАСС и GPS, в противном случае через несколько суток их погрешность составляла бы десятки километров.

Кроме того, следствием теории Эйнштейна являются так называемые тонкие эффекты гравитации, такие как гравимагнитное поле и увлечение инерциальных систем отсчёта (он же эффект Лензе-Тирринга). Эти проявления силы тяготения настолько слабы, что долгое время их не могли обнаружить. Только в 2005 году благодаря уникальной миссии НАСА Gravity Probe B был подтверждён эффект Лензе-Тирринга.

Гравитационное излучение или самое фундаментальное открытие последних лет

Гравитационные волны – это колебания геометрической пространственно-временной структуры, распространяющиеся со скоростью света. Существование этого феномена также было предсказано Эйнштейном в ОТО, но из-за слабости силы тяготения его величина очень мала, поэтому долгое время его не могли обнаружить. В пользу существования излучения говорили только косвенные свидетельства.

Подобные волны генерируют любые материальные объекты, движущиеся с асимметричным ускорением. Ученые описывают их как «рябь пространства-времени». Наиболее мощными источниками такого излучения являются сталкивающиеся галактики и коллапсирующие системы, состоящие из двух объектов. Типичный пример последнего случая – слияние черных дыр или нейтронных звезд . При подобных процессах гравитационное излучение может переходить более 50% от общей массы системы.

Гравитационные волны впервые были обнаружены в 2015 году с помощью двух обсерваторий LIGO. Практически сразу это событие получило статус крупнейшего открытия в физике за последние десятилетия. В 2017 году за него была присуждена Нобелевская премия. После этого ученым еще несколько раз удавалось фиксировать гравитационное излучение.

Еще в 70-е годы прошлого века – задолго до экспериментального подтверждения – ученые предлагали использовать гравитационное излучение для осуществления дальней связи. Его несомненное преимущество – это высокая способность проходить сквозь любые вещества, не поглощаясь. Но в настоящее время это вряд ли возможно, потому что существуют огромные трудности с генерацией и приемом этих волн. Да и реальных знаний относительно природы гравитации у нас пока недостаточно.

Сегодня в разных странах мира работает несколько установок, подобных LIGO и строятся новые. Вероятно, что в ближайшем будущем о гравитационном излучении мы узнаем больше.

Альтернативные теории всемирного тяготения и причины их создания

В настоящий момент доминирующей концепцией гравитации является ОТО. С ней согласуется весь существующий массив экспериментальных данных и наблюдений. В то же время она имеет большое количество откровенно слабых мест и спорных моментов, поэтому попытки создания новых моделей, объясняющих природу гравитации, не прекращаются.

Все, разработанные к настоящему моменту теории всемирного тяготения можно разбить на несколько основных групп:

  • стандартные;
  • альтернативные;
  • квантовые;
  • теории единого поля.

Попытки создания новой концепции всемирного тяготения предпринимались еще в XIX столетии. Разные авторы включали в нее эфир или корпускулярную теорию света. Но появление ОТО поставило точку на этих изысканиях. После ее публикации цель ученых изменилась - теперь их усилия были направлены на улучшение модели Эйнштейна, включение в нее новых природных явлений: спина частиц, расширения Вселенной и др.

К началу 80-х годов физики экспериментальным путем отвергли все концепции, за исключением тех, которые включали в себя ОТО как неотъемлемую часть. В это время в моду вошли «струнные теории», выглядевшие весьма многообещающе. Но опытного подтверждения эти гипотезы так и не нашли. За последние десятилетия наука достигла значительных высот и накопила огромный массив эмпирических данных. Сегодня попытки создать альтернативные теории гравитации вдохновляются в основном космологическими исследованиями, связанными с такими понятиями, как «темная материя», «инфляция», «темная энергия».

Одной из главных задач современной физики является объединение двух фундаментальных направлений: квантовой теории и ОТО. Ученые стремятся связать притяжение с остальными видами взаимодействий, создав таким образом «теорию всего». Именно этим и занимается квантовая гравитация – раздел физики, который пытается дать квантовое описание гравитационного взаимодействия. Ответвлением данного направления является теория петлевой гравитации.

Несмотря на активные и многолетние усилия, достичь этой цели пока не удается. И дело даже не в сложности этой задачи: просто в основе квантовой теории и ОТО лежат абсолютно разные парадигмы. Квантовая механика работает с физическими системами, действующими на фоне обычного пространства-времени. А в теории относительности само пространство-время - это динамическая составляющая, зависящая от параметров классических систем, находящихся в ней.

Наряду с научными гипотезами всемирного тяготения, существуют и теории, весьма далекие от современной физики. К сожалению, в последние годы подобные «опусы» просто заполонили интернет и полки книжных магазинов. Некоторые авторы таких работ вообще сообщают читателю, что гравитации не существует, а законы Ньютона и Эйнштейна – это выдумки и мистификации.

Примером могут служить труды «ученого» Николая Левашова, утверждающие, что Ньютон не открывал закон всемирного тяготения, а гравитационной силой в Солнечной системе обладают только планеты и наш спутник Луна. Доказательства этот «русский ученый» приводит довольно странные. Одним из них является полет американского зонда NEAR Shoemaker к астероиду Эрос, состоявшийся в 2000 году. Отсутствие притяжения между зондом и небесным телом Левашов считает доказательством ложности трудов Ньютона и заговора физиков, скрывающих от людей правду о гравитации.

На самом деле космический аппарат успешно выполнил свою миссию: сначала он вышел на орбиту астероида, а затем совершил на его поверхности мягкую посадку.

Искусственная гравитация и для чего она нужна

С силой тяжести связаны два понятия, которые, несмотря на свой текущий теоретический статус, хорошо известны широкой публике. Это антигравитация и искусственная гравитация.

Антигравитация – процесс противодействия силе притяжения, способный существенно уменьшить ее или даже заменить отталкиванием. Овладение подобной технологией привело бы к реальной революции в транспорте, авиации, исследовании космического пространства и кардинально изменило всю нашу жизнь. Но в настоящее время возможность антигравитации не имеет даже теоретического подтверждения. Более того, исходя из ОТО, подобный феномен и вовсе не осуществим, так как в нашей Вселенной не может быть отрицательной массы. Возможно, что в будущем мы узнаем о притяжении больше и научимся строить летательные аппараты на основе этого принципа.

Искусственная сила тяжести – это рукотворное изменение существующей силы гравитации. Сегодня подобная технология нам не слишком нужна, но ситуация однозначно изменится после начала долгосрочных космических путешествий. И дело заключается в нашей физиологии. Тело человека, «приученное» миллионами лет эволюции к постоянной гравитации Земли, крайне негативно воспринимает воздействие пониженной силы тяжести. Длительное пребывание даже в условиях лунной гравитации (в шесть раз слабее земной) может привести к печальным последствиям. Иллюзию притяжения можно создавать с помощью других физических сил, например, инерции. Однако подобные варианты сложны и дорого стоят. В настоящий момент искусственная гравитация не имеет даже теоретических обоснований, очевидно, что ее возможная практическая реализация – это дело весьма отдаленного будущего.

Сила тяжести – это понятие, известное каждому еще со школьной скамьи. Казалось бы, ученые должны были досконально исследовать этот феномен! Но гравитация так и остается глубочайшей тайной для современной науки. И это можно назвать прекрасным примером того, насколько ограничены знания человека о нашем огромном и замечательном мире.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Loading...Loading...