Дисперсионный анализ экспериментальных данных. Многофакторный дисперсионный анализ. Планы с повторными измерениями

Аналитическая статистик а

7.1 Дисперсионный анализ . 2

В данном варианте метода влиянию каждой из градаций подвергаются разные выборки испытуемых. Градаций фактора должно быть не менее трех .

Пример 1. Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в табл. 1.

Таблица 1. Количество воспроизведенных слов (по J . Greene , M D " Olivera , 1989, p . 99)

№ испытуемого

Группа 1 низкая скорость

Группа 2 средняя скорость

Группа 3 высокая скорость

суммы

средние

7,17

6,17

4,00

Общая сумма

Дисперсионный однофакторный анализ позволяет проверить гипотезы:

H 0 : различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы

H 1 : Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы.

Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок:

1. подсчитаем SS факт - вариативность признака, обусловленную действи­ем исследуемого фактора. Часто встречающееся обозначе­ние SS - сокращение от "суммы квадратов" (sum of squares ). Это со­кращение чаще всего используется в переводных источниках (см., на­пример: Гласс Дж., Стенли Дж., 1976).

,(1)

где Т с – сумма индивидуальных значений по каждому из условий. Для нашего примера 43, 37, 24 (см. табл. 1);

с – количество условий (градаций) фактора (=3);

n – количество испытуемых в каждой группе (=6);

N – общее количество индивидуальных значений (=18);

Квадрат общей суммы индивидуальных значений (=104 2 =10816)

Отметим разницу между , в которой все индивидуальные значения сначала возводятся в квадрат, а потом суммируются, и , где индивидуальные значения сначала суммируются для получения об­щей суммы, а потом уже эта сумма возводится в квадрат.

По формуле (1) рассчитав фактическую вариативность признака, получаем:

2. подсчитаем SS общ – общую вариативность признака:


(2)

3. подсчитаем случайную (остаточную) величину SS сл , обусловленную неучтенными факторами:

(3)

4.число степеней свободы равно:

=3-1=2(4)

5.«средний квадрат» или усредненная величина соответствующих сумм квадратов SS равна:

(5)

6.значение статистики критерия F эмп рассчитаем по формуле:

(6)

Для нашего примера имеем: F эмп =15,72/2,11=7,45

7.определим F крит по статистическим таблицам Приложения 3 для df 1 =k 1 =2 и df 2 =k 2 =15 табличное значение статистики равно 3,68

8. если F эмп < F крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная гипотеза. Для нашего примера F эмп > F крит (7.45>3.68), следовательно п

Вывод: различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (р<0,05). Т.о. скорость предъявления слов влияет на объем их воспроизведения.

7.1.2 Дисперсионный анализ для связанных выборок

Метод дисперсионного анализа для связанных выборок применяет­ся в тех случаях, когда исследуется влияние разных градаций фактора или разных условий на одну и ту же выборку испытуемых. Градаций фактора должно быть не менее трех .

В данном случае различия между испытуемыми - возможный са­мостоятельный источник различий. Однофакторный дисперсионный анализ для связанных выборок позволит определить, что перевешивает - тенденция, выраженная кривой изменения фактора, или индивидуальные различия между испытуемыми. Фактор индивидуальных различий может оказаться более значимым, чем фактор изменения экспериментальных условий.

Пример 2. Группа из 5 испытуемых была обследована с помощью трех экспериментальных заданий, направленных на изучение интеллектуальной, настойчивости (Сидоренко Е. В., 1984). Каждому испытуемому инди­видуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли счи­тать, что фактор длины анаграммы влияет на длительность попыток ее решения?

Таблица 2. Длительность решения анаграмм (сек)

Код испытуемого

Условие 1. четырехбуквенная анаграмма

Условие 2. Пятибуквенная анаграмма

Условие 3. шестибуквенная анаграмма

Суммы по испытуемым

суммы

1244

1342

Сформулируем гипотезы. Наборов гипотез в данном случае два.

Набор А .

Н 0 (А): Различия в длительности попыток решения анаграмм разной длины являются не более выраженными, чем различия, обусловленные случайными причинами.

Н 1 (А): Различия в длительности попыток решенияанаграммразной длины являются более выраженными, чем различия, обусловлен­ные случайными причинами.

Набор Б.

Н о (Б): Индивидуальные различия между испытуемыми являются не более выраженными, чем различия, обусловленные случайными причинами.

Н 1 (Б): Индивидуальные различия между испытуемыми являются более выраженными, чем различия, обусловленные случайными причи­нами.

Последовательность операций в однофакторном дисперсионном анализе для связанных выборок:

1. подсчитаем SS факт - вариативность признака, обусловленную действи­ем исследуемого фактора по формуле (1).

где Т с – сумма индивидуальных значений по каждому из условий (столбцов). Для нашего примера 51, 1244, 47 (см. табл. 2); с – количество условий (градаций) фактора (=3); n – количество испытуемых в каждой группе (=5); N – общее количество индивидуальных значений (=15); - квадрат общей суммы индивидуальных значений (=1342 2)

2. подсчитаем SS исп - вариативность признака, обусловленную индивидуальными значения испытуемых.

Где Т и – сумма индивидуальных значений по каждому испытуемому. Для нашего примера 247, 631, 100, 181, 183 (см. табл. 2); с – количество условий (градаций) фактора (=3); N – общее количество индивидуальных значений (=15);

3. подсчитаем SS общ – общую вариативность признака по формуле (2):


4. подсчитаем случайную (остаточную) величину SS сл , обусловленную неучтенными факторами по формуле (3):

5. число степеней свободы равно (4):

; ; ;

6. «средний квадрат» или математическое ожидание суммы квадратов, усредненная величина соответствующих сумм квадратов SS равна (5):

;

7. значение статистики критерия F эмп рассчитаем по формуле (6):

;

8. определим F крит по статистическим таблицам Приложения 3 для df 1 =k 1 =2 и df 2 =k 2 =8 табличное значение статистики F крит_факт =4,46, и для df 3 =k 3 =4 и df 2 =k 2 =8 F крит_исп =3,84

9. F эмп_факт > F крит_факт (6,872>4,46), следовательно принимается альтернативная гипотеза.

10. F эмп_исп < F крит_исп (1,054<3,84), следовательно принимается нулевая гипотеза.

Вывод: различия в объеме воспроизведения слов в разных условиях являются более выраженными, чем различия, обусловленные случайными причинами (р<0,05).Индивидуальные различия между испытуе­мыми являются не более выраженными, чем различия, обусловленные случайными причинами.

7.2 Корреляционный анализ

7.2.1 Понятие корреляционной связи

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, могут ли учащиеся с высоким уровнем тревожности демонстрировать стабильные академичес­кие достижения, или связана ли продолжительность работы учителя в школе с размером его заработной платы, или с чем больше связан уровень умственного развития учащихся - с их успеваемостью по математике или по литературе и т.п.?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь - это согласованное изме­нение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью дру­гого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем боль­ше рост, тем больше вес человека. Однако из этого правила име­ются исключения, когда относительно низкие люди имеют из­быточный вес, и, наоборот, астеники, при высоком росте име­ют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи - это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статисти­ки. «Оба термина, - пишет Е.В. Сидоренко, - корреляционная связь и корреляционная зависимость - часто используются как синони­мы. Зависимость подразумевает влияние, связь - любые согласован­ные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака (Е.В. Сидоренко, 2000).

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (ли­нейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимо­сти полученных коэффициентов корреляции.

Корреляционные связи различаются по форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решае­мых задач в контрольной сессии. Криволинейной может быть, напри­мер, связь между уровнем мотивации и эффективностью выполнения задачи (см. рис. 1). При повышении мотивации эффективность вы­полнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутст­вует уже снижение эффективности.

Рис.1. Связь между эффективностью решения задачи

и силой мотивационной тен­денции (по J. W. A t k in son, 1974, р 200)

По направлению корреляционная связь может быть положитель­ной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значе­ниям одного признака - низкие значения другого. При отрицательной корреляции соотношения обратные. При положительной корреляции коэффициент корреляции имеет положительный знак, например r =+0,207 , при отрицательной корреля­ции - отрицательный знак, например r =-0,207 .

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции.

Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

Максимальное воз­можное абсолютное значение коэффициента корреляции r =1,00 ; минимальное r =0,00 .

Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):

сильная , или тесная при коэффициенте корреляции r >0,70 ;

средняя при 0,50< r <0,69 ;

умеренная при 0,30< r <0,49 ;

слабая при 0,20< r <0,29 ;

очень слабая при r <0,19 .

Переменные Х и Y могут быть измерены в разных шкалах, именно это определяет выбор соответствующего коэффициента корреляции (см. табл. 3):

Таблица 3. Использование коэффициента корреляции в зависимости от типа переменных

Тип шкалы

Мера связи

Переменная X

Переменная У

Интервальная или отношений

Интервальная или отношений

Коэффициент Пирсона

Ранговая, интервальная или отношений

Коэффициент Спирмена

Ранговая

Ранговая

Коэффициент Кендалла

Дихотомическая

Дихотомическая

Коэффициент « j »

Дихотомическая

Ранговая

Рангово-бисериальный

Дихотомическая

Интервальная или отношений

Бисериальный

7.2.2 Коэффициент корреляции Пирсона

Термин «корреляция» был введен в науку выдающимся анг­лийским естествоиспытателем Френсисом Гальтоном в 1886 г. Однако точную формулу для подсчета коэффициента корреля­ции разработал его ученик Карл Пирсон.

Коэффициент характеризует наличие только линейной свя­зи между признаками, обозначаемыми, как правило, символами X и Y. Формула расчета коэффициента корреляции построена таким образом, что, если связь между признаками имеет ли­нейный характер, коэффициент Пирсона точно устанавливает тесноту этой связи. Поэтому он называется также коэффициен­том линейной корреляции Пирсона. Если же связь между пере­менными X и Y не линейна, то Пирсон предложил для оценки тесноты этой связи так называемое корреляционное отношение.

Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 - являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 - следовательно произошла ошибка в вычислениях.

Знак коэффициента корреляции очень важен для интерпре­тации полученной связи. Подчеркнем еще раз, что если знак ко­эффициента линейной корреляции - плюс, то связь между кор­релирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина дру­гого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно уве­личивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе гово­ря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой пере­менной. Такая зависимость носит название обратно пропорцио­нальной зависимости.

В общем виде формула для подсчета коэффициента корреля­ции такова:

(7)

гдех i - значения, принимаемые в выборке X,

y i - значения, принимаемые в выборке Y;

Средняя по X, - средняя по Y.

Расчет коэффициента корреляции Пирсона предполагает, что переменные Х и У распределены нормально .

В формуле (7) встречается величина при делении на n (число значений переменной X или Y) она называется ковариацией . Формула (7) предполагает также, что при расчете коэффициентов корреля­ции число значений переменной Х равно числу значений переменной Y .

Число степеней свободы k = n -2.

Пример 3. 1 0 школьникам были даны тесты на наглядно-образное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Исследователя интересует вопрос: существует ли вза­имосвязь между временем решения этих задач? Переменная X - обозначает среднее время реше­ния наглядно-образных, а переменная Y- сред­нее время решения вербальных заданий тестов .

Решение. Представим исходные данные в виде таблицы 4, в которой введены дополнительные столб­цы, необходимые для расчета по формуле (7).

Таблица 4

№ испытуемых

x

х i -

(х i - ) 2

y i -

(y i -) 2

16,7

278,89

51,84

120,24

13,69

17,2

295,84

63,64

7,29

51,84

19,44

68,89

14,44

31,54

59,29

7,84

21,56

0,49

46,24

4,76

10,89

17,64

13,86

10,89

51,84

23,76

68,89

10,8

116,64

89,64

68,89

18,8

353,44

156,04

Сумма

357

242

588,1

1007,6

416,6

Среднее

35,7

24,2

Рассчитываем эмпирическую величину коэффициента корре­ляции по формуле (7):

Определяем критические значения для полученного коэффи­циента корреляции по таблице Приложения 3. При нахождении критических значений для вычисленного коэффициента линейной корреляции Пирсона число степе­ней свободы рассчитывается как k = n – 2 = 8.

к крит =0,72 > 0,54 , следовательно, гипотеза Н 1 отвергается и при­нимается гипотеза H 0 , иными словами, связь между временем решения наглядно-образных и вербальных заданий теста не доказана.

7.3 Регрессионный анализ

Это группа методов, направ­ленных на выявление и математическое выражение тех измене­ний и зависимостей, которые имеют место в системе случайных величин. Если такая система моделирует педагогическую, то, следовательно, путем регрессионного анализа выявляются и ма­тематически выражаются психолого-педагогические явления и зависимости между ними. Характеристики этих явлений изме­ряются в разных шкалах, что накладывает ограничения на спо­собы математического выражения изменений и зависимостей, которые изучаются педагогом-исследователем.

Методы регрессионного анализа рассчитаны, главным обра­зом, на случай устойчивого нормального распределе­ния, в котором изменения от опыта к опыту проявляются лишь в виде независимых испытаний.

Выделяются различные формальные задачи регрессионного анализа. Они могут быть простыми или сложными по формулировкам, по математиче­ским средствам и трудоемкости. Перечислим и рассмотрим на примерах те из них, которые представляются основными.

Первая задача - выявить факт изменчивости изучаемого яв­ления при определенных, но не всегда четко фиксированных условиях. В предыдущей лекции мы уже решали эту задачу с помощью параметрических и непараметрических критериев.

Вторая задача - выявить тенденцию как периодическое изменение признака. Сам по себе этот признак мо­жет быть зависим или не зависим от переменной-условия (он может зависеть от неизвестных или неконтролируемых иссле­дователем условий). Но это не важно для рассматриваемой за­дачи, которая ограничивается лишь выявлением тенденции и ее особенностей.

Проверка гипотез об отсутствии или наличии тенденции мо­жет выполняться с использованием кри­терия Аббе. Критерий Аббе предназначен для проверки гипотез о равенстве средних значений, установленных для 4

Эмпирическое значение критерия Аббе вычисля­ется по формуле:

(8)

где -среднее арифметическое из выборки;

п – число значений в выборке.

Согласно критерию, гипотеза о равенстве средних отклоняется (принимается альтернативная гипотеза), если значение статистики . Табличное (критическое) значение статистики определяется из таблицы для q -критерия Аббе, которая с сокращениями заимствована из книги Л.Н. Болышева и Н.В. Смирнова (см. Приложение 3).

В качестве таких величин, для которых применим критерий Аббе, могут высту­пать выборочные доли или проценты, средние арифметические и другие статистики выборочных распределений, если они близ­ки к нормальному (или предварительно нормализованы). По­этому критерий Аббе может найти широкое применение в пси­холого-педагогических исследованиях. Рассмотрим пример вы­явления тенденции с помощью критерия Аббе.

Пример 4. В табл. 5 представлена динамика процента студентов IV курса, на «отлично» сдававших экзамены в зимние сессии на протяжении 10 лет работыодного изфакультетовуниверситета.Требуетсяустановить, есть ли тенденция к повышению успеваемости.

Таблица 5. Динамика процента отличников четвертого курса за 10 лет работы факультета

Учебный год

1995-96

10,8

1996-97

16,4

1997-98

17,4

1998-99

22,0

1999-00

23,0

2000-01

21,5

2001-02

26,1

2002-03

17,2

2003-04

27,5

2004-05

33,0

В качестве нулевой проверяем гипотезу об отсутствии тенденции, т. е. о равенстве процентов.

Усредняем проценты, приведенные в табл. 5, находим, что =21,5. Вычисляем разности между последующими и предыдущими зна­чениями в выборке, возводим их в квадрат и суммируем:

Аналогично вычисляет знаменатель в формуле (8), суммируя квадраты разностей между каждым измерением и средним арифметическим:

Теперь по формуле (8) получаем:

В таблице критерия Аббе из Приложения 3 находим, что при n =10 и уровне значимости 0,05 критическое значение , что больше полученного нами 0,41, следовательно гипотезу о равенстве процента «отличников» приходится отклонить, и можно принять альтернативную гипотезу о наличии тенденции.

Третья задача – это выявление закономерности, выра­женной в виде корреляционного уравнения (регрессии) .

Пример 5. Эстонский исследователь Я. Микк , изучая трудности по­нимания текста, установил «формулу читаемости», которая представляет собой множественную линейную регрессию:

Оценка трудности понимания текста,

где х 1 - длина самостоятельных предложений в количестве печат­ных знаков,

х 2 - процент различных незнакомых слов,

х 3 - абстрактность повторяющихся понятий, выраженных существительными.

Сравнивая между собой коэффициенты регрессии, выражающие степень влияния факторов, можно видеть, что трудность понимания текста опреде­ляется прежде всего его абстрактностью. Вдвое мень­ше (0,27) трудность понимания текста зависит от числа незнакомых слов и практически она совсем не зависит от длины предложении.

Рассмотренные выше приемы проверки статистических гипотез о существенности различий между двумя средними на практике имеют ограниченное применение. Это связано с тем, что для выявления действия всех возможных условий и факторов на результативный признак полевые и лабораторные опыты, как правило, проводят с использованием не двух, а большего числа выборок (1220 и более).

Часто исследователи сравнивают средние нескольких выборок, объединенных в единый комплекс. Например, изучая влияние различных видов и доз удобрений на урожайность сельскохозяйственных культур опыты повторяют в разных вариантах. В этих случаях попарные сравнения становятся громоздкими, а статистический анализ всего комплекса требует применения особого метода. Такой метод, разработанный в математической статистике, получил название дисперсионного анализа. Впервые его применил английский статистик Р. Фишер при обработке результатов агрономических опытов (1938 г.).

Дисперсионный анализ - это метод статистической оценки надежности проявления зависимости результативного признака от одного или нескольких факторов. С помощью метода дисперсионного анализа проводится проверка статистических гипотез относительно средних в нескольких генеральных совокупностях, имеющих нормальное распределение.

Дисперсионный анализ является одним из основных методов статистической оценки результатов эксперимента. Все более широкое применение получает он и в анализе экономической информации. Дисперсионный анализ дает возможность установить, насколько выборочные показатели связи результативного и факторных признаков достаточны для распространения полученных по выборке данных на генеральную совокупность. Достоинством этого метода является то, что он дает достаточно надежные выводы по выборкам небольшого численности.

Исследуя вариацию результативного признака под влиянием одного или нескольких факторов с помощью дисперсионного анализа можно получить помимо общих оценок существенности зависимостей, также и оценку различий в величине средних, которые формируются при различных уровнях факторов, и существенности взаимодействия факторов. Дисперсионный анализ применяется для изучения зависимостей как количественных, так и качественных признаков, а также при их сочетании.

Суть этого метода заключается в статистическом изучении вероятности влияния одного или нескольких факторов, а также их взаимодействия на результативный признак. Согласно этого с помощью дисперсионного анализа решаются три основных задачи: 1) общая оценка существенности различий между групповыми средними; 2) оценка вероятности взаимодействия факторов; 3) оценка существенности различий между парами средних. Чаще всего такие задачи приходится решать исследователям при проведении полевых и зоотехнических опытов, когда изучается влияние нескольких факторов на результативный признак.

Принципиальная схема дисперсионного анализа включает установление основных источников варьирование результативного признака и определение объемов вариации (сумм квадратов отклонений) по источникам ее образования; определение числа степеней свободы, соответствующих компонентам общей вариации; вычисления дисперсий как отношение соответствующих объемов вариации к их числу степеней свободы; анализ соотношения между дисперсиями; оценка достоверности разницы между средними и формулирование выводов.

Указанная схема сохраняется как при простых моделях дисперсионного анализа, когда данные группируются по одному признаку, так и при сложных моделях, когда данные группируются по двумя и большим числом признаков. Однако с увеличением числа групповых признаков усложняется процесс разложение общей вариации по источникам ее образования.

Согласно принципиальной схемы дисперсионный анализ можно представить в виде пяти последовательно выполняемых этапов:

1) определение и разложения вариации;

2) определение числа степеней свободы вариации;

3) вычисление дисперсий и их соотношений;

4) анализ дисперсий и их соотношений;

5) оценка достоверности разницы между средними и формулировка выводов по проверке нулевой гипотезы.

Наиболее трудоемкой частью дисперсионного анализа является первый этап - определение и разложения вариации по источникам ее образования. Порядок разложения общего объема вариации подробно рассматривался в главе 5.

В основе решения задач дисперсионного анализа лежит закон разложения (добавление) вариации, согласно которого общая вариация (колебания) результативного признака делится на две: вариацию, обусловленную действием исследуемого фактора (факторов), и вариацию, вызванную действием случайных причин, то есть

Предположим, что исследуемая совокупность поделена по факторным признаком на несколько групп, каждая из которых характеризуется своей средней величине результативного признака. При этом вариацию этих величин можно объяснить двумя видами причин: такими, которые действуют на результативный признак систематически и поддаются регулировке в ходе проводимого эксперимента и регулировке не поддаются. Очевидно, что межгрупповая (факторная или систематическая) вариация зависит преимущественно от действия исследуемого фактора, а внутригрупповая (остаточная или случайная) - от действия случайных факторов.

Чтобы оценить достоверность различий между групповыми средними, необходимо определить межгрупповую и внутригрупповое вариации. Если межгрупповая (факторная) вариация значительно превышает внутригрупповое (остаточную) вариацию, то фактор влиял на результативный признак, существенно изменяя значения групповых средних величин. Но возникает вопрос, каково соотношение между міжгруповою и внутрішньогруповою вариациями можно рассматривать как достаточное для вывода о достоверности (существенности) различий между групповыми средними.

Для оценки существенности различий между средними и формулировка выводов по проверке нулевой гипотезы (Н0:х1 = х2 =... = хп) в дисперсионном анализе используется своеобразный норматив - Г-критерий, закон распределения которого установил Р.фишер. Этот критерий представляет собой отношение двух дисперсий: факторного, порождаемой действием изучаемого фактора, и остаточной, обусловленной действием случайных причин:

Дисперсионное отношение Г= £>и : £*2 американским статистиком Снедекором предложено обозначать буквой Г в честь изобретателя дисперсионного анализа Р.Фішера.

Дисперсии °2 іо2 являются оценками дисперсии генеральной совокупности. Если выборки с дисперсиями °2 °2 сделаны из одной и той же генеральной совокупности, где вариация величин имела случайный характер, то расхождение в величинах °2 °2 также случайна.

Если в эксперименте проверяют влияние нескольких факторов (А, В, С и т.д.) на результативный признак одновременно, то дисперсия, обусловленная действием каждого из них, должна быть сравнима с °е.гР , то есть

Если значение факторной дисперсии значительно больше остаточной, то фактор существенно влиял на результативный признак и наоборот.

В многофакторных экспериментах кроме вариации, обусловленной действием каждого фактора, практически всегда есть вариация, обусловленная взаимодействием факторов ($ав: ^лс ^вс $лііс). Суть взаимодействия заключается в том, что эффект одного фактора существенно меняется на разных уровнях второго (например, эффективность качества Почвы при разных дозах удобрений).

Взаимодействие факторов также должна быть оценена путем сравнения соответствующих дисперсий 3 ^в.гр:

При исчислении фактического значения Б-критерия в числителе берется большая из дисперсий, поэтому Б > 1. Очевидно, что чем больше критерий Бы, тем значительнее различия между дисперсиями. Если Б = 1, то вопрос об оценке существенности различий дисперсий снимается.

Для определения пределов случайных колебаний отношение дисперсий Г. Фишер разработал специальные таблицы Б-распределения (прил. 4 и 5). Критерий Бы функционально связанный с вероятностью и зависит от числа степеней свободы вариации к1 и к2 двух сравниваемых дисперсий. Обычно используются две таблицы, позволяющие делать выводы о предельно высокое значение критерия для уровней значимости 0,05 и 0,01. Уровень значимости 0,05 (или 5%) означает, что только в 5 случаях из 100 критерий Б может принимать значение, равное указанному в таблице или выше его. Снижение уровня значимости с 0,05 до 0,01 приводит к увеличению значения критерия Бы между двумя дисперсиями в силу действия только случайных причин.

Значение критерия также зависит непосредственно от числа степеней свободы двух сравниваемых дисперсий. Если число степеней свободы стремится к бесконечности (к-ме), то отношение Бы для двух дисперсий стремится к единице.

Табличное значение критерия Б показывает возможную случайную величину отношения двух дисперсий при заданном уровне значимости и соответствующем числе степеней свободы для каждой из сравниваемых дисперсий. В указанных таблицах приводится величина Б для выборок, сделанных из одной и той же генеральной совокупности, где причины изменения величин только случайные.

Значение Г находят по таблицам (прил. 4 и 5) на пересечении соответствующего столбца (число степеней свободы для большей дисперсии - к1) и строки (число степеней свободы для меньшей дисперсии - к2). Так, если большей дисперсии (числитель Г) к1 = 4, а меньшей (знаменатель Г) к2 = 9, то Га при уровне значимости а = 0,05 составит 3,63 (прил. 4). Итак, в результате действия случайных причин, поскольку малочисленные выборки, дисперсия одной выборки может при 5%-ном уровне значимости превышать дисперсию для второй выборки в 3,63 раза. При снижении уровня значимости с 0,05 до 0,01 табличное значение критерия Г, как отмечалось выше, будет увеличиваться. Так, при тех же степенях свободы к1 = 4 и к2 = 9 и а = 0,01 табличное значение критерия Г составит 6,99 (прил. 5).

Рассмотрим порядок определения числа степеней свободы в дисперсионном анализе. Число степеней свободы, что соответствует общей сумме квадратов отклонений, раскладывается на соответствующие компоненты аналогично разложению сумм квадратов отклонений (^общ = №^гр + ]¥вхр) , то есть общее число степеней свободы (к") раскладывается на число степеней свободы для межгрупповой (к1) и внутригрупповой (к2) вариаций.

Так, если выборочная совокупность, состоящая из N наблюдений, деленная на т групп (число вариантов опыта) и п подгрупп (количество повторностей), то число степеней свободы к соответственно составит:

а) для общей суммы квадратов отклонений (й7заг)

б) для межгрупповой суммы квадратов отклонений ^м.гР)

в) для внутригрупповой суммы квадратов отклонений в в.гР)

Согласно правилу сложения вариации:

Например, если в опыте было сформировано четыре варианта опыта (т = 4) в пяти повторностях каждый (п = 5), и общее количество наблюдений N = = т o п = 4 * 5 = 20, то число степеней свободы соответственно равно:

Зная суммы квадратов отклонений число степеней свободы, можно определить несмещенные (скорректированные) оценки для трех дисперсий:

Нулевую гипотезу Н0 по критерию Б проверяют так же, как и по и-критерию Стьюдента. Чтобы принять решение по проверки Н0, необходимо рассчитать фактическое значение критерия и сравнить его с табличным значением Ба для принятого уровня значимости а и числа степеней свободы к1 и к2 для двух дисперсий.

Если Бфакг > Ба, то в соответствии с принятым уровнем значимости можно сделать вывод, что различия выборочных дисперсий определяются не только случайными факторами; они существенные. Нулевую гипотезу в этом случае отклоняют и есть основание утверждать, что фактор существенно влияет на результативный признак. Если же < Ба, то нулевую гипотезу принимают и есть основание утверждать, что различия между сравниваемыми дисперсиями находятся в границах возможных случайных колебаний: действие фактора на результативный признак не является существенным.

Применение той или иной модели дисперсионного анализа зависит как от количества изучаемых факторов, так и от способа формирования выборок.

в Зависимости от количества факторов, определяющих вариацию результативного признака, выборки могут быть сформированы по одним, двумя и большим числом факторов. Согласно этому дисперсионный анализ делится на однофакторный и многофакторный. Иначе его еще называют однофакторним и многофакторным дисперсионным комплексом.

Схема разложение общей вариации зависит от формирования групп. Оно может быть случайным (наблюдение одной группы не связаны с наблюдениями второй группы) и неслучайным (наблюдение двух выборок связаны между собой общностью условий эксперимента). Соответственно получают независимые и зависимые выборки. Независимые выборки могут быть сформированы как с ровной, так и неровной численностью. Формирование зависимых выборок предполагает их равную численность.

Если группы сформированы в невипадковому порядке, то общий объем вариации результативного признака включает в себя наряду с факторным (міжгруповою) и остаточной вариацией вариацию повторностей, то есть

На практике в большинстве случаев приходится рассматривать зависимые выборки, когда условия для групп и подгрупп выравниваются. Так, в полевом опыте весь участок разбивают на блоки, с максимально вирівняннями условиями. При этом каждый вариант опыта получает равные возможности быть представленным во всех блоках, чем достигается выравнивание условий для всех проверяемых вариантов, опыта. Такой метод построения опыта получил название метода рендомізованих блоков. Аналогично проводятся и опыты с животными.

При обработке методом дисперсионного анализа социально-экономических данных необходимо иметь в виду, что в силу багаточисельності факторов и их взаимосвязи трудно даже при самом тщательном выравнивании условий установить степень объективного влияния каждого отдельного фактора на результативный признак. Поэтому уровень остаточной вариации определяется не только случайными причинами, но и существенными факторами, которые не были учтены при построении модели дисперсионного анализа. В результате этого остаточная, дисперсия как база сравнения иногда становится неадекватным своему назначению, она явно завышается по величине и не может выступать как критерий существенности влияния факторов. В связи с этим при построении моделей дисперсионного анализа становится актуальной проблема отбора важнейших факторов и выравнивания условий для проявления действия каждого из них. Кроме того. применение дисперсионного анализа предполагает нормальный или близкий к нормальному распределение исследуемых статистических совокупностей. Если это условие не выдерживается, то оценки, полученные в дисперсионном анализе, окажутся преувеличенными.

В практической деятельности врачей при проведении медико-биологических, социологических и экспериментальных исследований возникает необходимость установить влияние факторов на результаты изучения состояния здоровья населения, при оценке профессиональной деятельности, эффективности нововведений.

Существует ряд статистических методов, позволяющих определить силу, направление, закономерности влияния факторов на результат в генеральной или выборочной совокупностях (расчет критерия I, корреляционный анализ, регрессия, Χ 2 - (критерий согласия Пирсона и др.). Дисперсионный анализ был разработан и предложен английским ученым, математиком и генетиком Рональдом Фишером в 20-х годах XX века.

Дисперсионный анализ чаще используют в научно-практических исследованиях общественного здоровья и здравоохранения для изучения влияния одного или нескольких факторов на результативный признак. Он основан на принципе "отражения разнообразий значений факторного(ых) на разнообразии значений результативного признака" и устанавливает силу влияния фактора(ов) в выборочных совокупностях.

Сущность метода дисперсионного анализа заключается в измерении отдельных дисперсий (общая, факториальная, остаточная), и дальнейшем определении силы (доли) влияния изучаемых факторов (оценки роли каждого из факторов, либо их совместного влияния) на результативный(е) признак(и).

Дисперсионный анализ - это статистический метод оценки связи между факторными и результативным признаками в различных группах, отобранный случайным образом, основанный на определении различий (разнообразия) значений признаков. В основе дисперсионного анализа лежит анализ отклонений всех единиц исследуемой совокупности от среднего арифметического. В качестве меры отклонений берется дисперсия (В)- средний квадрат отклонений. Отклонения, вызываемые воздействием факторного признака (фактора) сравниваются с величиной отклонений, вызываемых случайными обстоятельствами. Если отклонения, вызываемые факторным признаком, более существенны, чем случайные отклонения, то считается, что фактор оказывает существенное влияние на результативный признак.

Для того, чтобы вычислить дисперсию значения отклонений каждой варианты (каждого зарегистрированного числового значения признака) от среднего арифметического возводят в квадрат. Тем самым избавляются от отрицательных знаков. Затем эти отклонения (разности) суммируют и делят на число наблюдений, т.е. усредняют отклонения. Таким образом, получают значения дисперсий.

Важным методическим значением для применения дисперсионного анализа является правильное формирование выборки. В зависимости от поставленной цели и задач выборочные группы могут формироваться случайным образом независимо друг от друга (контрольная и экспериментальная группы для изучения некоторого показателя, например, влияние высокого артериального давления на развитие инсульта). Такие выборки называются независимыми.

Нередко результаты воздействия факторов исследуются у одной и той же выборочной группы (например, у одних и тех же пациентов) до и после воздействия (лечение, профилактика, реабилитационные мероприятия), такие выборки называются зависимыми.

Дисперсионный анализ, в котором проверяется влияние одного фактора, называется однофакторным (одномерный анализ). При изучении влияния более чем одного фактора используют многофакторный дисперсионный анализ (многомерный анализ).

Факторные признаки - это те признаки, которые влияют на изучаемое явление.
Результативные признаки - это те признаки, которые изменяются под влиянием факторных признаков.

Для проведения дисперсионного анализа могут использоваться как качественные (пол, профессия), так и количественные признаки (число инъекций, больных в палате, число койко-дней).

Методы дисперсионного анализа:

  1. Метод по Фишеру (Fisher) - критерий F (значения F см. в приложении N 1);
    Метод применяется в однофакторном дисперсионном анализе, когда совокупная дисперсия всех наблюдаемых значений раскладывается на дисперсию внутри отдельных групп и дисперсию между группами.
  2. Метод "общей линейной модели".
    В его основе лежит корреляционный или регрессионный анализ, применяемый в многофакторном анализе.

Обычно в медико-биологических исследованиях используются только однофакторные, максимум двухфакторные дисперсионные комплексы. Многофакторные комплексы можно исследовать, последовательно анализируя одно- или двухфакторные комплексы, выделяемые из всей наблюдаемой совокупности.

Условия применения дисперсионного анализа:

  1. Задачей исследования является определение силы влияния одного (до 3) факторов на результат или определение силы совместного влияния различных факторов (пол и возраст, физическая активность и питание и т.д.).
  2. Изучаемые факторы должны быть независимые (несвязанные) между собой. Например, нельзя изучать совместное влияние стажа работы и возраста, роста и веса детей и т.д. на заболеваемость населения.
  3. Подбор групп для исследования проводится рандомизированно (случайный отбор). Организация дисперсионного комплекса с выполнением принципа случайности отбора вариантов называется рандомизацией (перев. с англ. - random), т.е. выбранные наугад.
  4. Можно применять как количественные, так и качественные (атрибутивные) признаки.

При проведении однофакторного дисперсионного анализа рекомендуется (необходимое условие применения):

  1. Нормальность распределения анализируемых групп или соответствие выборочных групп генеральным совокупностям с нормальным распределением.
  2. Независимость (не связанность) распределения наблюдений в группах.
  3. Наличие частоты (повторность) наблюдений.

Нормальность распределения определяется кривой Гаусса (Де Мавура), которую можно описать функцией у = f(х), так как она относится к числу законов распределения, используемых для приближенного описания явлений, которые носят случайный, вероятностный характер. Предмет медико-биологических исследований - явления вероятностного характера, нормальное распределение в таких исследованиях встречается весьма часто.

Принцип применения метода дисперсионного анализа

Сначала формулируется нулевая гипотеза, то есть предполагается, что исследуемые факторы не оказывают никакого влияния на значения результативного признака и полученные различия случайны.

Затем определяем, какова вероятность получить наблюдаемые (или более сильные) различия при условии справедливости нулевой гипотезы.

Если эта вероятность мала*, то мы отвергаем нулевую гипотезу и заключаем, что результаты исследования статистически значимы. Это еще не означает, что доказано действие именно изучаемых факторов (это вопрос, прежде всего, планирования исследования), но все же маловероятно, что результат обусловлен случайностью.
__________________________________
* Максимальную приемлемую вероятность отвергнуть верную нулевую гипотезу называют уровнем значимости и обозначают α = 0,05.

При выполнении всех условий применения дисперсионного анализа, разложение общей дисперсии математически выглядит следующим образом:

D oбщ. = D факт + D ост. ,

D oбщ. - общая дисперсия наблюдаемых значений (вариант), характеризуется разбросом вариант от общего среднего. Измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Общее разнообразие складывается из межгруппового и внутригруппового;

D факт - факторная (межгрупповая) дисперсия, характеризуется различием средних в каждой группе и зависит от влияния исследуемого фактора, по которому дифференцируется каждая группа. Например, в группах различных по этиологическому фактору клинического течения пневмонии средний уровень проведенного койко-дня неодинаков - наблюдается межгрупповое разнообразие.

D ост. - остаточная (внутригрупповая) дисперсия, которая характеризует рассеяние вариант внутри групп. Отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неуточненных факторов и не зависящую от признака - фактора, положенного в основание группировки. Вариация изучаемого признака зависит от силы влияния каких-то неучтенных случайных факторов, как от организованных (заданных исследователем), так и от случайных (неизвестных) факторов.

Поэтому общая вариация (дисперсия) слагается из вариации, вызванной организованными (заданными) факторами, называемыми факториальной вариацией и неорганизованными факторами, т.е. остаточной вариацией (случайной, неизвестной).

Классический дисперсионный анализ проводится по следующим этапам:

  1. Построение дисперсионного комплекса.
  2. Вычисление средних квадратов отклонений.
  3. Вычисление дисперсии.
  4. Сравнение факторной и остаточной дисперсий.
  5. Оценка результатов с помощью теоретических значений распределения Фишера-Снедекора (приложение N 1).

АЛГОРИТМ ПРОВЕДЕНИЯ ДИСПЕРСИОННОГО АНАЛИЗА ПО УПРОЩЕННОМУ ВАРИАНТУ

Алгоритм проведения дисперсионного анализа по упрощенному способу позволяет получить те же результаты, но расчеты выполняются значительно проще:

I этап. Построение дисперсионного комплекса

Построение дисперсионного комплекса означает построение таблицы, в которой были бы четко разграничены факторы, результативный признак и подбор наблюдений (больных) в каждую группу.

Однофакторный комплекс состоит из нескольких градаций одного фактора (А). Градации - это выборки из разных генеральных совокупностей (А1, А2, АЗ).

Двухфакторный комплекс - состоит из нескольких градаций двух факторов в комбинации между собой. Этиологические факторы заболеваемостью пневмонией те же (А1, А2, АЗ) в сочетании с разными формами клинического течения пневмонии (Н1 - острое, Н2 - хроническое).

Результативный признак (количество койко-дней в среднем) Этиологические факторы развития пневмоний
А1 А2 А3
Н1 Н2 Н1 Н2 Н1 Н2
М = 14 дней

II этап. Вычисление общей средней (М обш)

Вычисление суммы вариант по каждой градации факторов: Σ Vj = V 1 + V 2 + V 3

Вычисление общей суммы вариант (Σ V общ) по всем градациям факторного признака: Σ V общ = Σ Vj 1 + Σ Vj 2 + Σ Vj 3

Вычисление средней групповой (М гр.) факторного признака: М гр. = Σ Vj / N,
где N - сумма числа наблюдений по всем градациям факторного I признака (Σn по группам).

III этап. Расчет дисперсий:

При соблюдении всех условий применения дисперсионного анализа математическая формула выглядит следующим образом:

D oбщ. = D факт + D ост.

D oбщ. - общая дисперсия, характеризуется разбросом вариант (наблюдаемых значений) от общего среднего;
D факт. - факторная (межгрупповая) дисперсия, характеризует разброс групповых средних от общего среднего;
D ост. - остаточная (внутригрупповая) дисперсия, характеризует рассеяние вариант внутри групп.

  1. Вычисление факториальной дисперсии (D факт.): D факт. = Σ h - H
  2. Вычисление h проводится по формуле: h = (Σ Vj) / N
  3. Вычисление Н проводится по формуле: H = (Σ V) 2 / N
  4. Вычисление остаточной дисперсии: D ост. = (Σ V) 2 - Σ h
  5. Вычисление общей дисперсии: D oбщ. = (Σ V) 2 - Σ H

IV этап. Расчет основного показателя силы влияния изучаемого фактора Показатель силы влияния (η 2) факторного признака на результат определяется долей факториальной дисперсии (D факт.) в общей дисперсии (D oбщ.), η 2 (эта) - показывает какую долю занимает влияние изучаемого фактора среди всех других факторов и определяется по формуле:

V этап. Определение достоверности результатов исследования методом Фишера проводят по формуле:


F - критерий Фишера;
F st. - табличное значение (см.приложение 1).
σ 2 факт, σ 2 ост. - факториальная и остаточная девиаты (от лат. de - от, via - дорога) - отклонение от средней линии, определяются по формулам:


r - число градаций факторного признака.

Сравнение критерия Фишера (F) со стандартным (табличным) F проводят по графам таблицы с учетом степеней свободы:

v 1 = n - 1
v 2 = N - 1

По горизонтали определяют v 1 по вертикали - v 2 , на их пересечении определяют табличное значение F, где верхнее табличное значение р ≥ 0,05, а нижнее соответствует р > 0,01, и сравнивают с вычисленным критерием F. Если значение вычисленного критерия F равно или больше табличного, то результаты достоверны и Н 0 не отвергается.

Условие задачи:

На предприятии Н. повысился уровень травматизма в связи с чем врач провел исследование отдельных факторов, среди которых изучался стаж работы работающих в цехах. Выборки сделаны на предприятии Н. из 4 цехов с близкими условиями и характером труда. Уровни травматизма рассчитаны на 100 работающих за прошлый год.

При исследовании фактора рабочего стажа получены следующие данные:

На основании данных проведённого исследования была выдвинута нулевая гипотеза (Н 0) о влиянии стажа работы на уровень травматизма работников предприятия А.

Задание
Подтвердите или опровергните нулевую гипотезу методом одно-факторного дисперсионного анализа:

  1. определите силу влияния;
  2. оцените достоверность влияния фактор.

Этапы применения дисперсионного анализа
для определения влияния фактора (стажа работы) на результат (уровень травматизма)

Вывод. В выборочном комплексе выявлено, что сила влияния стажа работы на уровень травматизма составляет 80% в общем числе других факторов. Для всех цехов завода можно с вероятностью 99,7% (13,3 > 8,7) утверждать, что стаж работы влияет на уровень травматизма.

Таким образом, нулевая гипотеза (Н 0) не отвергается и влияние стажа работы на уровень травматизма в цехах завода А считается доказанным.

Значение F (критерий Фишера) стандартного при р ≥ 0,05 (верхнее значение) при р ≥ 0,01 (нижнее значение)

1 2 3 4 5 6 7 8 9 10 11
6 6,0
13,4
5,1
10,9
4,8
9,8
4,5
9,2
4,4
8,8
4,3
8,5
4,2
8,3
4,1
8,1
4,1
8,0
4,1
7,9
4,0
7,8
7 5,6
12,3
4,7
9,6
4,4
8,5
4,1
7,9
4,0
7,5
3,9
7,2
3,8
7,0
3,7
6,8
3,7
6,7
3,6
6,6
3,6
6,5
8 5,3
11,3
4,6
8,7
4,1
7,6
3,8
7,0
3,7
6,6
3,6
6,4
3,5
6,2
3,4
6,0
3,4
5,9
3,3
5,8
3,1
5,7
9 5,1
10,6
4,3
8,0
3,6
7,0
3,6
6,4
3,5
6,1
3,4
5,8
3,3
5,6
3,2
5,5
3,2
5,4
3,1
5,3
3,1
5,2
10 5,0
10,0
4,1
7,9
3,7
6,6
3,5
6,0
3,3
5,6
3,2
5,4
3,1
5,2
3,1
5,1
3,0
5,0
2,9
4,5
2,9
4,8
11 4,8
9,7
4,0
7,2
3,6
6,2
3,6
5,7
3,2
5,3
3,1
5,1
3,0
4,9
3,0
4,7
2,9
4,6
2,9
4,5
2,8
4,5
12 4,8
9,3
3,9
6,9
3,5
6,0
3,3
5,4
3,1
5,1
3,0
4,7
2,9
4,7
2,9
4,5
2,8
4,4
2,8
4,3
2,7
4,2
13 4,7
9,1
3,8
6,7
3,4
5,7
3,2
5,2
3,0
4,9
2,9
4,6
2,8
4,4
2,8
4,3
2,7
4,2
2,7
4,1
2,6
4,0
14 4,6
8,9
3,7
6,5
3,3
5,6
3,1
5,0
3,0
4,7
2,9
4,5
2,8
4,3
2,7
4,1
2,7
4,0
2,6
3,9
2,6
3,9
15 4,5
8,7
3,7
6,4
3,3
5,4
3,1
4,9
2,9
4,6
2,8
4,3
2,7
4,1
2,6
4,0
2,6
3,9
2,5
3,8
2,5
3,7
16 4,5
8,5
3,6
6,2
3,2
5,3
3,0
4,8
2,9
4,4
2,7
4,2
2,7
4,0
2,6
3,9
2,5
3,8
2,5
3,7
2,5
3,6
17 4,5
8,4
3,6
6,1
3,2
5,2
3,0
4,7
2,8
4,3
2,7
4,1
2,6
3,9
2,6
3,8
2,5
3,8
2,5
3,6
2,4
3,5
18 4,4
8,3
3,5
6,0
3,2
5,1
2,9
4,6
2,8
4,2
2,7
4,0
2,6
3,8
2,5
3,7
2,7
3,6
2,4
3,6
3,4
3,5
19 4,4
8,2
3,5
5,9
3,1
5,0
2,9
4,5
2,7
4,2
2,6
3,9
2,5
3,8
2,5
3,6
2,4
3,5
2,4
3,4
2,3
3,4
20 4,3
8,1
3,5
5,8
3,1
4,9
2,9
4,4
2,7
4,1
2,6
3,9
2,5
3,7
2,4
3,6
2,4
3,4
2,3
3,4
2,3
3,3

  1. Власов В.В. Эпидемиология. - М.: ГЭОТАР-МЕД, 2004. 464 с.
  2. Архипова ГЛ., Лаврова И.Г., Трошина И.М. Некоторые современные методы статистического анализа в медицине. - М.: Метроснаб, 1971. - 75 с.
  3. Зайцев В.М., Лифляндский В.Г., Маринкин В.И. Прикладная медицинская статистика. - СПб.: ООО "Издательство ФОЛИАНТ", 2003. - 432 с.
  4. Платонов А.Е. Статистический анализ в медицине и биологии: задачи, терминология, логика, компьютерные методы. - М.: Издательство РАМН, 2000. - 52 с.
  5. Плохинский Н.А. Биометрия. - Издательство Сибирского отделения АН СССР Новосибирск. - 1961. - 364 с.

Дисперсионный анализ – анализ изменчивости результативного признака под влиянием каких-либо контролируемых переменных факторов. (В зарубежной литературе именуется ANOVA – «Analisis of Variance»).

Результативный признак называют также зависимым признаком, а влияющие факторы – независимыми признаками.

Ограничение метода: независимые признаки могут измеряться по номинальной, порядковой или метрической шкале, зависимые – только по метрической. Для проведения дисперсионного анализа выделяют несколько градаций факторных признаков, а все элементы выборки группируют в соответствии с этими градациями.

Формулировка гипотез в дисперсионном анализе.

Нулевая гипотеза: «Средние величины результативного признака во всех условиях действия фактора (или градациях фактора) одинаковы».

Альтернативная гипотеза: «Средние величины результативного признака в разных условиях действия фактора различны».

Дисперсионный анализ можно подразделить на несколько категорий в зависимости:

от количества рассматриваемых независимых факторов;

от количества результативных переменных, подверженных действию факторов;

от характера, природы получения и наличия взаимосвязи сравниваемых выборок значений.

При наличии одного фактора, влияние которого исследуется, дисперсионный анализ именуется однофакторным, и распадается на две разновидности:

- Анализ несвязанных (то есть – различных) выборок . Например, одна группа респондентов решает задачу в условиях тишины, вторая – в шумной комнате. (В этом случае, к слову, нулевая гипотеза звучала бы так: «среднее время решения задач такого-то типа будет одинаково в тишине и в шумном помещении», то есть не зависит от фактора шума.)

- Анализ связанных выборок , то есть, двух замеров, проведенных на одной и той же группе респондентов в разных условиях. Тот же пример: в первый раз задача решалась в тишине, второй – сходная задача – в условиях шумовых помех. (На практике к подобным опытам следует подходить с осторожностью, поскольку в действие может вступить неучтенный фактор «научаемость», влияние которого исследователь рискует приписать изменению условий, а именно, - шуму.)

В случае если исследуется одновременное воздействие двух или более факторов, мы имеем дело с многофакторным дисперсионным анализом, который также можно подразделить по типу выборки.

Если же воздействию факторов подвержено несколько переменных, - речь идет о многомерном анализе . Проведение многомерного дисперсионного анализа предпочтительнее одномерного только в том случае, когда зависимые переменные не являются независимыми друг от друга и коррелируют между собой.

Обобщенно задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака выделить три частные вариативности:

    вариативность, обусловленную действием каждой из исследуемых независимых переменных (факторов).

    вариативность, обусловленную взаимодействием исследуемых независимых переменных.

    вариативность случайную, обусловленную всеми неучтенными обстоятельствами.

Для оценки вариативности, обусловленной действием исследуемых переменных и их взаимодействием вычисляется отношение соответствующего показателя вариативности и случайной вариативности. Показателем этого соотношения является F – критерий Фишера.

Чем в большей степени вариативность признака обусловлена действием влияющих факторов или их взаимодействием, тем выше эмпирические значения критерия .

В формулу расчета критерия входят оценки дисперсий, и, следовательно, этот метод относится к разряду параметрических.

Непараметрическим аналогом однофакторного дисперсионного анализа для независимых выборок является критерий Краскела-Уоллеса. Он подобен критерию Манна-Уитни для двух независимых выборок, за тем исключением, что он суммирует ранги для каждой из групп.

Кроме этого, в дисперсионном анализе может быть применен медианный критерий. При его использовании для каждой группы определяются число наблюдений, которые превышают медиану, вычисленную по всем группам, и число наблюдений, которые меньше медианы, после чего строится двумерная таблица сопряженности.

Критерий Фридмана является непараметрическим обобщением парного t-критерия для случая выборок с повторными измерениями, когда количество сравниваемых переменных больше двух.

В отличие от корреляционного анализа, в дисперсионном анализе исследователь исходит из предположения, что одни переменные выступают как влияющие (именуемые факторами или независимыми переменными), а другие (результативные признаки или зависимые переменные) – подвержены влиянию этих факторов. Хотя такое допущение и лежит в основе математических процедур расчета, оно, однако, требует осторожности при выводах о причине и следствии.

Например, если мы выдвигаем гипотезу о зависимости успешности работы должностного лица от фактора Н (социальной смелости по Кэттелу), то не исключено обратное: социальная смелость респондента как раз и может возникнуть (усилиться) вследствие успешности его работы – это с одной стороны. С другой: следует отдать себе отчет в том, как именно измерялась «успешность»? Если за ее основу взяты были не объективные характеристики (модные нынче «объемы продаж» и проч.), а экспертные оценки сослуживцев, то имеется вероятность того, что «успешность» может быть подменена поведенческими или личностными характеристиками (волевыми, коммуникативными, внешними проявлениями агрессивности etc.).

Дисперсионный анализ

1. Понятие дисперсионного анализа

Дисперсионный анализ -это анализ изменчивости признака под влиянием каких-либо контролируемых переменных факторов. В зарубежной литературе дисперсионный анализ часто обозначается как ANOVA, что переводится как анализ вариативности (Analysis of Variance).

Задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака вычленить вариативность иного рода:

а) вариативность обусловленную действием каждой из исследуемых независимых переменных;

б) вариативность, обусловленную взаимодействием исследуемых независимых переменных;

в) случайную вариативность, обусловленную всеми другими неизвестными переменными.

Вариативность, обусловленная действием исследуемых переменных и их взаимодействием, соотносится со случайной вариативностью. Показателем этого соотношения является критерий F Фишера.

В формулу расчета критерия F входят оценки дисперсий, то есть параметров распределения признака, поэтому критерий F является параметрическим критерием.

Чем в большей степени вариативность признака обусловлена исследуемыми переменными (факторами) или их взаимодействием, тем выше эмпирические значения критерия .

Нулевая гипотеза в дисперсионном анализе будет гласить, что средние величины исследуемого результативного признака во всех гра­дациях одинаковы.

Альтернативная гипотеза будет утверждать, что средние вели­чины результативного признака в разных градациях исследуемого фак­тора различны.

Дисперсионный анализ позволяет нам констатировать изменение признака, но при этом не указывает направление этих изменений.

начнем рассмотрение дисперсионного анализа с простей­шего случая, когда исследуется действие только одной переменной (одного фактора).

2. Однофакторный дисперсионный анализ для несвязан­ных выборок

2.1. Назначение метода

Метод однофакторного дисперсионного анализа применяется в тех случаях, когда исследуются изменения результативного признака под влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвер­гаются разные выборки испытуемых. Градаций фактора должно быть не менее трех. (Градаций может быть и две, но в этом случае мы не сможем установить нели­нейных зависимостей и более разумным представляется использование более про­стых).

Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса.

Гипотезы

H 0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.

H 1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.

2.2. Ограничения метода однофакторного дисперсионного анали­за для несвязанных выборок

1. Однофакторный дисперсионный анализ требует не менее трех града­ций фактора и не менее двух испытуемых в каждой градации.

2. Результативный признак должен быть нормально распределен в ис­следуемой выборке.

Правда, обычно не указывается, идет ли речь о распределении признака во всей обследованной выборке или в той ее части, которая составляет дисперсионный комплекс.

3. Пример решения задачи методом однофакторного дисперсионного анализа для несвязанных выборок на примере:

Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в Табл. 1.

Количество воспроизведенных слов Таблица 1

№ испытуемого

низкая скорость

средняя скорость

высокая скорость

Общая сумма

H 0: Различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы.

H 1: Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы. Используя экспериментальные значения, представленные в Табл. 1, установим некоторые величины, которые будут необходимы для расчета критерия F.

Расчет основных величин для однофакторного дисперсионного анализа представим в таблице:

Таблица 2

Таблица 3

Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок

Часто встречающееся в этой и последующих таблицах обозначе­ние SS - сокращение от "суммы квадратов" (sum of squares). Это со­кращение чаще всего используется в переводных источниках.

SS факт означает вариативность признака, обусловленную действи­ем исследуемого фактора;

SS общ - общую вариативность признака;

S CA -вариативность, обусловленную неучтенными факторами, "случайную" или "остаточную" вариативность.

MS - "средний квадрат", или математическое ожидание суммы квадратов, усредненная величина соответствующих SS.

df - число степеней свободы, которое при рассмотрении непара­метрических критериев мы обозначили греческой буквой v .

Вывод: H 0 отклоняется. Принимается H 1 . Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (α=0,05). Итак, скорость предъявления слов влияет на объем их воспроизведения.

Пример решения задачи в Excel представлен ниже:

Исходные данные:

Используя команду: Сервис->Анализ данных->Однофакторный дисперсионный анализ, получим следующие результаты:

Loading...Loading...