Принцип работы турбобура. Сущность турбинного бурения, преимущества, недостатки и область применения

Гидравлические забойные двигатели типа турбобур – это основной элемент буровых установок. Характеристика турбобура влияет на множество факторов, которые определяют функциональную мощность всей добывающей конструкции. Это обусловлено тем, что именно к валу турбины и присоединяется долото.

Устройство турбобура: описание

Данный гидравлический забойный двигатель представляет собой достаточно сложную и компактную конструкцию, которая обеспечивает работу добывающие установки, а именно – функционирование долота.

Сам турбобур можно разделить на следующие элементы:

  • турбинный вал;
  • опора осевая и радиальная;
  • статоры.

Различают две группы деталей: вращающиеся и не вращающиеся.

К не вращающейся группе относятся:

  1. Переводник. С его помощью бурильная колонна присоединяется к турбобуру.
  2. Цилиндрический корпус. Является основой всего комплекса.
  3. Кольца пяты. Функциональный элемент.
  4. Диска статора. Через его окна буровая жидкость попадает внутрь.
  5. Средняя опора. Обеспечивает поддержку отдельных элементов.
  6. Ниппель. Обеспечивает фиксацию деталей внутри корпуса.

К вращающейся группе относятся:

  • диски ротора;
  • пяты.

В основе функционирования оборудования для бурения лежат идентичные ступени гидравлического вида, элементами которых являются:

  • направляющий элемент – неподвижный статор;
  • рабочее колесо – подвижный ротор.

Статорные колеса крепко зафиксированы в корпусе, а роторные – непосредственно на турбинном валу. В подавляющем большинстве ситуаций, на нижний конец турбобура навинчивается долото, а верхний подсоединяется к бурильным трубам с помощью резьбы.

В идеальном варианте, конструкция турбобура должна:

  • обеспечивать достаточны крутящий момент;
  • стабильно работать при низкочастотном вращении;
  • иметь постоянную энергетическую характеристику;
  • быть независимым от свойств бурового раствора.

Несмотря на конкретные требования, на данный момент не существует модели двигателя, который бы полностью им удовлетворял.

При выборе следует учитывать конкретные условия, при которых будет осуществляться бурение – это позволит подобрать оптимальный вариант среди всех доступных моделей
Они различаются как по наклону лопаток, так и по особенностям циркулирования промывочной жидкости и ряду других функциональных характеристик. Также следует учитывать особенности выбранного долота.

Принцип работы турбобура: основные моменты

В основе функционирования турбобура лежит давление потока жидкости. Именно за счет неё возможно эффективное бурение. Она, под воздействием давления, постепенно проходит через все ступени турбобура, тем самым создавая рабочий реактивный момент. На этом и базируется принцип работы.

Через бурильную колонну сам поток попадает на I ступень турбобура. Направление данной жидкости задается посредством статора. Именно в нем происходит формирование закрутки и достигается заданная скорость. Механическая энергия преобразуется из кинетической в роторе, и используется для непосредственного вращения вала.

Вышеперечисленные детали являют собой составляющие ступеней двигателя. Система, в которую входят статоры, подпятников и опор промежуточного типа, фиксируется с помощью ниппеля с повышенным осевым усилием. За счет этого на торцах элементов создается сила трения, которые и удерживают детали в неподвижном состоянии. Охлаждение подпятников обеспечивается за счет постоянно поступающей жидкостью, которая проходит через верхнюю часть турбобура, а именно – проходит через подпятниковые дисковые окна.

Жидкость промывочная поступает непосредственно в двигатель гидравлический, и только после этого – в нижележащую валовую полость.

Ниппель – это опора радиального вида для двигателя. По этой причине внутренняя площадь полностью покрыта резиной.

Бурение турбобуром: основные сведения

Турбобуры применяются для бурения скважин. Данная процедура подразумевает несколько процессов:

  • спуск турбобура;
  • опускание долота;
  • обеспечение циркуляции жидкости промывочной;
  • корректировка забойной нагрузки.

За счет изменения забойной нагрузки, а также постоянного удерживания допустимого давления в системе циркуляции трубопровода, в турбобуре поддерживается стабильный перепад. Он подстраивается таким образом, чтобы соответствовать установленной частот вращения. Именно она и определяет мощность, которую и развивает турбобур.

Устройство турбобура способствует обеспечению достаточной вариативности относительно частоты вращения. Сама конструкция содержит турбобур с долотом, который устанавливается на колонну бурильной трубы, а также снабжен:

  • спуско-подъемным устройством;
  • аппаратом для обеспечения циркуляции жидкости;
  • аппаратурой, фиксирующей её давление;
  • автомат подачи буро-инструмента.

Последние два программно связаны между собой, так что при указанном расходе жидкости для промывки поддерживается максимально возможное давление.

Система бурения располагается над местом будущей скважины. Исходя из геологического исследования и прогнозов относительно особенностей почв, подбирается конкретный вид долота. Если грунт состоит из нескольких слоев, то скважина создается с помощью долот нескольких видов.

В зависимости от глубины забоя, процесс может приостанавливаться для монтажа специальных труб – они препятствуют обрушению грунта со стенок скважны.

Турбобур может использоваться в различных климатических условиях, и является универсальным двигателем, обеспечивая надежную работу и высокую эффективность.
Последнее возможно при ответственном подходе к процессу оптимизации режимов отработки.

Турбинный принцип работы гораздо более производительный, чем роторный, а показатели крутящего момента не зависит от глубины забоя, свойств горных пород или режимов бурения.

Во время бурения управляющему узлу (человеку или автомату) после доведения до забоя необходимо производить нагрузку на долото до тех пор, пока на выбросе насоса давление стабильно повышается.

Турбобур в действии

В июне нынешнего года исполняется 120 лет изобретению, которое еще на рубеже XIX-XX веков при благоприятном стечении обстоятельств могло обеспечить российской нефтяной промышленности мощный технологический рывок. В 1895 году департамент торговли и промышленности Министерства финансов выдал инженеру-технологу Кузьме Симченко привилегию № 5892 «на систему бурения кругловращательными машинами», где основу составлял ротационный гидравлический забойный двигатель. Однако внедрение этой инновационной идеи в буровое дело последовало только через несколько десятилетий — и уже в рамках нового государства, Советского Союза

Роторный гамбит

Внедрение технологии механического роторного бурения, при котором вращение долота вместе со всей колонной бурильных труб осуществлялось станком с поверхности, стало одним из знаковых событий на этапе промышленного переворота в нефтяной промышленности в начале ХХ века. До этого наиболее распространенным методом был ударно-канатный. Впервые новую технологию применили американские бурильщики на нефтяных промыслах Техаса в 1901 году, а его производительность удалось существенно повысить после изобретения спустя семь лет (также в Штатах) шарошечного долота.

В России впервые роторное бурение было применено на Апшеронском полуострове в 1911 году, когда подрядчик фон Габер использовал на промысле в Сураханах два станка производства американской Oil Well Supply Co. Они представляли собой несложные механические устройства, в которых осевое усилие создавалось дифференциально-винтовыми, цепными и рычажными системами от парового двигателя. Высокая производительность нового оборудования произвела впечатление на русских нефтепромышленников, и этому примеру последовали инженеры лидера российской нефтяной промышленности «Товарищества нефтяного производства братьев Нобель», закупившие в США несколько роторных буровых станков, чуть позже к процессу подключились «Каспийско-Черноморское нефтепромышленное и торговое общество», подрядная фирма «Молот» и другие.

В 1913 году на промыслах Апшеронского полуострова работало 20 роторных станков

В 1913 году на промыслах Апшеронского полуострова работало уже 20 роторных станков. Однако вскоре выявились и недостатки этого способа бурения, проявлявшиеся на больших глубинах. Главная проблема — большое отклонение ствола скважины от вертикали, в связи с чем обсадные колонны часто не доходили до проектной глубины. Это заметно приостановило развитие направления.

С установлением советской власти и национализацией отрасли в стране началась реализация госпрограммы технического перевооружения нефтяной промышленности. К 1929 году роторное бурение стало бесспорным лидером: 86,7% применения на Апшеронском полуострове и 73,2% — в Грозненском районе. Буровые станки уже оснащались гидравлической подачей и системами плавного регулирования частоты вращения. Изменения в конструкции оборудования и технологии бурения привели к более чем десятикратному увеличению скорости проходки и снижению себестоимости буровых работ. Однако параллельно с массовым внедрением роторного бурения на советских нефтяных промыслах начались испытания еще более прогрессивного способа бурения скважин, призванного стать открытием новой эпохи в развитии нефтяной промышленности. Ведущая роль в этом процессе принадлежала талантливому российскому инженеру-механику Матвею Капелюшникову.

Турбобур инженера Капелюшникова

Матвей Капелюшников окончил механическое отделение Томского технологического института в 1914 году и был приглашен на работу в британскую компанию «Бакинское общество русской нефти» на Апшеронском полуострове. Уже после национализации нефтяной промышленности, в начале 1922 года инженер Капелюшников был назначен заместителем начальника Технического бюро объединения «Азнефть», и с того времени основным направлением его деятельности стало совершенствование буровой техники. Занявшись исследованием проблем роторного бурения, вскоре он весьма точно определил существенный недостаток этого способа: при значительной длине масса колонны бурильных труб внушительна, и всю эту тяжесть двигатель-ротор, находящийся на поверхности, должен вращать только для того, чтобы сообщить движение небольшому долоту, разрушающему породу на большой глубине. Таким образом, на полезную работу идет лишь малая часть энергии, а большая пропадает бесполезно. Вращаются сами трубы, при этом их наружные стенки истираются от породы, а внутренние повреждаются песком, всегда имеющимся в глинистом буровом растворе, конструкция быстро изнашивается, ломается, скручивается и требует частой замены. Выходом из технологического тупика стала бы разработка надежного и высокопроизводительного забойного двигателя. То есть применение на практике идеи Кузьмы Симченко.

Матвей Алкунович Капелюшников

Советский ученый, специалист в области нефтяной и горной механики, добычи и переработки нефти

Турбобур конструкции Капелюшникова

Напряженная работа инженера Капелюшникова и его помощников Семена Волоха и Николая Корнева принесла необходимый результат: впервые в мировой инженерной практике была успешно решена задача создания работоспособного забойного двигателя — редукторного турбобура. Первая опытная конструкция весила около тонны. В цилиндрическом кожухе помещался двигатель — одноступенчатая турбина, приводимая в движение глинистым раствором, накачиваемым насосом через полости бурильных труб. Она была соединена с долотом через зубчатый редуктор, при помощи которого уменьшалось число оборотов долота.

Первую в мире скважину с использованием нового метода пробурили в 1924 году на Сураханском промысле — ее глубина составила около 600 м. Преимущества турбобура стали очевидны практически сразу: при бурении вращается только долото, а тяжелая колонна труб лишь перемещается вдоль скважины по мере ее углубления. Что, соответственно, значительно сокращает количество аварий, особенно при работе на больших глубинах. Сообщение о выдаче патента «на изобретение гидравлического аппарата для бурения скважин вращательным способом при неподвижных трубах» на имя инженера Матвея Капелюшникова было опубликовано в центральной печати 31 августа 1925 года с указанием, что действие патента распространялось от 15 сентября 1924 года на 15 лет.

Изобретение турбобура в СССР вскоре привлекло пристальное внимание иностранного инженерного сообщества. В 1928 году американский журнал Petroleum пригласил Матвея Капелюшникова выступить с докладом о турбобуре на Международной выставке нефтяного оборудования в Талсе (штат Оклахома). В то же время крупные нефтяные компании Standard Oil Company of New York и Texaco Inc. обратились к руководству советской внешнеторговой организации «Амторг» с просьбой продемонстрировать работу турбобура Капелюшникова на американских нефтяных промыслах. Пожелание заокеанских коллег было удовлетворено, и в США отправилась советская буровая бригада во главе с инженером Капелюшниковым и с двумя турбобурами редукторного типа. Показательное турбинное бурение скважины прошло недалеко от городка Эрлсборо, на промысле компании Texas Oil Co. В одних и тех же условиях, на глубине около 700 м, при подаче глинистого раствора 16,5 л в секунду турбобур показал скорость бурения на 60% выше, чем роторный станок, потребляя втрое меньше энергии.

Результаты работы буровой бригады инженера Капелюшникова на американских нефтяных промыслах произвели большое впечатление на мировое деловое и инженерное сообщество, и вскоре ряд зарубежных фирм предложил советским торговым представителям и непосредственно Матвею Капелюшникову продать лицензию на турбобур. Однако советское правительство предпочло самостоятельно совершенствовать технологию, оставляя за собой право исключительного пользования. Правда, вскоре работа зашла в тупик.

Шумиловский прорыв

Главным недостатком турбобура конструкции Капелюшникова было ограничение эффективной работоспособности оборудования всего несколькими часами, и средняя коммерческая скорость турбинного бурения значительно отставала от роторного бурения в тех же условиях. Высокая скорость течения бурового раствора между лопатками турбины вызывала интенсивный эрозионный износ ее проточной части. Низкой была и долговечность маслонаполненного зубчатого редуктора. Его трущиеся части от большого удельного давления и попадания глинистого раствора в картер двигателя сильно изнашивались, и их приходилось менять очень часто. Наработка на отказ турбобура в среднем не превышала 10 часов. Поэтому первый турбобур по основным технико-экономическим показателям все же уступал доминировавшему в то время роторному способу бурения.

Петр Павлович Шумилов

Советский ученый,
ученый-нефтяник, изобретатель, педагог

Успешная проходка скважины в бухте Ильича (Баку) турбинным наклонно-направленным бурением положила начало внедрению наклонного турбобурения

Несовершенство оборудования привело к тому, что к началу 1930-х годов в СССР турбинное бурение стало терять сторонников среди практиков-буровиков и инженеров. Способствовал этому и очевидный прогресс в роторном бурении, которое благодаря применению мощных насосов, модернизации долот РХ («рыбий хвост») с наплавками из твердых сплавов существенно улучшило основные технико-экономические показатели. Изменить положение дел мог только технический прорыв. Этот прорыв обеспечила в первую очередь творческая группа специалистов Государственного исследовательского нефтяного института (ГИНИ) под руководством Петра Шумилова. Выпускника физико-механического факультета МГУ Шумилова сразу после получения им диплома, в 1928 году, на работу в ГИНИ пригласил академик Иван Губкин. Молодой инженер быстро прошел путь от научного сотрудника до заведующего отделом промысловой механики. В начале 30-х годов ХХ века Петр Шумилов принял активное участие в написании первого полного курса нефтяной гидравлики, который на долгие годы стал базовым учебником для специалистов-нефтяников. В этот же период он занялся главным делом жизни — созданием многоступенчатого турбобура.

Проанализировав работу турбобура Капелюшникова, Петр Шумилов пришел к принципиально новому в нефтяном машиностроении решению — применению многоступенчатой аксиальной турбины. На основании оригинальных теоретических исследований ученый разработал основные принципы теории безредукторного турбобура с многоступенчатой осевой гидравлической турбиной. Результаты этой работы стали основанием для создания в Баку «Экспериментальной конторы турбинного бурения» (ЭКТБ) во главе с самим автором новых подходов.

Реализацию концепции турбинного бурения Петр Шумилов видел в обеспечении максимальной мощности на долоте — забое. Итогом масштабной работы стала разработка конструкции многоступенчатого безредукторного турбобура Т6-150, первое испытание которого состоялось в 1935 году на Апшеронском полуострове на нефтепромысле имени Кагановича. Идеальной конструкция сразу не получилась: например, не была решена проблема надежности бурового долота на повышенных частотах вращения, необходимо было также решить ряд технологических задач, связанных и с режимами бурения, и с промышленным производством турбобура.

1. Проходка с морского основания
2. Разбуривание морского нефтяного месторождения с берега
3. Отклонение ствола скважины от сбросовой зоны (зоны разрыва) по направлению к нефтеносному участку
4. Проходка наклонной скважины, когда забой будет расположен под учаском, недоступным для монтажа буровой установки
5. Бурение на нефтяные пласты моноклинального типа
6. Бурение вспомогательной наклонной скважины для ликвидации пожара или открытого фонтана
7. Уход в сторону при аварии
8. Проходка наклонных скважин в районе замывания соляного купола
н нефть; в вода; г газ; с соль

В 1940 году коллектив ЭКТБ создал опытный образец турбобура Т10-100 с новой многоступенчатой турбиной, оснащенной одноярусным редуктором усиленного типа, обеспечивающим необходимое для бурения число оборотов непосредственно на валу. К началу Великой Отечественной войны турбобурами ЭКТБ было пробурено несколько опытных скважин на промыслах Азербайджана, Башкирии, Бугуруслана, что позволило найти технические решения, существенно повышающие надежность оборудования, оптимизирующие технологии его изготовления.

Пермский машиностроительный завод в 1950-е был одним из центров серийного производства турбобуров

В 1942 году Петру Шумилову и трем его соратникам была присуждена Сталинская премия «за изобретение многоступенчатой гидравлической турбины для бурения глубоких скважин». Этот год стал последним годом жизни ученого — он погиб на полигоне во время испытания нового типа противотанкового оружия. В 1943 году вышло посмертное издание Петра Шумилова «Теоретические основы турбинного бурения», по существу, подтвердившее наступление нового этапа становления турбинного бурения — теперь уже как самостоятельной области знания со своей научной базой, принципами конструирования, специфическими задачами и возможностями.

Дело Петра Шумилова достойно продолжили специалисты «Экспериментальной конторы турбинного бурения». В годы Великой Отечественной войны ЭКТБ было эвакуировано из Баку в Молотовскую (Пермскую) область. Здесь и произошло важное событие в истории отечественного бурового дела. На Краснокамском нефтяном месторождении под руководством главного инженера конторы Степана Аликина была разработана и успешно внедрена в производство технология наклонно-направленного турбинного бурения. Сложность бурения наклонных скважин на месторождении определялась необходимостью получать отклонение забоя на 400 м и более при глубинах скважин около 1 тыс. м, причем максимальная кривизна ствола пробуренных скважин должна была составлять 32-34°. В 1943 году 90% всех скважин в Прикамье были пробурены наклонно-направленным способом, что позволило уже в первом квартале года увеличить добычу нефти на 31%, повысить интенсивность бурения на 40%, производительность труда — на 24%. Успешный опыт наклонно-направленного турбинного бурения дал возможность пермским нефтяникам впервые в мире начать промышленное внедрение кустового бурения. При этом методе на одной площадке бурилось несколько наклонных скважин, забои которых направлялись в разные точки нефтяного пласта. Убедительный пример пермских нефтяников положил начало активному применению наклонно-направленного бурения в других районах «Второго Баку», что также решало и одну из серьезнейших проблем, замедлявших нефтедобычу в стране, — дефицита обсадных труб.

На месторождениях «Второго Баку»

После окончания войны в процессе создания новой топливно-энергетической базы страны — «Второго Баку», — Татарская и Башкирская АССР, Куйбышевская и Пермская области стали районами массового применения турбинного бурения, одновременно с которым активно проводились мероприятия по форсированию режима работы. Все это позволило увеличить коммерческую и механическую скорости проходки в 4-5 раз и за 15 лет (с 1945-го по 1960-й) объем буровых работ в стране вырос с 927 тыс. м до 6,7 млн м. За это время доля турбинного бурения выросла с 23% до 87%. Локомотивом процесса развития технологии стал Всесоюзный научно-исследовательский и проектный институт по бурению нефтяных и газовых скважин (ВНИИбурнефть), созданный 28 февраля 1953 года. С первых дней своего образования ВНИИбурнефть активно включился в освоение новых месторождений Волго-Уральской нефтегазовой провинции. Новым достижением ученых стало создание секционного турбобура ТС-1, состоящего из нескольких самостоятельных корпусов и валов с насаженными на них турбинами. Корпуса секций соединялись между собой при помощи замковой резьбы. Валы секции были взаимно связаны конусными фрикционными муфтами, что позволяло полностью передать гидравлическую нагрузку верхнего ротора на пяту нижней турбины. Испытания турбобура на месторождениях в Башкирской АССР продемонстрировали рост механической скорости бурения на 20% почти при той же проходке на долото. Причем в связи с уменьшением количества прокачиваемой жидкости энергетические затраты на 1 м проходки снижались до 40%.

Для бурения скважин малого диаметра в институте ВНИИбурнефть были спроектированы и изготовлены малогабаритные трехсекционные турбобуры ТС4. К этому же периоду относится разработка коротких турбобуров Т122М2К для направленного бурения, преимущества которых быстро оценили нефтяники.

В 1957 году ВНИИБУРнефть был переименован во Всесоюзный научно-исследовательский институт буровой техники (ВНИИБТ), в институте появились два крупных научно-конструкторских подразделения — «Отдел турбобуров» и «Лаборатория высокомоментных турбобуров». Опытные образцы новых турбобуров изготавливались на «Экспериментальном заводе ВНИИБТ» в подмосковных Люберцах и «Опытном заводе ВНИИБТ» в Котово Волгоградской области. Серийным производством турбобуров, в свою очередь, занимались Кунгурский, Пермский и Павловский машиностроительные заводы в Пермской области. Качество, надежность и высокую производительность советских турбобуров по достоинству оценило и международное сообщество буровиков. В 1958 году на Брюссельской международной выставке турбобур ТС4-5 был удостоен серебряной медали. Вскоре лицензии на изготовление и применение нескольких типов турбобуров были проданы в США, Канаду, Великобританию, Францию, ФРГ, Бельгию, Японию.

В Сибирь

В начале 1960-х годов началось создание новой топливно-энергетической базы Советского Союза в Западной Сибири. Уже к 1970 году на территории Тюменской области было открыто более 80 нефтяных, газовых и нефтегазовых месторождений. Среди них были и крупнейшие в мире: Самотлорское, Федоровское, Мамонтовское нефтяные месторождения, и Уренгойское, Медвежье, Заполярное — газовые. В крайне тяжелых природных и климатических условиях региона работать обычными методами было крайне сложно, а порой и невозможно. Начался поиск качественно новых подходов к эксплуатации техники, технологии, организации производства. Значимое место в этом процессе заняло и турбинное бурение. Например, в 1970 году бригада бурового мастера Михаила Сергеева, применяя форсированный режим при турбинном бурении, пробурила эксплуатационную скважину глубиной 1500 м с коммерческой скоростью 20 081 м/ст. — мес., что превысило средний показатель по Главтюменнефтегазу почти в семь раз.

14 апреля 1971 году в Западной Сибири впервые в стране было создано специализированное буровое объединение «ЗапСиббурнефть», что дало новый импульс развитию нефтедобычи в регионе. В числе основных направлений работы предприятия значилось и внедрение горизонтального и разветвтленно-горизонтального бурения с использованием турбобуров.

К этому времени в ВНИИБТ впервые в мире был разработан и испытан винтовой забойный двигатель, в котором в качестве рабочих органов был использован многозаходный винтовой героторный механизм. Свое применение в Западной Сибири и в других регионах нашли и секционные шпиндельные турбобуры 3ТСШ. Важная особенность их конструкции — принцип унификации, предусматривающий возможность использования в турбобуре турбин и опор любого типа соответствующего габаритного размера. Кроме того, в ВНИИБТ были разработаны турбобуры с высоколитражными турбинами точного литья 3ТСШ1-195 ТЛ, которые стали основным техническим средством, позволившим в СССР достичь наивысших скоростных показателей бурения скважин.

В 1980-е годы совершенствование техники и технологии турбинного бурения привело к появлению ряда новых направлений в конструировании турбобуров и соответствующих им технических средств. В целом к началу 90-х годов ХХ века в СССР с помощью турбинного бурения проходилось более 32 млн м скважин в год. Да и сейчас в России более 75% объема бурения ведется именно турбобуром.

Турбобур (рис.2) представляет собой забойный гидравли­ческий агрегат с многоступенчатой гидравлической турбиной, приводимой в действие потоком бурового раствора, который закачивают в бурильную колонну с поверхности насосами.

Турбобур состоит из двух групп деталей: вращающихся и не вращающихся. Невращающуюся группу деталей составляют переводник 1, при помощи которого турбобур соединяется с бу­рильной колонной, цилиндрический корпус 2 с кольцами пяты 4, дисками статора 6, средней опорой и ниппелем 8. К вращаю­щейся группе деталей относится вал 3 с насаженными на нем дисками роторов 7 и пяты 5, закрепленными на валу при по­мощи шпонки, гайки и контргайки. Нижняя часть вала имеет отверстие внутри и боковые каналы для протока раствора к до­лоту и снабжено резьбой, которой через переводник присоеди­няется долото.

Турбина состоит из большого числа ступеней (100-350). Каждая ступень (Рис.3.) представляет собой два диска с лопатками: один диск - ротор - укреплен на валу турбобура, второй - статор. Лопатки статора и ротора расположены под углом друг к другу, вследствие чего поток жидкости, посту­пающий под углом из каналов статора на лопатки ротора, ме­няет свое направление и производит силовое воздействие на них. В результате этого создаются силы, стремящиеся повер­нуть закрепленный на валу ротор в одну сторону, а закреплен­ный в корпусе диск статора - в другую сторону. Далее поток раствора из каналов ротора вновь поступает на лопатки ста­тора ниже расположенной ступени, где вновь происходят изме­нение направления потока жидкости и подача его на лопатки ротора этой ступени. На роторе второй ступени также возни­кают силы, создающие активный крутящий момент, и т. д.



Рис.3. Ступень турбины турбобура.

А-внешний вид; Б-схема ступени; 1-статор; 2-ротор; 3-лопатки статора; 4-обод статора; 5-лопатки ротора.

Жидкость, поступающая в турбобур, про­ходит через все его ступени и подводится к В зависимости от требований бурения применяют турбобуры диаметром от 127 до 220 мм с числом ступеней от 25 до 350 и более. При большем числе ступеней для удобства перевозки и монтажа турбобур выполняется из отдельных секций (до че­тырех) длиной 6-10 м каждая, соединяемых между собой на буровой в один агрегат перед спуском в скважину.

Диски ротора и статора отливают из стали, ковкого чугуна или комбинируют из пластмассовых (капроновых, полипропиле­новых) венцов и стальных ступиц ротора и ободов статора. Профили лопаток статора и ротора обычно являются зеркальным отображением.

В турбобурах диаметром 170 мм и менее при­меняют безободные диски.

Ротор фиксируется в статоре посредством радиально-осевого и радиальных резинометаллических подшипников скольжения. В односекционных турбобурах и первых (нижних) секциях сек­ционных турбобуров используется различное расположениеопор.

Опора-пята, через которую передается осевая нагрузка от бурильной колонны долоту, в зависимости от конструкции рас­полагается в верхней или нижней частях турбобура. Резинометаллическая пята состоит из нескольких ступеней (рис.4). Каждая ступень имеет подпятник, который пред­ставляет собой металлический обод / с резиновой облицовкой 2, укрепляемый в корпусе, и стальной диск 3, сидящий на валутурбобура.



Рис. 4. Резинометаллическая пята.

Эластичная резиновая облицовка одного из элементов пяты или подшипника обеспечивает его работу при смазке буровым раствором и распределяет нагрузку по поверхности трения. Резинометаллические опоры турбобуров в зависимости от усло­вий эксплуатации имеют работоспособность в пределах 50-150 ч.

Пята, расположенная в верхней части турбобура, снабжа­ется каналами для протока раствора, а пята, расположенная в нижней части вала, не имеет каналов и служит лабиринтным уплотнением, препятствующим утечкам раствора в зазор между валом и ниппелем. При такой конструкции можно работать с некоторым перепадом давления в долотах без значительных утечек раствора через нижнее уплотнение. Валы верхних сек­ций имеют только радиальные опоры.

Ниппель, свинченный с корпусом турбобура, служит для зажатия дисков статора. Резиновая обкладка ниппеля является одновременно нижней радиальной опорой и сальником, уплот­няющим зазор между корпусом и валом турбобура.

Валы секций соединяются с помощью конусных фрикцион­ных или шлицевых муфт. Последний тип, более сложный в из­готовлении, приспособлен к условиям сильной вибрационной нагрузки при бурении крепких пород. Шлицы предназначены для предотвращения проворота муфты.

Активный крутящий момент, создаваемый каждым ротором, суммируется на валу, а реактивный момент, создаваемый на лопатках дис­ков статора, суммируется на корпусе турбобура. Эти оба мо­мента- активный и реактивный - равны по величине и про­тивоположны по направлению. Реактивный момент через кор­пус турбобура передается соединенной с ним бурильной ко­лонне, а активный - долоту.

  • I. Коллективный анализ и целеполагание воспитатель­ной работы с привлечением родителей, учащихся, учите­лей класса.
  • Турбобур - забойный двигатель, приводимый в движение потоком промывочной жидкости, нагнетаемой в скважину буро­выми насосами. Турбобур вращает долото, а бурильные трубы при этом не вращаются.

    Турбобур состоит из большого количества одинаковых гидра­влических ступеней. Каждая ступень состоит из не­подвижного колеса - статора с лопатками (направляющего ап­парата) и вращающегося с валом колеса - ротора с лопатками (рабочего колеса). Все колеса статора закреплены в корпусе, а колеса роторов на валу турбины.

    Промывочная жидкость поступает сверху сначала в верхний статор, затем в верхний ротор, далее в следующий статор и, пройдя попеременно через все статоры и роторы, через специаль­ные отверстия вала и долота поступает на забой.

    В статоре создается закрутка потока и увеличивается скорость жидкости. В роторе кинетическая энергия потока жидкости, закрученного в статоре, превращается в механическую энергию вращения вала.

    Основные требования, предъявляемые к турбобуру, заклю­чаются в следующем.

    1. Для получения высокой мощности и оптимального числа оборотов вала при относительно малых скоростях промывочной жидкости в межлопаточных каналах, во избежание быстрого износа, турбина должна выполняться многоступенчатой.

    2. В целях унификации ступени турбины должны быть одина­ковыми.

    3. Профили лопаток статоров и роторов должны быть одина­ковыми, но направленными в противоположные стороны (зеркаль­ное отображение).

    1 - корпус; 2 - вал; 3 - статор; 4 - ротор; 5 - диск; 6 - подпятник; 7, 8, 9 - радиальные опоры (верхняя средняя нижняя); 10 - нипель; 11 - переводник корпуса; 12 - предохранительный переводник вала; 13 - полумуфта.

    Наиболее распространенным турбобуром является Т12М3. Верхний конец его присоединяется на резьбе к нижнему концу колонны бурильных труб. На нижний конец турбобура навинчивают долото, приводимое турбобуром во вращение.

    Промывочная жидкость, поступающая в верхнюю часть турбо­бура, движется через отверстия (окна) в дисках подпятников; часть ее проходит по смазочным канавкам резино­вой обкладки подпятников, смазывая и охлаждая их. Далее промывочная жидкость попадает в гидравлический двигатель - турбину, затем в нижнюю внутреннюю полость вала и после прохода промывочных отверстий долота на забой скважины. Турбина многоступенчатая. Количество ступеней 120. Каж­дая ступень состоит из неподвижного и вращающегося дисков - статора и ротора. Статоры закреплены в корпусе, а роторы на валу турбобура. Вся система статоров, подпятников и про­межуточных опор зажата в корпусе ниппелем со значительным осевым усилием; в результате на торцах этих деталей создаются силы трения, обеспечивающие неподвижность деталей относительно корпуса. Ниппель является также нижней радиальной опорой турбобура, поэтому внутренняя поверхность ниппеля покрыта резиной. На поверх­ности резины сделаны продольные канавки для охлаждения про­мывочной жидкостью поверхности трения. Внутри ниппеля вра­щается втулка, посаженная на вал турбобура.



    Ниппель подвергается действию двух противоположных кру­тящих моментов, реактивного момента статора (последний вра­щается против часовой стрелки, а вал по направлению часовой стрелки) и момента сил трения в нижней резиновой опоре (по часовой стрелке). Так как первый значительно больше второго, то для предупреждения самоотвинчивания ниппеля направление резьбы должно быть правым.



    Для уменьшения прогибов вала, устанавливают две средние опоры. Эти опоры, как и нижняя, покрыты резиной, имеющей канавки для промывки. Втулки средних опор и роторы турбины посажены на вал без шпонок.

    Крепление роторов, передающих крутящий момент валу, а также вращающихся деталей подпятников (колец и дисков), втулки нижней опоры, упора и втулок средних опор производится роторной гайкой. Неподвижность этих деталей на валу обу­словлена силами трения на торцах, возникающими при затяжке роторной гайки. Единственной деталью, которая устанавливается на валу на маленькой шпонке, является упор, так как имеет окна, соответствующие окнам на валу турбо­бура.

    Упор представляет собой втулку, устанавливаемую над втул­кой нижней опоры. Упор имеет шпоночную канавку и конический участок с окнами, совпадающими «по положению с окнами вала турбобура.

    Во избежание самоотвинчивания роторной гайки, верхняя ее часть имеет снаружи коническую поверхность с шестью продольными прорезями. На коническую поверхность роторной гайки надевается колпак, затяги­ваемый контргайкой; что создает обжимающее усилие, заставляющее витки резьбы роторной гайки плотно прижаться к виткам резьбы вала. Положение контргайки фиксируется предохранительной шайбой.

    Осевой разбег в собранном тур­бобуре, т. е. возможное перемещение вала с собранными на нем деталями относительно кор­пуса с зажатыми дисками статоров и подпятников; может равняться 0-2 мм.

    Для присоединения турбобура к бурильной колонне служит переводник, который нижней частью присоединяется на цилин­дрической резьбе к корпусу турбобура, а верхним концом с замко­вой резьбой к колонне бурильных труб. Переводник, завинченный до упора в торец корпуса, образует внутри него ступеньку под посадку неподвижной системы деталей турбины. Дня присоединения к переводнику и ниппелю на концах корпуса имеются внутренние цилиндрические резьбы.

    Основная нагрузка, воспринимаемая валом турбобура, может иметь направление как сверху вниз, так и снизу вверх. Усилие, направленное сверху вниз, определяется перепадом давления на турбине и собственным весом вала со всеми связанными с ним вра­щающимися деталями. Снизу вверх действует реакция забоя на долото, возникающая во время бурения и имеющая переменную величину.

    Осевые усилия воспринимаются гребенчатой резиновой пятой, состоящей из 12 ступеней. Подпятник представляет собой сталь­ное кольцо Т-образного сечения, облицованное резиной на» двух параллельных и внутренней цилиндрической поверхностях. Резиновая обкладка снабжена радиальными и осевыми канавками, необходимыми для обильного смачивания (смазки) и охлаждения трущихся поверхностей глинистым раствором во время работы.

    В наружной окружности подпятников имеются окна для про­хода основной части потока глинистого раствора. Подпятники устанавливают в корпусе турбобура и зажимают ниппелем вместе со статорами. Диски пяты изготовляют из качественных сталей. Их полированной поверхности придается высокая твердость.

    Между верхним статором и нижним подпятником устанавли­вается регулировочное кольцо.

    Вал турбобура является также валом турбины и рабочим шпинделем. Нижний конец его имеет коническую резьбу для присоединения к долоту. В нижней части 1вал имеет канал, соеди­няющийся при помощи трех окон, в которые входит глинистый раствор, с наружной поверхностью вала.

    На валу имеется небольшая канавка под шпонку для упора. Втулки опор служат для предохранения вала от износа. На верхнем конце вала под роторную гайку нарезана левая цилин­дрическая резьба, что способствует ее самозатягиванию во время работы.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Турбобуры. Назначение и классификация

    Введение

    турбобур редукторный многоступенчатый

    Турбобур - многоступенчатая турбина. Гидравлическая энергия потока жидкости приводит во вращение вал, соединенный с валом шпинделя и долотом. Турбобуры различаются по диаметру, числу секций, расположению и конструкции опор и устройству турбинных аппаратов.

    По устройству турбины:

    1. низкометражные, высоконапорные, имеющие максимальную мощность, большую частоту вращения и значительный вращающий момент.

    2. среднеметражные, имеют максимальный вращательный момент, среднюю частоту вращения при высоком расходе жидкости.

    3. высокометражные, имеют максимальное отношение вращающего момента к частоте вращения.

    Многорядные осевые подшипники - 20…100 ч. Резинометаллические опоры - 50…150 ч. Турбобуры применяются диаметром от 127 до 240 мм, с числом ступеней от 52 до 369, длиной от 8,8 до 26 м, каждая секция 6…10 м. Шифр: А - турбина имеет изменяющуюся характеристику; Ш - шпиндельный турбобур. Частота вращения регулируется от 30 до 250 об/мин. Турбобур - забойный гидравлический двигатель, предназначенный для бурения скважин в различных геологических условиях, с многоступенчатой гидравлической турбиной, приводимой в действие потоком бурового раствора.

    Классификация:

    1. с металлическими цельнолитыми турбинами;

    2. с металлическими турбинами точного литья (шифр ТЛ);

    3. с составными турбинами из металлических ступиц и пластмассовых проточных частей (шифр П);

    4. с резинометаллическими опорами с привулканизированной резиной;

    5. с резинометаллическими опорами со смешенными резиновыми вкладками (шифр СР);

    6. с опорами качения (турбина А7Н1С, А7Н4С).

    Классификация:

    1. Турбобур типа Т12 - односекционный с числом ступеней турбины 100-120, диаметры 240, 215, 195, 172.

    Т12М3 - для бурения вертикальных и наклонных скважин, до 2000 метров.

    Т12РТ9” - для бурения стволов большого диаметра методом РТБ (реактивно турбинного бурения).

    2. Турбобур, тип Т123К (укороченные) - для забуривания новых стволов, бурения сильно искривленных, многозабойных и горизонтальных скважин. Число ступеней турбин 30 и 60, диаметр 215 и 172 мм.

    3. Секционные турбины типа ТС - состоят из двух и более секций. Число ступеней 200 и более, диаметр 240, 215, 195, а при бурении глубоких скважин - 172, 127, 104 мм.

    ТС4А-4” - при КРС (разбуривание цементных пробок).

    4. Турбобуры типа КТД (колонковое турбодолото) - для отбора образцов пород при бурении скважин, диаметром 238, 212, 196, 172, 164, 127 мм.

    5. Шпиндельные турбобуры ТСШ - бурение глубоких скважин. Выпускаются как с обычной схемой промывки, так с алмазными и гидромониторными долотами, диаметры 240, 195, 185, 172, 164 мм. Диаметры 185 и 164 - для бурения с алмазными долотами. Шпиндельный турбобур собирается из шпинделя с 2-х или 3-х секций. Турбобуры с турбинами точного литья (ТЛ) из шпинделя и 2, 3, 4-х секций.

    6. Турбобуры типа А7Н - для бурения вертикальных и наклонных скважин, диаметр 195 мм, двух секционные.

    7. Шпиндели с шаровой опорой типа 1ШШ, диаметром 240 и 195. Для работы с турбинными секциями шпиндельных турбобуров взамен с резинометаллической опорой, а также взамен нижней секции 2-х и 3-х секционных турбобуров.

    Турбина состоит из большого числа ступеней (до 370). Каждая ступень состоит из статора с наружным и внутренним ободами, между которыми размещены лопатки и ротора, обод которого снабжен лопатками. Лопатки статора и ротора расположены под углом друг к другу, вследствие чего поток жидкости, поступающий под углом из каналов статора на лопатки ротора, меняет свое направление и давит на них. В результате этого создаются силы, стремящиеся повернуть закрепленный на валу ротор в одну сторону, а закрепленный в корпусе статор - в другую. Далее поток раствора из каналов ротора вновь поступает на лопатки статора второй ниже расположенной ступени, на лопатки ее ротора, где вновь изменяется направление потока раствора. На роторе второй ступени также возникает крутящий момент. В результате раствор под действием энергии давления, создаваемой буровым насосом, расположенным на поверхности, проходит все ступени турбобура. В многоступенчатой турбине раствор движется вдоль ее оси. Активный крутящий момент, создаваемый каждым ротором, суммируется на валу, а реактивный (равный по величине и противоположный по направлению), создаваемый на лопатках статора, суммируется на корпусе турбобура. Реактивный момент через корпус турбобура передается соединенной с ним бурильной колонне, а активный - долоту. На создание крутящего момента перепад давления, срабатываемый в турбобуре, составляет от 3 до 7 МПа, а иногда и более. Это является большим недостатком турбобура, поглощающего значительную часть энергии, создаваемую насосом и затрачивающего ее на вращение долота, а не на очистку и эффективное разрушение забоя скважины, что практически исключает возможность применения гидромониторных долот.

    1. Общий вид редукторного турбобура

    Рисунок 3.20. Турбобур с маслонаполненным редуктором-вставкой: А -- турбинная секция (или модуль винтового двигателя); В, D -- узел опорный; С -- редуктор-вставка; Е -- долото; 1 -- входной вал; 2 -- планетарная передача; 3 -- корпус редуктора; 4 -- вал выходной; а -- раствор буровой; б -- масло.

    2. Конструкция редукторного турбобура

    В основу конструкции редукторного турбобура положен агрегатный метод соединения машин. Поэтому он состоит из трех основных элементов: секций турбины, редуктора и шпинделя. Требуемые варианты компоновки редукторных турбобуров собирают непосредственно на буровой в зависимости от технологических требований строительства скважины. Высокая прочность планетарного редуктора позволяет в зависимости от горно-геологических условий бурения компоновать редукторный турбобур одной или несколькими турбинными секциями различных типов, одним или несколькими редукторами с различным передаточным числом, шпинделем или шпиндель-редуктором. Также к нему можно присоединять керноотборный инструмент для отбора керна или отклонитель для зарезки наклонного участка ствола скважины или корректировки ее направления. Если по условиям бурения применение редуктора не требуется, например, при использовании алмазных долот, то турбобур собирается в обычной комплектации -- из турбинных секций и шпинделя.

    3. Типы редукторных турбобуров

    В настоящее время разработаны редукторные турбобуры нескольких типов:

    Турбобур ТРВ-142 - вставной редукторный турбобур, предназначенный для использования в составе комплекса вставного инструмента для бурения без подъема бурильной колонны труб.

    Турбобур ТР-145Т - турбобур с маслонаполненным редуктором диаметром 145 мм предназначен для бурения глубоких и сверхглубоких скважин при высоких температурах до 300 °С и давлении (до 250 МПа) долотами диаметром от 158 до 165 мм при сниженной частоте вращения и увеличенном моменте силы на выходном валу турбобура с использованием воды или бурового раствора.

    ТР-175/178 -- редукторный турбобур с уменьшенным наружным диаметром.

    ТРМ-195 с редуктором РМ-195 -- наиболее широко применяемая конструкция редукторного турбобура, в которой осевые опоры вынесены в отдельные узлы (в виде промежуточного и нижнего шпинделя).

    ТРШ-195-- редукторный турбобур с одной или двумя турбинными секциями и редуктором-шпинделем с усиленными опорными узлами качения повышенной грузоподъемности, размещенными в маслонаполненной камере редуктора, воспринимающими осевые нагрузки от турбины и реакцию забоя скважины.

    ТРМЗ-195 -- турбобур с уменьшенной длиной редуктора-шпинделя и короткой турбиной, предназначенный для бурения горизонтальных скважин и искривленных участков наклонно

    ТР-195СТ -- турбобур в термостойком исполнении с механизмом стопорения вала для бурения сверхглубоких скважин при температуре до 300 °С и давлении до 250 МПа. Механизм стопорения предназначен для освобождения долота при его заклинивании и срабатывает при вращении бурильной колонны «вправо». Максимальный момент, передаваемый стопорным устройством заклиненному долоту ротором, составляет 20 кН м.

    ТРОЗ-195М -- редукторный турбобур, представляет собой новый универсальный гидравлический забойный двигатель для бурения нефтяных и газовых скважин долотами диаметром 212,7 -- 215,9 мм.

    Семейство турбобуров типов ТР-240 и ТРЗ-240 -редукторные турбобуры являются универсальными и предназначены для бурения верхних интервалов глубоких скважин долотами диаметром от 269,9 до 490 мм.

    Редукторный маслонаполненный шпиндель типа РШЗ-240 представляет собой отдельный узел, присоединяемый на буровой к турбинной секции взамен серийного шпинделя.

    Турбобур типа ТР-240 состоит из одной турбинной секции и короткого маслонаполненного редукторного шпинделя РШЗ-240.

    Редукторные турбобуры типов ТРМ-105 и ТСМ-105 предназначены для бурения глубоких скважин.

    Редукторные турбобуры типов TP2-120FL и ТРЗ-120Т - турбобуры нового поколения.

    Редукторные турбобуры типов ТР2-120Г и ТРЗ-120Г предназначены для забуривания новых стволов и бурения наклонных и горизонтальных интервалов глубоких скважин.

    Короткий редукторный турбобур предназначен для бурения наклонных и горизонтальных скважин различного назначения.

    Односекционные

    Рабочий орган - многоступенчатая турбина, состоит из статора и ротора. Все вращающиеся детали - роторы, втулки нижней и средних опор, диски и кольца пяты закрепляются на валу роторной гайки. Верхняя часть роторной гайки имеет корпус и продольные прорезы. При закреплении контргайки колпак, имеющий внутренний конус, обжимает конусную часть гайки на резьбе вала, предохраняя её от отвинчивания. В нижнем кольце вала имеется проводник для присоединения долота. Все неподвижные детали, статоры, средние опоры, подпятники, закрепляются в корпусе ниппелем. Корпус присоединяется к бурильным трубам посредством переводника. Регулированное кольцо определяется положением ротора относительно статора. Размер зависит от люфта осевого и конструктивных размеров пяты. Осевые усиления воспринимаются многоступенчатым, радиально-упорным резинометаллическим подшипником, каждая ступень состоит из неподвижного обрезиненного полпятника и вращающихся диска и кольца пяты. Ниппель и средние опоры - это резинометаллические подшипники. Основные осевые усиления, действующие на вал:

    1. гидравлическая нагрузка от перепада давления и долота (сверху вниз);

    2. реакция забоя на долото (снизу вверх).

    Турбобуры должны изготовляться следующих типов:

    ТБ - бесшпиндельные,

    ТШ - шпиндельные;

    Следующих исполнений по конструкции:

    ф - с фрикционным креплением турбин,

    пс - с плавающим статором,

    пр - с плавающим ротором,

    р - с устройством, регулирующим характеристику.

    Турбобуры с устройством, регулирующим характеристику, должны изготовляться следующих исполнений по типу устройства:

    Г - с решетками гидродинамического торможения, В - с винтовым преобразователем,

    Р - с редуктором.

    Условное обозначение турбобуров должно состоять из шифра, построенного по приведенной ниже схеме, и обозначения нормативно-технического документа.

    1 - наименование изделия; 2 - тип; 3 - исполнение по конструкции (кроме исполнения ф); 4 - исполнение по регулирующему устройству; 5 - диаметр, мм; 6 - модификация

    Рисунок 3.1. Турбобур типа Т12М3Б-240: 1 - переводник вала; 2 - вал; 3 - ниппель; 4 - упор; 5 - ротор; 6 - статор; 7 - опора средняя; 8 - гайка роторная; 9 - контргайка; 10 - корпус; 11 - переводник верхний.

    Секционные

    2 и более секций. Нижняя секция - аналогична односекционным машинам. Верхняя секция - в ней отсутствует упорный подшипник (пята). Гидравлическая нагрузка и вес вращающихся деталей верхней секции воспринимается пятой нижней секции.

    Эти нагрузки служат для создания сил трения в конусно-шлицевых муфтах, передающих вращающий момент. Трех секционные - наличие третьей (верхней) секции. Регулированное кольцо между соединительным переводником и статором.

    Рисунок 3.5. Турбобур секционный бесшпиндельный типа ТС (ТС5Б-240): I - секция нижняя; II - секция верхняя; 1 - переводник вала; 2 - вал; 3 - ниппель; 4 - упор; 5 - ротор; 6 - статор; 7, 18 - опора средняя; 8 - гайка роторная; 9 - контргайка; 10 - корпус; 11 - переводник; 12 - полумуфта нижняя; 13 - полумуфта верхняя; 14 - вал верхней секции; 15 - переводник соединительный; 16 - ротор; 17 - статор; 19 - гайка роторная; 20 - колпак; 21 - корпус; 22 - переводник корпуса

    4. Шпиндельные секционные турбобуры

    Недостаток ТС5 и 3ТС5, при износе осевой опоры в нижней секции шпинделя, в ремонтную базу отправляются все секции. В секционных машинах осевую опору устанавливают в отдельном узле - шпинделе. Корпус шпинделя с корпусом секции соединен с помощью конической резьбы, а валы с помощью конусно-шлицевой полумуфты. Вал шпинделя имеет центральное сквозное отверстие без специальных промывочных окон. Осевая опора шпинделя воспринимает гидравлическую нагрузку и вес вращающихся деталей секций и одновременно выполняет роль сальника. Положение роторов относительно статоров определяется регулировочным кольцом, устанавливаемым переводником и статором. Перенос осевой опоры вниз позволило разгрузить валы секции от осевых нагрузок, при этом уменьшает продольный изгиб валов и увеличивает КПД турбобура. Увеличилась осевая нагрузка на 10-20% по сравнению с турбобуром, в котором пята расположена в верхней части вала. Дальнейшее улучшение характеристик шпиндельных турбобуров - специальные конструкции тихоходных турбин (точное литье по выполняемым моделям). Угол установки лопаток 72-750 против 62-650обычных турбин. Малая толщина выходных кромок лопаток. Унифицированные турбобуры 3ТСШ1. Использование турбин и осевых опор любого; необходимо по условиям бурения типа. Возможность установки, как резинометаллической пяты сальника, так и подшипников качения. Шаровая опора воспринимает более высокие осевые нагрузки и эффективно работает при низких скоростях вращения. Опора вращения:

    1. многоступенчатый упорно-радиальный шарикоподшипник. Ступень подшипника состоит из ряда шаров, четырех обойм с коническими поверхностями и двух распорных колец, помещенных между наружными и внутренними обоймами.

    2. упорный на резиновых амортизаторах шарикоподшипник. Ступень состоит из упорных двойных шариковых подшипников, свободные кольца которых установлены на эластичные резинометаллические компенсаторы. Герметизация за счет сальниковых устройств.

    3ТСШ1-240: 3 - число турбинных секций; 1-шпиндельных; 240 - диаметр.

    Рисунок 3.8. Шпиндель типа ШД: 1, 8 -- переводник-стабилизатор лопастной; 2 -- опора радиальная верхняя; 3 -- уплотнение лабиринтное; 4 -- отверстие дренажное; 5 -- уплотнение резинометаллическое; 6 -- опора осевая; 7 -- опора нижняя радиальная.

    5. Турбобуры с наклонной линией давления

    Существуют турбобуры, в которых применяются турбины с безударным обтеканием потока на тормозном режиме, позволяющим получить наклонную линию давления. Снижение перепада давления у турбины при уменьшении скорости вращения позволяет подать дополнительное количество жидкости на режимах низких скоростей, что увеличивает вращающий момент. Применяются турбобуры с наклонной линией давления, работающие при постоянном расходе промывочной жидкости без установки редукционных клапанов. А9К5Са - 240 мм, А7Н4С - 195 мм. Аналогичны секционным машинам ТС6. Вместо резинометаллической пяты - упорно-радиальный подшипник. 12рядный, 15рядный. Средние опоры - однородные радиальные шаровые подшипники. Торцевой сальник, над упорно-радиальным подшипником, ограничивает расход жидкости через подшипник, защищает последний от попадания крупных абразивных частиц. А6К3С - 164 мм, выполнен по схеме независимой подвески вала каждой секции на осевой опоре. Упорно-радиальный 10 рядный шаровой подшипник. В верхней секции - гидравлическая нагрузка. В нижней секции - гидравлическая нагрузка + нагрузка на долото. Система гидродинамического торможения состоит из статоров и роторов, лопатки, которые имеют одинаковый угол наклона относительно плоскости, перпендикулярной оси вала турбин. Эти турбины подбирают некоторый момент, тем больше, чем выше скорость вращения турбины. Турбины с гидроторможением вала. А9ГТ - 240, А7ГТ -195, А6ГТ - 164. Турбобуры с наклонной линией давления, а также с системой гидродинамического торможения А9Ш, А7Ш, А9ГТШ, АГТШ, А6ПШ (осевая опора расположения в отдельном шпинделе, как у ЗТСШ). Турбобуры для бурения с отбором керна. Колонковое турбодолото КТД3 аналогична Т12М3 и отличается наличие полого двигателя, в котором размещена колонковая труба - грунтоноска. Посадка грунтоноски осуществляется по конусной поверхности в опоре, закрепленной в корпусе. Грунтоноска прижимается к опоре гидравлическим усилением от перепада давления в турбине и долоте. Силы трения предотвращают вращение. Грунтоноска с керном поднимается на поверхность без извлечения долота из скважины. Верхняя часть грунтоноски имеет бурт для захвата специальным шлипсом, спускаемым в скважину на канате от дополнительной лебедки. КТД3-172 диаметр керна 33 мм. КТД3-255 диаметр керна 50 мм. Для керна увеличенного диаметра КТД4 (за счет увеличения диаметра вала). Повышенный крутящий момент (увеличивает кольцо ступеней турбин). Расположение пяты в нижней части вала. Регулируемая по длине грунтоноска. КТ3-240-265/48; КТД4-195-214/60; КТД4М-172-190/40 - 4 м в диосекционных. КТД4С-172-190/40 - двухсекционный, увеличен вращающий момент, увеличена длина керна-приема до 7 м. Конструкция аналогична ТС55, 2 секции. Осевая опора в нижней секции, воспринимает гидравлическую нагрузку обеих секций.

    Соединение:

    1. корпусы - переводники с конической резьбой.

    2. валы - конусно-шлицевые муфты.

    Конструктивные параметры турбины зависят от диаметральных размеров скважин, поэтому радиальные габариты прочной части являются весьма ограниченными. Турбина, выполняется многоступенчато, для обеспечения необходимых энергетических параметров. Все ступени турбины идентичны.

    Шифр турбины.

    числитель - число лопаток колеса; знаменатель - ширина лопаток (размер по оси двигателя); последнее число - диаметр турбобура.

    Число лопаток статора и ротора одинаковы. Важное требование к конструкции колес - прочность в условиях выбранной нагрузки. Этим условиям удовлетворяет монолитная цельнолитая конструкция турбинного колеса. Большинство турбин имеют обод, повышающий механическую прочность лопаточного винца и уменьшающий утечки рабочей жидкости через радиальные зазоры. Величина осевого зазора турбины устанавливается с учетом возможного осевого перемещения роторов вместе с валом турбины в связи с: 1) износом осевой опоры; 2) возможностью деформации турбинных колес. Характеристика турбины зависит в первую очередь от его идеального веса. Высокое содержание абразива приводит к быстрому износу прочной части. Турбина рабочего двигателя является нерегулируемой, поэтому скорость вращения и крутящий момент на валу изменяется в широких пределах, определяемых величиной нагружения долота, непосредственно связанного с валом. Нагружения двигателя осуществляется путем создания осевого усиления на долото через с/с бурильных труб. Необходимо обеспечить достаточно широких межлопаточных каналов, уменьшающих возможность захламления турбин.

    6. Режим работы турбобуров

    Рабочая характеристика турбобуров - это зависимость момента сопротивления на валу, мощности, КПД и перепада давления от частоты вращения вала при постоянном расходе. Число оборотов достигает своего максимального значения, близкого к холостому, при расширении и проработке ствола скважины. При увеличении нагрузки на долото число оборотов турбины уменьшается, а вращающий момент турбины возрастает. Графические характеристики турбин и турбобуров представляет - зависимость крутящего момента, мощности, КПД и перепада давления от частоты вращения ротора при постоянном расходе жидкости. Число оборотов турбины при режиме максимальной мощности равно половине числа оборотов холостого хода nр = nхол/2. Вращающий момент турбины достигает максимальной величины при полном торможении МТ = 2МР, где:

    МТ - тормозной момент; МР - вращающий момент при максимальной мощности.

    Режим работы турбобура при максимальном КПД называется оптимальным. Наиболее устойчивая и эффективная работа турбобура при экстремальном режиме (наибольшей мощности). В рабочей зоне достигается наибольшие значения механической скорости бурения. Характеристика турбин должна обеспечить высокие механические скорости бурения при сохранении достаточной износостойкости долота. Для определения типа турбины пользуются коэффициентом быстроходности ПS, численно равным величине оборотов турбины данного типа, которая при напоре Н=1 м развивает мощность 1 л/с.

    ПS = П ON / H 4OH

    N - мощность в л/с; П - число оборотов в минуту; Н - перепад напора в м., при максимальном КПД.

    Мощность многоступенчатой турбины:

    NT = (Q HT g / 75) h, где

    Q - расход рабочей жидкости; HT - переход напора многоступенчатой турбины; g - удельный вес рабочей жидкости; h - КПД турбины.

    Коэффициент быстроходности всей многоступенчатой турбины турбобура:

    hST = ПS / K0.75

    Основное уравнение турбины:

    М = (Q g / g) r (C1И - C2И), где

    М - величина вращающего момента, создаваемой турбиной; Q - расход жидкости через лопаточный аппарат; g - удельный вес жидкости; C1И и C2И - проекции абсолютной скорости входа и выхода потока в рабочем колесе на направление окружной скорости; r - радиусы входа и выхода потока жидкости в рабочем колесе.

    7. Эксплуатация турбобуров

    Во время погрузки, разгрузки и транспортировки турбобуров к месту работы должна быть обеспечена полная их сохранность. Турбобуры транспортируются отдельными секциями на специально оборудованных машинах - турбовозах. Разгружают турбобуры при помощи подъемного крана. Транспортировка турбобуров волоком и сбрасывание их при разгрузки недопустимы, так как повреждаются корпус и вал (изгиб, вмятина и т.д.).Во избежание засорения турбины и повреждения резьбы турбобур транспортируются с предохранительными пробками и колпаками. Соединение секций в турбобуре. Соединение отдельных секций в турбобуров типа ТС, ТСШ, А7Н в один турбобур производят в следующем порядке:

    1. На шейку корпуса нижней секции (для турбобура ТСШ - на шейку шпинделя) одевается хомут, секция подхватывается и устанавливается на стол ротора.

    2. Вторая секция при помощи второго хомута поднимается на элеваторе над устанавливаемой на столе ротора нижней секцией (или шпинделем) и направляется так, чтобы её полумуфта вошла в полумуфту нижней секции. Затем корпуса соединяются по конической резьбе, при этом полумуфты валов входят в закрепление. Соединенная резьба секций закрепляется мощными ключами.

    3. Соединенные секции приподнимаются над ротором хомут с нижней секции, снимается, а турбобур спускается и устанавливается на стол ротора на элеваторе второй секции.

    Поступивший на буровой турбобур считается годным при следующих условиях:

    1. Величина осевого люфта находится в пределах:

    А) не более 2,0 мм - для турбобура с резинометаллической пятой;

    Б) не более 0,4 мм - для турбобура с шаровой пятой.

    2. Величина подъемного вала в верхних секциях находится в допустимых пределах. ТС5 - (7-9 мм), ТС4А - 4”(7-9 мм), А7Н (6…8 мм), 3ТСШ - (9-12 мм).

    3. Турбобур легко запускается при давлении не выше 2 МПа.

    4. Перепад давления в турбобуре соответствует рабочим характеристикам турбине приведенной в паспорте.

    5. Все резьбовые соединения герметичны при производительности насосов, необходимой для работы турбобура.

    Турбобур, находящийся в бурении, считается годным к дальнейшей работе при соблюдении следующих условий:

    1. Осевой люфт не превышает 5 мм при резинометаллической пяте и 6 мм при шаровой опоре.

    2. Запуск турбобура происходит при давлении, не превышающем первоначальное.

    3. Отсутствие пропусков рабочей жидкости в резьбовых соединениях.

    4. Резьбовые соединения свинчены до упора в торцы.

    5. Величина натяга в цилиндрических резьбовых соединениях ниппеля и соединительного переводника не изменилась по сравнению с первоначальной.

    6. Присоединительная резьба под долото в удовлетворительном состоянии.

    Осевой люфт определяют следующим образом: вал турбобура опирают на стол ротора и у торца ниппеля на валу наносят риску, затем турбобур приподнимают и на валу точно также наносят вторичную риску. По расстоянию между рисками определяют величину осевого люфта.

    Сборка турбобуров

    Износ деталей упорного подшипника приводит к перемещению вала вместе с роторами относительно статоров. Уменьшение осевого зазора между роторами и статорами приводит к соприкосновению их между собой, быстрому износу лопаток турбины по высоте и к ухудшению рабочей характеристики турбобура и его остановке.

    Подготовка деталей к сборке.

    1. Прочистить валы и смазать машинным маслом УС-2.

    2. Корпус и детали вала прочистить и смазать машинным маслом, а торцы в процессе сборки прорезать.

    3. Резьбы прочистить, обезжирить, протереть насухо и перед закреплением смазать. Смазки: Р-2 ВТУ №НП-34-60; Р-416 с металлическим наполнителем свинцово-йодистая; молибденовую. Проверить натяг резьбовых соединений.

    4. Провести контрольные замеры высоты роторов и статоров, 10 штук. Разница между 10 роторами и 10 статорами не должна превышать 0,2 мм.

    5. Детали, собранные на валу, смазать снаружи насосной смазкой ТУ577-55. Допускается её разбавление касторовым маслом в соотношении 5:1.

    Сборка турбобуров типа Т12М.

    Вал турбобура укладывается на подставки, прочищают шпоночные канавки, пригоняют шпонки. На валу монтируется втулка нижней опоры, упор, ступени турбины, детали средних опор. Средние опоры распределяются равномерно между ступенями турбины. При сборке следят за величиной выхода ступицы ротора из диска статора, который должен быть в пределах осевого люфта. Между верхним статором и нижним подпятником устанавливают регулировочное кольцо. Затем монтируются детали упорного подшипника. Детали вала зажимают роторной гайкой. Надевают колпак, затем её закрепляют контргайкой. Переводник корпуса турбобура и переводник вала крепят до упора в торец так же, как и в замковых соединениях бурильных труб.

    Правильность сборки:

    1. натяг ниппеля от 5 до 20 мм.

    2. осевой люфт турбобура не более 2 мм.

    Регулировочное кольцо.

    Турбобуры Т12М, Т32, КТД, укороченные и нижние секции секционных турбобуров: регулировочное кольцо расположено в корпусе или на валу между подпятником и турбиной. Секционные турбобуры: регулировочное кольцо расположено на валу или корпусе между соединительным переводником и турбиной.

    Регулировочное кольцо резьбы.

    Турбобуры Т32, ТС5Б, ТС6, 3ТС5А-8”. Закрепление системы статоров в корпусе производится конической резьбой типа замковая. Определение высоты регулировочного кольца:

    a) При помощи специального приспособления, состоящего из регулировочного переводника и упорного винта, система статоров снимается в корпусе с усилием, соответствующим моментом.

    b) После проверки легкость вращения с моментом 10-15 кг.м. вала и осевой люфт турбины: 7…10 мм от модели.

    c) Замеряют размер Б, разбирают приспособление и вычисляют размер k.

    d) Определяют высоту Н регулированного кольца резьбы Н=k-l, где l - длина конусной резьбы.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Описание устройства и принципа действия двигателей постоянного тока. Коэффициент полезного действия, рабочие и механические характеристики. Анализ основных качеств: пусковой, тормозной и перегрузочный момент, быстродействие и регулируемость вращения.

      реферат , добавлен 11.12.2010

      Назначение, технические характеристики и устройство измерительных трансформаторов напряжения. Описание принципа действия трансформаторов напряжения и способов их технического обслуживания. Техника безопасности при ремонте и обслуживании трансформаторов.

      контрольная работа , добавлен 27.02.2015

      Режим электромагнитного тормоза асинхронного двигателя с короткозамкнутым ротором (противовключение): механические характеристики режима динамического торможения, принципа действия схемы торможения АД: порядок ее работы и назначение органов управления.

      лабораторная работа , добавлен 01.12.2011

      Назначение, классификация и маркировка дизельных электростанций, их устройство и комплектация. Требования к обслуживающему персоналу. Подготовка электроагрегата к работе, пуск и остановка. Наблюдение за работой ДЭС. Указания по технике безопасности.

      реферат , добавлен 25.01.2011

      Основные сведения о конструкциях трансформаторов тока. Устройство, режим работы и принципы действия различных типов трансформаторов тока. Основные параметры и характеристики отдельных конструкций, а также их применение, классификация и назначение.

      реферат , добавлен 08.02.2011

      Элегазовое комплектное распределительное устройство электроэнергии, его характеристики. Конструкции основных элементов устройства в элегазовых ячейках с двумя системами сборных шин в трех различных типоисполнений. Общий вид трансформатора напряжения.

      презентация , добавлен 20.07.2015

      Описание структуры и тепловой схемы теплоэлектроцентрали, турбоагрегата и тепловой схемы энергоблока, конденсационной установки, масляной системы. Энергетическая характеристика и расход пара на турбину. Принцип работы котла и топочного устройства.

      отчет по практике , добавлен 25.04.2013

      Особенности паровой турбины как теплового двигателя неперерывного действия. История создания двигателя, принцип действия. Характеристики работоспособности паровой турбины, ее преимущества и недостатки, область применения, экологическое воздействие.

      презентация , добавлен 18.05.2011

      Технические характеристики и основные преимущества элегазового комплектного распределительного устройства. Общий вид конструкции основных элементов. Трансформатор напряжения для элегазовой ячейки. Конструкция элегазового ограничителя перенапряжений.

      презентация , добавлен 07.11.2013

      Классификация и конструкции электросчетчиков. Общий вид трехфазного электронного счетчика CE 302. Назначение и описание средства измерений; требования безопасности. Технические параметры: устройство и работа счетчика, проверка и текущий ремонт прибора.

    Loading...Loading...