Суммарная мощность котельной. Мощность котельной – параметр надежной работы

Цель расчета тепловой схемы котельной - определить потребную тепловую мощность (теплопроизводительность) котельной и подобрать тип, число и производительность котлов. Тепловой расчет позволяет также определить параметры и расходы пара и воды, подобрать типоразмеры и количество устанавливаемого в котельной оборудования и насосов, подобрать арматуру, средства автоматики и безопасности. Тепловой расчет котельной должен выполняться в соответствии со СНиП Н-35-76 «Котельные установки. Нормы проектирования» (с изменениями от 1998 и 2007 гг.). Тепловые нагрузки для расчета и выбора оборудования котельных должны определяться для трех характерных режимов: максимально-зимнего - при средней температуре наружного воздуха в наиболее холодную пятидневку; наиболее холодного месяца - при средней температуре наружного воздуха в наиболее холодный месяц; летнего - при расчетной температуре наружного воздуха теплого периода. Указанные средние и расчетные температуры наружного воздуха принимаются в соответствии со строительными нормами и правилами по строительной климатологии и геофизике и по проектированию отопления, вентиляции и кондиционирования воздуха. Ниже приводятся краткие указания по расчету для максимально-зимнего режима.

В тепловой схеме производственно-отопительной паровой котельной давление пара в котлах поддерживается равным давлению р, необходимому производственному потребителю (см. рис. 23.4). Этот пар - сухой насыщенный. Его энтальпию, температуру и энтальпию конденсата можно найти по таблицам теплофизических свойств воды и водяного пара . Пар давлением р ОТ, используемый для нагрева сетевой воды, воды системы горячего водоснабжения и воздуха в калориферах, получается дросселированием пара давлением р в редукционном клапане РК2. Поэтому его энтальпия не отличается от энтальпии пара до редукционного клапана. Энтальпию и температуру конденсата пара давлением р от следует определить по таблицам по этому давлению. Наконец, пар давлением 0,12 МПа, поступающий в деаэратор, частью образуется в расширителе непрерывной продувки, а частью получается дросселированием в редукционном клапане РК1. Поэтому в первом приближении следует принять его энтальпию равной среднеарифметическому значению энтальпий сухого насыщенного пара при давлениях р и 0,12 МПа. Энтальпия и температура конденсата пара давлением 0,12 МПа должны быть определены по таблицам по этому давлению.

Тепловая мощность котельной равна сумме тепловых мощностей технологических потребителей, отопления, горячего водоснабжения и вентиляции, а также расхода теплоты на собственные нужды котельной.

Тепловая мощность технологических потребителей определяется по паспортным данным изготовителя или рассчитывается по фактическим данным о технологическом процессе. В ориентировочных расчетах можно использовать усредненные данные о нормах расхода теплоты.

В гл. 19 изложен порядок расчета тепловой мощности для различных потребителей. Максимальная (расчетная) тепловая мощность отопления производственных, жилых и административных помещений определяется в соответствии с объемами зданий, расчетными значениями температуры наружного воздуха и воздуха в каждом из зданий. Так же рассчитывается максимальная тепловая мощность вентиляции производственных зданий. Принудительная вентиляция в жилой застройке не предусматривается. После определения тепловой мощности каждого из потребителей рассчитывается расход пара на них.

Расчет расходов пара на внешние тепловые потребители выполняется по зависимостям (23.4)-(23.7), в которых обозначения тепловых мощностей потребителей соответствуют обозначениям, принятым в гл. 19. Тепловые мощности потребителей должны быть выражены в кВт.

Расход пара на технологические нужды, кг/с:

где / п, / к - энтальпия пара и конденсата при давлении р , кДж/кг; Г| с - коэффициент сохранения теплоты в сетях.

Потери теплоты в сетях определяются в зависимости от способа прокладки, типа изоляции и длины трубопроводов (подробнее см. гл. 25). В предварительных расчетах можно принять Г| с = 0,85- 0,95.

Расход пара на отопление, кг/с:

где / п, / к - энтальпия пара и конденсата, / п определяется по /? от; / к = = с в t 0K , кДж/кг; / ок - температура конденсата после ОК, °С.

Потери теплоты от теплообменников в окружающую среду можно принять равными 2% от передаваемой теплоты, Г| то = 0,98.

Расход пара на вентиляцию, кг/с:

р ОТ, кДж/кг.

Расход пара на горячее водоснабжение, кг/с:

где / п, / к - энтальпия пара и конденсата соответственно, определяются по р от, кДж/кг.

Для определения номинальной паропроизводительности котельной необходимо рассчитать расход пара, отпускаемого внешним потребителям:

При подробных расчетах тепловой схемы определяются расход добавочной воды и доля продувки, расход пара на деаэратор, расход пара на разогрев мазута, на отопление котельной и другие нужды. При ориентировочных расчетах можно ограничиться оценкой расхода пара на собственные нужды котельной ~ 6% от расхода на внешних потребителей.

Тогда максимальная производительность котельной с учетом приближенного расхода пара на собственные нужды определяется как

где к сн = 1,06 - коэффициент затрат пара на собственные нужды котельной.

По величине, давлению р и топливу выбирается тип и количество котлов в котельной с номинальной паропроизводительностью 1Г ом из стандартного ряда. К установке в котельной рекомендуются, например, котлы типа КЕ и ДЕ Бийского котельного завода. Котлы КЕ предназначены для работы на различных видах твердого топлива, котлы ДЕ - для газа и мазута.

В котельной должно устанавливаться более одного котла. Суммарная производительность котлов должна быть больше или равна D™*. Рекомендуется устанавливать в котельной котлы одного типоразмера. Резервный котел предусматривается при расчетном числе котлов один или два. При расчетном числе котлов три и более резервный котел обычно не устанавливается.

При расчете тепловой схемы водогрейной котельной тепловая мощность внешних потребителей определяется, также как при расчете тепловой схемы паровой котельной. Затем определяется суммарная тепловая мощность котельной:

где Q K0T - тепловая мощность водогрейной котельной, МВт; к сн = = 1,06 - коэффициент расхода теплоты на собственные нужды котельной; Q BHi - тепловая мощность /-го потребителя теплоты, МВт.

По величине Q K0T подбирается типоразмер и число водогрейных котлов. Так же как в паровой котельной, число котлов должно быть не менее двух. Характеристики водогрейных котлов приведены в .

Схема присоединения зависит от типа установленных в котельной котлов. ^ Возможны следующие варианты:

Паровые и водогрейные котлы;

Пароводогрейные котлы;

Паровые, водогрейные и пароводогрейные котлы;

Водогрейные и пароводогрейные котлы;

Паровые и пароводогрейные котлы.

Схемы присоединения паровых и водогрейных котлов, входящих в состав пароводогрейной котельной, аналогичны предыдущим схемам (см. рис. 2.1 – 2.4).

Схемы присоединения пароводогрейных котлов зависят от их конструкции. Возможны 2 варианта:

I . Присоединение пароводогрейного котла с подогревом сетевой воды внутри барабана котла (см. рис. 2.5)

^ 1 – пароводогрейный котел; 2 –РОУ; 3 – подающий паропровод; 4 – кон-денсатопровод; 5 – деаэратор; 6 питательный насос; 7 – ХВО; 8 и 9 – ПЛТС и ОЛТС; 10 сетевой насос; 11 – встроенный в барабан котла подогреватель сетевой воды; 12 – регулятор температуры воды в ПЛТС; 13 – регулятор подпитки (регулятор давления воды в ОЛТС); 14 – подпиточный насос.

^ Рисунок 2.5 – Схема присоединения пароводогрейного котла с подогревом сетевой воды внутри барабана котла

Встроенный в барабан котла подогреватель сетевой воды представляет собой теплообменник смешивающего типа (см. рис. 2.6).

Сетевая вода поступает в барабан котла через успокоительный короб в полость распределительного короба, имеющего перфорированное ступенчатое днище (направляющий и барботажный листы). Перфорация обеспечивает струйное течение воды навстречу пароводяной смеси, поступающей из испарительных поверхностей нагрева котла, что приводит к нагреву воды.

^ 1 – корпус барабана котла; 2 – вода из ОЛТС; 3 и 4 – запорный и обратный клапаны; 5 – коллектор; 6 – успокоительный короб; 7 – распределительный короб, имеющий ступенчатое перфорированное днище; 8 – направляющий лист; 9 – барботажный лист; 10 – пароводяная смесь от испарительных поверх-ностей нагрева котла; 11 – возврат воды в испарительные поверхности нагрева; 12 – выход насыщенного пара в пароперегреватель; 13 – сепарационное устройство, например, потолочный перфорированный лист 14 – желоб для отбора сетевой воды; 15 – подача воды в ПЛТС;.

^ Рисунок 2.6 – Встроенный в барабан котла подогреватель сетевой воды

Теплопроизводительность котла Qк складывается из двух составляющих (теплоты сетевой нагретой воды и теплоты пара):

Q К = M C (i 2 – i 1) + D П (i П – i ПВ), (2.1)

Где M C – массовый расход нагреваемой сетевой воды;

I 1 и i 2 – энтальпии воды до и после нагрева;

D П – паропроизводительность котла;

I П – энтальпия пара;

После преобразования (2.1):

. (2.2)

Из уравнения (2.2) следует, что расход нагреваемой воды M C и паропроизводительность котла D П взаимосвязаны: при Q K = const с увеличением паропроизводительности уменьшается расход сетевой воды, а с уменьшением паропроизводительности увеличивается расход сетевой воды.

Соотношение между расходом пара и количеством нагреваемой воды может быть различным, однако расход пара должен быть не менее 2% от общей массы пара и воды для возможности выхода из котла воздуха и других неконденсирующихся фаз.

II. Присоединения пароводогрейного котла с подогревом сетевой воды во встроенных в газоход котла поверхностях нагрева(см. рис. 2.7)

Рисунок 2.7 – Схема присоединения пароводогрейного котла с подогревом

сетевой воды во встроенных в газоход котла поверхностях нагрева

На рисунке 2.7: 11* - подогреватель сетевой воды, выполненный в виде поверхностного теплообменника, встроенного в газоход котла; остальные обозначения те же, что и на рисунке 2.5.

Поверхности нагрева сетевого подогревателя размещаются в газоходе котла, рядом с экономайзером, в виде дополнительной секции. В летний период, когда отсутствует отопительная нагрузка, встроенный сетевой подогреватель выполняет функцию секции экономайзера.

^ 2.3 Технологическая структура, тепловая мощность и технико-экономические показатели котельной

2.3.1 Технологическая структура котельной

Оборудование котельной обычно разделяют на 6 технологических групп (4 основные и 2 дополнительные).

^ К основным технологическим группам относится оборудование:

1) для подготовки топлива перед сжиганием в котле;

2) для подготовки котловой питательной и сетевой подпиточной воды;

3) для выработки теплоносителя (пара или нагретой воды), т.е. котлоагре-

Гаты и их вспомогательное оборудование;

4) для подготовки теплоносителя к транспорту по тепловой сети.

^ К числу дополнительных групп относятся:

1) электрооборудование котельной;

2) контрольно-измерительные приборы и системы автоматики.

В паровых котельных в зависимости от способа присоединения котлоагрегатов к теплоподготовительным установкам, например, к сетевым подогревателям, различают следующие технологические структуры:

1. Централизованная, при которой пар от всех котлоагрегатов направляется

В центральный паропровод котельной, а затем распределяется по теплоподго-товительным установкам.

2. Секционная , при которой каждый котлоагрегат работает на вполне опре-

Деленную теплоподготовительную установку с возможностью переключения пара на смежные (расположенные рядом) теплоподготовительные установки. Оборудование, связанное возможностью переключения, образует секцию котельной .

3. Блочная структура , при которой каждый котлоагрегат работает на опре-

Деленную теплоподготовительную установку без возможности переключения.

^ 2.3.2 Тепловая мощность котельной

Тепловая мощность котельной представляет собой суммарную теплопроизводительность котельной по всем видам теплоносителей, отпускаемых с котельной через тепловую сеть внешним потребителям.

Различают установленную, рабочую и резервную тепловые мощности.

^ Установленная тепловая мощность – сумма тепловых мощностей всех установленных в котельной котлов при работе их в номинальном (паспортном) режиме.

Рабочая тепловая мощность – тепловая мощность котельной при работе ее с фактической тепловой нагрузкой в данный момент времени.

В резервной тепловой мощности различают тепловую мощность явного и скрытого резерва.

^ Тепловая мощность явного резерва – сумма тепловых мощностей установленных в котельной котлов, находящихся в холодном состоянии.

Тепловая мощность скрытого резерва – разность между установленной и рабочей тепловыми мощностями.

^ 2.3.3 Технико-экономические показатели котельной

Технико-экономические показатели котельной разделяются на 3 группы: энергетические, экономические и эксплуатационные (рабочие) , которые, соответственно, предназначены для оценки технического уровня, экономичности и качества эксплуатации котельной.

^ Энергетические показатели котельной включают:



. (2.3)

Количество теплоты, выработанной котлоагрегатом, определяется:

Для паровых котлов:

Где D П – количество пара, получаемое в котле;

I П – энтальпия пара;

I ПВ – энтальпия питательной воды;

D ПР – количество продувочной воды;

I ПР – энтальпия продувочной воды.

^ Для водогрейных котлов:

, (2.5)

Где M C – массовый расход сетевой воды через котел;

I 1 и i 2 – энтальпии воды до и после нагрева в котле.

Количество теплоты, полученное от сжигания топлива, определяется произведением:

, (2.6)

Где B K – расход топлива в котел.


  1. Доля расхода теплоты на собственные нужды котельной (отношение абсолютного расхода теплоты на собственные нужды к количеству теплоты, выработанной в котлоагрегате):

, (2.7)

Где Q СН – абсолютный расход теплоты на собственные нужды котельной, который зависит от особенностей котельной и включает расход теплоты на подготовку котловой питательной и сетевой подпиточной воды, подогрев и распыливание мазута, отопление котельной, горячее водоснабжение котельной и прочее.

Формулы для расчета статей расхода теплоты на собственные нужды приведены в литературе


  1. К.п.д. котлоагрегата нетто , который в отличие от к.п.д. котлоагрегата брутто, не учитывает расход теплоты на собственные нужды котельной:

, (2.8)

Где
- выработка теплоты в котлоагрегате без учета расхода теплоты на собственные нужды.

С учетом (2.7)


  1. К.п.д. теплового потока , который учитывает потери теплоты при транспортировке теплоносителей внутри котельной вследствие передачи теплоты в окружающую среду через стенки трубопроводов и утечек теплоносителей: η т n = 0,98÷0,99.

  2. ^ К.п.д. отдельных элементов тепловой схемы котельной:
к.п.д. редукционно-охладительной установки – η роу;

К.п.д. деаэратора подпиточной воды – η дпв ;

К.п.д. сетевых подогревателей – η сп.

6. К.п.д. котельной – произведение к.п.д. всех элементов, агрегатов и установок, образующих тепловую схему котельной, например:

^ К.п.д. паровой котельной, отпускающей потребителю пар:

. (2.10)

К.п.д паровой котельной, отпускающей потребителю нагретую сетевую воду:

К.п.д. водогрейной котельной:

. (2.12)


  1. Удельный расход условного топлива на выработку тепловой энергии - масса условного топлива, затраченного на выработку 1 Гкал или 1 ГДж тепловой энергии, отпускаемой внешнему потребителю:

, (2.13)

Где B кот – расход условного топлива в котельной;

Q отп – количество теплоты, отпущенное с котельной внешнему потреби-телю.

Расход условного топлива в котельной определяется выражениями:

,
; (2.14)

,
, (2.15)

Где 7000 и 29330 – теплота сгорания условного топлива в ккал/кг у.т. и

КДж/кг у.т.

После подстановки (2.14) или (2.15) в (2.13):

, ; (2.16)

. . (2.17)

К.п.д. котельной
и удельный расход условного топлива
являются важнейшими энергетическими показателями котельной и зависят от типа установленных котлов, вида сжигаемого топлива, мощности котельной, вида и параметров отпускаемых теплоносителей.

Зависимость и для котлов, применяемых в системах теплоснабжения, от вида сжигаемого топлива:

^ Экономические показатели котельной включают:


  1. Капитальные затраты (капиталовложения) К, которые представляют собой сумму затрат, связанных с сооружением новой или реконструкции
существующей котельной.

Капитальные затраты зависят от мощности котельной, типа установленных котлов, вида сжигаемого топлива, вида отпускаемых теплоносителей и ряда конкретных условий (удаленность от источников топлива, воды, магистральных дорог и прочее).

^ Ориентировочная структура капитальных затрат:

Строительно-монтажные работы – (53÷63)% К;

Затраты на оборудование – (24÷34)% К;

Прочие затраты – (13÷15)% К.


  1. Удельные капитальные затраты k УД (капитальные затраты, отнесенные к единице тепловой мощности котельной Q КОТ):

. (2.18)

Удельные капитальные затраты позволяют определить ожидаемые капитальные затраты на сооружение вновь проектируемой котельной
по аналогу:

, (2.19)

Где - удельные капитальные затраты на сооружение аналогичной котельной;

- тепловая мощность проектируемой котельной.


  1. ^ Ежегодные затраты , связанные с выработкой тепловой энергии, включают:
расходы на топливо, электроэнергию, воду и вспомогательные материалы;

Заработную плату и соответствующие отчисления;

Амортизационные отчисления, т.е. перенос стоимости оборудования по мере его износа на стоимость вырабатываемой тепловой энергии;

Текущий ремонт;

Общекотельные расходы.



. (2.20)


  1. Приведенные затраты , которые представляют собой сумму ежегодных затрат, связанных с выработкой тепловой энергии, и части капитальных затрат, определяемой нормативным коэффициентом эффективности капиталовложения E н:
. (2.21)

Величина, обратная E н, дает срок окупаемости капитальных затрат. Например, при E н =0,12
срок окупаемости
(года).

Эксплуатационные показатели , указывают на качество эксплуатации котельной и, в частности, включают:



. (2.22)


. (2.23)



. (2.24)

Или с учетом (2.22) и (2.23):

. (2.25)

^ 3 ТЕПЛОСНАБЖЕНИЕ ОТ ТЕПЛОЭЛЕКТРОЦЕНТРАЛЕЙ (ТЭЦ)

3.1 Принцип комбинированной выработки тепловой и электрической энергии

Теплоснабжение от ТЭЦ называют теплофикацией – централизованное теплоснабжение на базе комбинированной (совместной) выработки тепловой и электрической энергии.

Альтернативой теплофикации является раздельная выработка тепловой и электрической энергии, т.е., когда электроэнергия вырабатывается на конденсационных тепловых электростанциях (КЭС), а тепловая энергия – в котельных.

Энергетическая эффективность теплофикации заключается в том, что для выработки тепловой энергии используют теплоту отработавшего в турбине пара, что исключает:

Потери остаточной теплоты пара после турбины;

Сжигание топлива в котельных для выработки тепловой энергии.

Рассмотрим раздельную и комбинированную выработку тепловой и электрической энергии (см. рис. 3.1).

1 – парогенератор; 2 – паровая турбина; 3 – электрогенератор; 4 – конденсатор паровой турбины; 4* - подогреватель сетевой воды; 5 – насос; 6 – ПЛТС; 7 – ОЛТС; 8 – сетевой насос.

Рисунок 3.1 – Раздельная (а) и комбинированная (б) выработка тепловой и электрической энергии

Для возможности использования остаточной теплоты отработавшего в турбине пара на нужды теплоснабжения его выводят из турбины с несколько более высокими параметрами, чем в конденсатор, а вместо конденсатора можно установить сетевой подогреватель (4*). Сравним циклы КЭС и ТЭЦ на

TS – диаграмме, в которой площадь под кривой указывает на количество теплоты, подведенной или отведенной в циклах (см. рис. 3.2)

Рисунок 3.2 – Сравнение циклов КЭС и ТЭЦ

Обозначения к рисунку 3.2:

1-2-3-4 и 1*-2-3-4 – подвод теплоты в циклах электростанций;

1-2, 1*-2 – нагрев воды до температуры кипения в экономайзере котла;

^ 2-3 – испарение воды в испарительных поверхностях нагрева;

3-4 – перегрев пара в пароперегревателе;

4-5 и 4-5* - расширение пара в турбинах;

5-1 – конденсация пара в конденсаторе;

5*-1* - конденсация пара в сетевом подогревателе;

q е к – количество теплоты, эквивалентное выработанной электроэнергии в цикле КЭС;

q е т – количество теплоты, эквивалентное выработанной электроэнергии в цикле ТЭЦ;

q к – теплота пара, отведенная через конденсатор в окружающую среду;

q т – теплота пара, использованная в теплоснабжении на подогрев сетевой воды.

И
з сравнения циклов следует, что в теплофикационном цикле, в отличие от конденсационного, теоретически отсутствуют потери теплоты пара: часть теплоты расходуется на выработку электроэнергии, а оставшаяся теплота идет на теплоснабжение. При этом снижается удельный расход теплоты на выработку электроэнергии, что можно проиллюстрировать циклом Карно (см. рис. 3.3):

Рисунок 3.3 – Сравнение циклов КЭС и ТЭЦ на примере цикла Карно

Обозначения к рисунку 3.3:

Тп – температура подвода теплоты в циклах (температура пара на входе в

Турбину);

Тк – температура отвода теплоты в цикле КЭС (температура пара в конденсаторе);

Тт - температура отвода теплоты в цикле ТЭЦ (температура пара в сетевом подогревателе).

q е к , q е т , q к , q т - то же, что и на рисунке 3.2.

Сравнение удельных расходов теплоты на выработку электроэнергии.


Показатели

КЭС

ТЭЦ

Количество теплоты,
подведенной
в цикле КЭС и ТЭЦ:

q П =Тп·ΔS

q П =Тп·ΔS

Количество теплоты,
эквивалентное
выработаной электроэнергии:

Таким образом, теплофикация по сравнению с раздельной выработкой тепловой и электрической энергии обеспечивает:

  1. Исключение котельных в системах теплоснабжения.

  2. Уменьшение удельного расхода теплоты на выработку электроэнергии.

  3. Централизацию теплоснабжения (за счет большой тепловой мощности ТЭЦ), что по сравнению с децентрализацией имеет ряд преимуществ (см. 1.3).

Котельные могут отличаться по поставленным перед ними задачам. Есть теплоисточники, которые направлены только на обеспечение теплом объектов, есть водогрейные, а есть смешанные, вырабатывающие одновременно тепло и горячую воду. Поскольку объекты, обслуживаемые котельной, могут быть разных размеров и потребления, то при строительстве следует особо тщательно подойти к расчету мощности.

Мощность котельной – сумма нагрузок

Чтобы верно определить какой мощности котел следует покупать, нужно учесть ряд параметров. Среди них характеристика подключаемого объекта, его нужды и потребность в резерве. Детально мощность котельной складывается из следующих величин:

  • Обогрев помещений. Традиционно берется исходя из площади. Однако следует учитывать также тепловые потери и закладывать в расчет мощность на их компенсацию;
  • Технологический запас. В этот пункт входит обогрев самой котельной. Для стабильной работы оборудования необходим определенный тепловой режим. Он указывается в паспорте к оборудованию;
  • Горячее водоснабжение;
  • Запас. Есть ли в планах увеличение отапливаемой площади;
  • Прочие потребности. Планируется ли подключение к котельной хозяйственных построек, бассейнов и прочих помещений.

Зачастую при строительстве рекомендуют закладывать мощность котельной исходя из пропорции 10 кВт мощности на 100 метров квадратных. Однако на деле рассчитать пропорцию куда сложнее. Нужно учесть такие факторы, как «простои» оборудования в сезон непиковых нагрузок, возможные колебания потребления горячей воды, а также проверить насколько целесообразно компенсировать теплопотери здания мощностью котельной. Зачастую экономически выгоднее устранить их другими средствами. Исходя из вышесказанного, становится очевидно, что расчет мощности рациональнее доверять специалистам. Это поможет сохранить не только время, но и деньги.

Тепловая мощность котельной представляет собой суммарную теплопроизводительность котельной по всем видам теплоносителей, отпускаемых с котельной через тепловую сеть внешним потребителям.

Различают установленную, рабочую и резервную тепловые мощности.

Установленная тепловая мощность - сумма тепловых мощностей всех установленных в котельной котлов при работе их в номинальном (паспортном) режиме.

Рабочая тепловая мощность - тепловая мощность котельной при работе ее с фактической тепловой нагрузкой в данный момент времени.

В резервной тепловой мощности различают тепловую мощность явного и скрытого резерва.

Тепловая мощность явного резерва - сумма тепловых мощностей установленных в котельной котлов, находящихся в холодном состоянии.

Тепловая мощность скрытого резерва - разность между установленной и рабочей тепловыми мощностями.

Технико-экономические показатели котельной

Технико-экономические показатели котельной разделяются на 3 группы: энергетические, экономические и эксплуатационные (рабочие), которые, соответственно, предназначены для оценки технического уровня, экономичности и качества эксплуатации котельной.

Энергетические показатели котельной включают:

1. К.п.д. котлоагрегата брутто (отношение количества теплоты, выработанной котлоагрегатом, к количеству теплоты, полученной от сжигания топлива):

Количество теплоты, выработанной котлоагрегатом, определяется:

Для паровых котлов:

где DП - количество пара, получаемое в котле;

iП - энтальпия пара;

iПВ - энтальпия питательной воды;

DПР - количество продувочной воды;

iПР - энтальпия продувочной воды.

Для водогрейных котлов:

где MC - массовый расход сетевой воды через котел;

i1 и i2 - энтальпии воды до и после нагрева в котле.

Количество теплоты, полученное от сжигания топлива, определяется произведением:

где BK - расход топлива в котел.

2. Доля расхода теплоты на собственные нужды котельной (отношение абсолютного расхода теплоты на собственные нужды к количеству теплоты, выработанной в котлоагрегате):

где QСН - абсолютный расход теплоты на собственные нужды котельной, который зависит от особенностей котельной и включает расход теплоты на подготовку котловой питательной и сетевой подпиточной воды, подогрев и распыливание мазута, отопление котельной, горячее водоснабжение котельной и прочее.

Формулы для расчета статей расхода теплоты на собственные нужды приведены в литературе

3. К.п.д. котлоагрегата нетто, который в отличие от к.п.д. котлоагрегата брутто, не учитывает расход теплоты на собственные нужды котельной:

где - выработка теплоты в котлоагрегате без учета расхода теплоты на собственные нужды.

С учетом (2.7)

  • 4. К.п.д. теплового потока, который учитывает потери теплоты при транспортировке теплоносителей внутри котельной вследствие передачи теплоты в окружающую среду через стенки трубопроводов и утечек теплоносителей: зтn = 0,98ч0,99.
  • 5. К.п.д. отдельных элементов тепловой схемы котельной:
    • * к.п.д. редукционно-охладительной установки - зроу;
    • * к.п.д. деаэратора подпиточной воды - здпв;
    • * к.п.д. сетевых подогревателей - зсп.
  • 6. К.п.д. котельной - произведение к.п.д. всех элементов, агрегатов и установок, образующих тепловую схему котельной, например:

К.п.д. паровой котельной, отпускающей потребителю пар:

К.п.д паровой котельной, отпускающей потребителю нагретую сетевую воду:

К.п.д. водогрейной котельной:

7. Удельный расход условного топлива на выработку тепловой энергии - масса условного топлива, затраченного на выработку 1 Гкал или 1 ГДж тепловой энергии, отпускаемой внешнему потребителю:

где Bкот - расход условного топлива в котельной;

Qотп - количество теплоты, отпущенное с котельной внешнему потреби-телю.

Расход условного топлива в котельной определяется выражениями:

где 7000 и 29330 - теплота сгорания условного топлива в ккал/кг у.т. и кДж/кг у.т.

После подстановки (2.14) или (2.15) в (2.13):

К.п.д. котельной и удельный расход условного топлива являются важнейшими энергетическими показателями котельной и зависят от типа установленных котлов, вида сжигаемого топлива, мощности котельной, вида и параметров отпускаемых теплоносителей.

Зависимость и для котлов, применяемых в системах теплоснабжения, от вида сжигаемого топлива:

Экономические показатели котельной включают:

1. Капитальные затраты (капиталовложения) К, которые представляют собой сумму затрат, связанных с сооружением новой или реконструкции

существующей котельной.

Капитальные затраты зависят от мощности котельной, типа установленных котлов, вида сжигаемого топлива, вида отпускаемых теплоносителей и ряда конкретных условий (удаленность от источников топлива, воды, магистральных дорог и прочее).

Ориентировочная структура капитальных затрат:

  • * строительно-монтажные работы - (53ч63)% К;
  • * затраты на оборудование - (24ч34)% К;
  • * прочие затраты - (13ч15)% К.
  • 2. Удельные капитальные затраты kУД (капитальные затраты, отнесенные к единице тепловой мощности котельной QКОТ):

Удельные капитальные затраты позволяют определить ожидаемые капитальные затраты на сооружение вновь проектируемой котельной по аналогу:

где - удельные капитальные затраты на сооружение аналогичной котельной;

Тепловая мощность проектируемой котельной.

  • 3. Ежегодные затраты, связанные с выработкой тепловой энергии, включают:
    • * расходы на топливо, электроэнергию, воду и вспомогательные материалы;
    • * заработную плату и соответствующие отчисления;
    • * амортизационные отчисления, т.е. перенос стоимости оборудования по мере его износа на стоимость вырабатываемой тепловой энергии;
    • * текущий ремонт;
    • * общекотельные расходы.
  • 4. Себестоимость тепловой энергии, которая представляет собой отношение суммы годовых затрат, связанных с выработкой тепловой энергии, к количеству теплоты, отпускаемой внешнему потребителю в течение года:

5. Приведенные затраты, которые представляют собой сумму ежегодных затрат, связанных с выработкой тепловой энергии, и части капитальных затрат, определяемой нормативным коэффициентом эффективности капиталовложения Eн:

Величина, обратная Eн, дает срок окупаемости капитальных затрат. Например, при Eн=0,12 срок окупаемости(года).

Эксплуатационные показатели, указывают на качество эксплуатации котельной и, в частности, включают:

1. Коэффициент рабочего времени (отношение фактического времени работы котельной фф к календарному фк):

2. Коэффициент средней тепловой нагрузки (отношение средней тепловой нагрузки Qср за определенный период времени к максимально возможной тепловой нагрузке Qм за этот же период):

3. Коэффициент использования максимальной тепловой нагрузки, (отношение фактически выработанной тепловой энергии за определенный период времени к максимально возможной выработке за этот же период):

Данная котельная предназначена для обеспечения теплотой систем отопления, вентиляции, горячего водоснабжения и для технологического теплоснабжения. По виду энергоносителя и схеме его подачи потребителю КУ относится к отпускающим пар с возвратом конденсата и горячую воду по закрытой схеме теплоснабжения.

Тепловая мощность КУ определяется суммой часовых расходов теплоты на отопление и вентиляцию при максимально-зимнем режиме, максимально-часовых расходов теплоты на технологические цели и максимально-часовых расходов теплоты на горячее водоснабжение (при закрытых системах тепловых сетей).

Рабочая мощность КУ - суммарная мощность работающих котлоагрегатов при фактической нагрузке в данный период времени. Рабочая мощность определяется исходя из суммы тепловой нагрузки потребителей и тепловой энергии, используемой на собственные нужды котельной. В расчётах также учитываем потери теплоты в пароводяном цикле котельной установки и тепловых сетях.

Определение максимальной производительности котельной установки и количества установленных котлов

Q ку У = Q ov +Q гвс +Q tex +Q ch +ДQ ,Вт (1)

где Q ov , Q гвс, Qтех- расходы теплоты соответственно на отопление и вентиляцию, горячее водоснабжение и на технологические нужды, Вт (по заданию); Qch - расход теплоты на собственные нужды котельной установки, Вт; ДQ - потери в цикле котельной установки и в тепловых сетях (принимаем в размере 3% от суммарной тепловой мощности КУ).

Q гв = 1,5 МВт;

Q гвс = 4,17*(55-15)/(55-5)= 3,34 МВт

Расход теплоты на технологические нужды определяем по формуле:

Qtex =Дtex · (h ПАР -h ХВ), МВт (2)

где Д тех = 10 т/ч = 2,77 кг/с - расход пара на технологию (по заданию); h nap = 2,789 МДж/кг -энтальпия насыщенного пара при давлении 1,4 МПа; h XB = 20,93 кДж/кг = 0,021 МДж/кг - энтальпия холодной (исходной) воды.

Qtex = 2,77 · (2,789 - 0,021) = 7,68 МВт

Тепловая мощность, потребляемая КУ на собственные нужды, зависит от её типа и вида топлива, а также от типа системы теплоснабжения. Она расходуется на подогрев воды перед установкой для её химической очистки, деаэрацию воды, подогрев мазута, обдувку и очистку поверхностей нагрева и др. Принимаем в пределах 10-15 % от внешнего суммарного расхода теплоты на отопление, вентиляцию, ГВС и технологические нужды.

Q cн = 0,15*(4,17+3,34+7,68)= 2,27 МВт

ДQ = 0,03*15,19 = 0,45 МВт

Q ку У = 4,17+3,34+7,68+2,27 +0,45 =18 Вт

Тогда тепловая мощность КУ для трёх режимов работы котельной составит:

1) максимально-зимний:

Q ку м.з = 1,13(Q ОV + Q гвс + Q тex) ;МВт (3)

Q ку м.з = 1,13(4,17+3,34 +7,68) = 17,165 МВт

2) наиболее холодный месяц:

Q ку н.х.м = Q ку м.з *(18-t нв)/(18-t но) ,МВт (4)

Q ку н.х.м =17,165*(18+17)/(18+31)=11,78 МВт

где t но = -31°C - расчетная температура для проектирования отопления - наиболее холодной пятидневки (Коб = 0,92) ; t нв = - 17°С - расчётная температура для проектирования вентиляции - в холодный период года (параметры А) .

Выбор количества КА .

Предварительно количество КА для максимально зимнего периода можно определить по формуле:

Находим по формуле:

Q ка =2,7 (2,789-0,4187)+0,01 5 2,7 (0,826-0,4187)=6,6 МВт

ближайший КА ДКВр-6,5-13

При принятии окончательного решения о количестве КА необходимо выполнить условия:

  • 1)количество КА должно быть не менее 2
  • 2)в случае выхода из строя одного из котлов, оставшиеся в работе должны обеспечить тепловую мощность наиболее холодного месяца
  • 3)необходимо предусмотреть возможность осуществления ремонта КА в летний период (как минимум один котел)

Количество КА для наиболее холодного периода: Q ку н.х.м / Q ка =11,78/6,6=1,78=2 КА

Количество КА для летнего периода:1,13(Q гвс + Qtex)/ Q ка =1,13(3,34+7,68)=1,88=2 КА.

Loading...Loading...