Тепловая мощность котельной. Большая энциклопедия нефти и газа

Основа любого отопления — котел. От того, насколько верно подобраны его параметры зависит будет ли тепло в доме. А чтобы параметры были верными необходимо расчет мощности котла. Это не самые сложные вычисления — на уровне третьего класса, нужен будет только калькулятор и некоторые данные по вашем владениям. Со всем справитесь сами, своими руками.

Общие моменты

Чтобы в доме было тепло, система отопления должна восполнять все имеющиеся потери тепла в полном объеме. Тепло уходит через стены, окна, пол, крышу. То есть, при расчете мощности котла, необходимо учитывать степень утепления всех этих частей квартиры или дома. При серьезном подходе у специалистов заказывают расчет теплопотерь здания, а по результатам уже подбирают котел и все остальные параметры системы отопления. Задача эта не сказать что очень сложная, но требуется учесть из чего сделаны стены, пол, потолок, их толщину и степень утепления. Также учитывают какие стоят окна и двери, есть ли система приточной вентиляции и какова ее производительность. В общем, длительный процесс.

Есть второй способ определить теплопотери. Можно по факту определить количество тепла, которое теряет дом/помещение при помощи тепловизора. Это небольшой прибор, который на экране отображает фактическую картину теплопотерь. Заодно можно увидеть где отток тепла больше и принять меры по устранению утечек.

Определение фактических теплопотерь — более легкий способ

Теперь о том, стоит ли брать котел с запасом по мощности. Вообще, постоянная работа оборудования на грани возможностей негативно сказывается на сроке его службы. Потому желательно иметь запас по производительности. Небольшой, порядка 15-20% от расчетной величины. Его вполне достаточно для того, чтобы оборудование работало не на пределе своих возможностей.

Слишком большой запас невыгоден экономически: чем мощнее оборудование, тем дороже оно стоит. Причем разница в цене солидная. Так что, если вы не рассматриваете возможность увеличения отапливаемой площади, котел с большим запасом мощности брать не стоит.

Расчет мощности котла по площади

Это самый простой способ подобрать котел отопления по мощности. При анализе многих готовых расчетов была выведена средняя цифра: на отопление 10 квадратных метров площади требуется 1 кВт тепла. Эта закономерность справедлива для помещений с высотой потолка в 2,5-2,7 м и средним утеплением. Если ваш дом или квартира подходят под эти параметры, зная площадь вашего дома, вы легко определяете приблизительную производительность котла.

Чтобы было понятнее, приведем пример расчета мощности котла отопления по площади. Имеется одноэтажный дом 12*14 м. Находим его площадь. Для этого умножаем его длину и ширину: 12 м * 14 м = 168 кв.м. По методике, делим площадь на 10 и получаем требуемое количество киловатт: 168 / 10 = 16,8 кВт. Для удобства использования цифру можно округлить: требуемая мощность котла отопления 17 кВт.

Учет высоты потолков

Но в частных домах потолки могут быть выше. Если разница составляет всего 10-15 см, ее можно не учитывать, но если высота потолков более чем 2,9 м, придется делать перерасчет. Для этого находит поправочный коэффициент (поделив фактическую высоту на стандартную 2,6 м) и на него умножают найденную цифру.

Пример поправки на высоту потолков . В здании высота потолков — 3,2 метра. Требуется пересчитать мощность котла отопления для данных условий (параметры дома те же, что в первом примере):


Как видите, разница вполне приличная. Если ее не учесть, нет гарантии, что в доме будет тепло даже при средних зимних температурах, а уж о сильных морозах и говорить не приходится.

Учет региона проживания

Что еще стоит учесть, так это местоположение. Ведь понятно, что на юге требуется намного меньше тепла, чем в Средней Полосе, а для тех, кто живет на севере «подмосковной» мощности явно будет недостаточною. Для учета региона проживания тоже есть коэффициенты. Даны они с некоторым диапазоном, так как в рамках одной зоны климат все-таки сильно меняется. Если дом находится ближе к южной границе, применяют меньший коэффициент, ближе к северной — больший. Стоит учитывать также и наличие/отсутствие сильных ветров и выбирать коэффициент с их учетом.


Пример корректировки по зонам. Пусть дом, для которого делаем расчет мощности котла, находится на севере Подмосковья. Тогда найденная цифра 21 кВт умножается на 1,5. Итого получаем: 21 кВт * 1,5 = 31,5 кВт.

Как видите, если сравнивать с первоначальной цифрой, полученной при расчете по площади (17 кВт), полученная в результате использования всего двух коэффициентов, значительно отличается. Почти в два раза. Так что эти параметры необходимо учитывать.

Мощность двухконтурного котла

Выше шла речь о расчете мощности котла, который работает только на отопление. Если вы планируете еще и воду греть, необходимо производительность еще увеличить. В расчет мощности котла с возможностью подогрева воды для бытовых нужд закладывают 20-25% запаса (умножить надо на 1,2-1,25).

Чтобы не пришлось покупать очень мощный котел, надо дом максимально

Пример: корректируем под возможность ГВС. Найденную цифру 31,5 кВт умножаем на 1,2 и получаем 37,8 кВт. Разница солидная. Обратите внимание, что запас на подогрев воды берется уже после учета в расчетах местоположения — температура воды от местоположения тоже зависит.

Особенности расчета производительности котла для квартир

Расчет мощности котла для отопления квартир высчитывается по той же норме: на 10 квадратных метров 1 кВт тепла. Но коррекция идет по другим параметрам. Первое, что требует учета — наличие или отсутствие неотапливаемого помещения сверху и снизу.

  • если внизу/вверху находится другая отапливаемая квартира, применяется коэффициент 0,7;
  • если внизу/верху неотапливаемое помещение, никаких изменений не вносим;
  • отапливаемый подвал/чердак — коэффициент 0,9.

Стоит также при расчетах учесть количество стен, выходящих на улицу. В угловых квартирах требуется большее количество тепла:

  • при наличии одной внешней стены — 1,1;
  • две стены выходят на улицу — 1,2;
  • три наружные — 1,3.

Это основные зоны, через которые уходит тепло. Их учитывать обязательно. Можно еще принять во вминание качество окон. Если это стеклопакеты, корректировки можно не вносить. Если стоят старые деревянные окна, найденную цифру надо умножить на 1,2.

Также можно учесть такой фактор, как месторасположение квартиры. Точно также требуется увеличивать мощность, если хотите покупать двухконтурный котел (для подогрева горячей воды).

Расчет по объему

В случае с определением мощности котла отопления для квартиры можно использовать другую методику, которая основывается на нормах СНиПа. В них прописаны нормы на отопление зданий:

  • на обогрев одного кубометра в панельном доме требуется 41 Вт тепла;
  • на возмещение теплопотерь в кирпичном — 34 Вт.

Чтобы использовать этот способ, надо знать общий объем помещений. В принципе, этот подход более правильный, так как он сразу учитывает высоту потолков. Тут может возникнуть небольшая сложность: обычно мы знаем площадь свой квартиры. Объем придется высчитывать. Для этого общую отапливаемую площадь умножаем на высоту потолков. Получаем искомый объем.

Пример расчета мощности котла для отопления квартиры. Пусть квартира находится на третьем этаже пятиэтажного кирпичного дома. Ее общая площадь 87 кв. м, высота потолков 2,8 м.

  1. Находим объем. 87 * 2,7 = 234,9 куб. м.
  2. Округляем — 235 куб. м.
  3. Считаем требуемую мощность: 235 куб. м * 34 Вт = 7990 Вт или 7,99 кВт.
  4. Округляем, получаем 8 кВт.
  5. Так как вверху и внизу находятся отапливаемые квартиры, применяем коэффициент 0,7. 8 кВт * 0,7 = 5,6 кВт.
  6. Округляем: 6 кВт.
  7. Котел будет греть и воду для бытовых нужд. На это дадим запас в 25%. 6 кВт * 1,25 = 7,5 кВт.
  8. Окна в квартире не меняли, стоят старые, деревянные. Потому применяем повышающий коэффициент 1,2: 7,5 кВт * 1,2 = 9 кВт.
  9. Две стены в квартире наружные, потому еще раз умножаем найденную цифру на 1,2: 9 кВт * 1,2 = 10,8 кВт.
  10. Округляем: 11 кВт.

В общем, вот вам эта методика. В принципе, ее можно использовать и для расчета мощности котла для кирпичного дома. Для других типов стройматериалов нормы не прописаны, а панельный частный дом — большая редкость.

Проект и монтаж котельной 320 кВт для коттеджа Проект котельной загородного дома Модернизация котельной: проект автоматизации и диспетчеризации

Свод правил по проектированию и строительству СП 41-104-2000 «Проектирование автономных источников теплоснабжения» указывает 1:

Расчетная производительность котельной определяется суммой расходов тепла на отопление и вентиляцию при максимальном режиме (максимальные тепловые нагрузки) и тепловых нагрузок на горячее водоснабжение при среднем режиме.

То есть тепловая мощность котельной складывается из максимальных расходов тепла на отопление, вентиляцию, горячее водоснабжение и среднего расхода тепла на общие нужды.

На основании этого указания из свода правил проектирования автономных источников теплоснабжения был разработан онлайн-калькулятор, который позволяет рассчитать тепловую мощность котельной.

Расчет тепловой мощности котельной

Для расчета мощности котельной требуется указать общую площадь дома в квадратных метрах, количество проживающих в доме человек и средний расход тепла на прочие нужды.

Расчетные показатели Мощность
Максимальный расход тепла на отопление Вт
Максимальный расход тепла на вентиляцию Вт
Средний расход тепла на прочие нужды (СПА, бассейн и т. п.) Вт
Максимальный расход тепла на горячее водоснабжение Вт
Мощность котельной без запаса 6 кВт
Мощность котельной с 15 % запасом 7 кВт

Примечания

1 Свод правил (СП) - документ по стандартизации, утвержденный федеральным органом исполнительной власти России или Государственной корпорацией по атомной энергии «Росатом» и содержащий правила и общие принципы в отношении процессов в целях обеспечения соблюдения требований технических регламентов.

2 Указывается суммарная площадь всех отапливаемых помещений в квадратных метрах, при этом высота помещений принимается в среднем значении, лежащем в пределах 2,7-3,5 метра.

3 Указывается общее количество постоянно проживающих в доме человек. Используется для расчета расхода тепла на горячее водоснабжение.

4 В данной строке указывается суммарная мощность дополнительных потребителей энергии в ваттах (Вт). К ним могут относиться СПА, бассейн, вентиляция бассейна т. п. Эти данные следует уточнить у соответствующих специалистов. При отсутствии дополнительных потребителей тепла строка не заполняется.

5 Если в данной строке нет отметки, то максимальный расход тепла на центральную вентиляцию рассчитывается, исходя из принятых норм расчета. Эти расчетные данные представляются в качестве справки и требуют уточнения при проектировании. Можно рекомендовать учитывать максимальный расход тепла на общую вентиляцию и в случае её отсутствия, к примеру, для компенсации теплопотерь системой отопления при проветривании или при недостаточной герметичности конструкции здания, однако решение о необходимости учета тепловых нагрузок на нагрев воздуха в системе вентиляции остается за пользователем.

7 Рекомендованная мощность с запасом для котлов (теплогенераторов), которая обеспечивает оптимальную работу котлов без полной нагрузки, что продлевает срок их эксплуатации. Решение о необходимости применения запаса мощности остается за пользователем или проектировщиком.

Цель расчета тепловой схемы котельной - определить потребную тепловую мощность (теплопроизводительность) котельной и подобрать тип, число и производительность котлов. Тепловой расчет позволяет также определить параметры и расходы пара и воды, подобрать типоразмеры и количество устанавливаемого в котельной оборудования и насосов, подобрать арматуру, средства автоматики и безопасности. Тепловой расчет котельной должен выполняться в соответствии со СНиП Н-35-76 «Котельные установки. Нормы проектирования» (с изменениями от 1998 и 2007 гг.). Тепловые нагрузки для расчета и выбора оборудования котельных должны определяться для трех характерных режимов: максимально-зимнего - при средней температуре наружного воздуха в наиболее холодную пятидневку; наиболее холодного месяца - при средней температуре наружного воздуха в наиболее холодный месяц; летнего - при расчетной температуре наружного воздуха теплого периода. Указанные средние и расчетные температуры наружного воздуха принимаются в соответствии со строительными нормами и правилами по строительной климатологии и геофизике и по проектированию отопления, вентиляции и кондиционирования воздуха. Ниже приводятся краткие указания по расчету для максимально-зимнего режима.

В тепловой схеме производственно-отопительной паровой котельной давление пара в котлах поддерживается равным давлению р, необходимому производственному потребителю (см. рис. 23.4). Этот пар - сухой насыщенный. Его энтальпию, температуру и энтальпию конденсата можно найти по таблицам теплофизических свойств воды и водяного пара . Пар давлением р ОТ, используемый для нагрева сетевой воды, воды системы горячего водоснабжения и воздуха в калориферах, получается дросселированием пара давлением р в редукционном клапане РК2. Поэтому его энтальпия не отличается от энтальпии пара до редукционного клапана. Энтальпию и температуру конденсата пара давлением р от следует определить по таблицам по этому давлению. Наконец, пар давлением 0,12 МПа, поступающий в деаэратор, частью образуется в расширителе непрерывной продувки, а частью получается дросселированием в редукционном клапане РК1. Поэтому в первом приближении следует принять его энтальпию равной среднеарифметическому значению энтальпий сухого насыщенного пара при давлениях р и 0,12 МПа. Энтальпия и температура конденсата пара давлением 0,12 МПа должны быть определены по таблицам по этому давлению.

Тепловая мощность котельной равна сумме тепловых мощностей технологических потребителей, отопления, горячего водоснабжения и вентиляции, а также расхода теплоты на собственные нужды котельной.

Тепловая мощность технологических потребителей определяется по паспортным данным изготовителя или рассчитывается по фактическим данным о технологическом процессе. В ориентировочных расчетах можно использовать усредненные данные о нормах расхода теплоты.

В гл. 19 изложен порядок расчета тепловой мощности для различных потребителей. Максимальная (расчетная) тепловая мощность отопления производственных, жилых и административных помещений определяется в соответствии с объемами зданий, расчетными значениями температуры наружного воздуха и воздуха в каждом из зданий. Так же рассчитывается максимальная тепловая мощность вентиляции производственных зданий. Принудительная вентиляция в жилой застройке не предусматривается. После определения тепловой мощности каждого из потребителей рассчитывается расход пара на них.

Расчет расходов пара на внешние тепловые потребители выполняется по зависимостям (23.4)-(23.7), в которых обозначения тепловых мощностей потребителей соответствуют обозначениям, принятым в гл. 19. Тепловые мощности потребителей должны быть выражены в кВт.

Расход пара на технологические нужды, кг/с:

где / п, / к - энтальпия пара и конденсата при давлении р , кДж/кг; Г| с - коэффициент сохранения теплоты в сетях.

Потери теплоты в сетях определяются в зависимости от способа прокладки, типа изоляции и длины трубопроводов (подробнее см. гл. 25). В предварительных расчетах можно принять Г| с = 0,85- 0,95.

Расход пара на отопление, кг/с:

где / п, / к - энтальпия пара и конденсата, / п определяется по /? от; / к = = с в t 0K , кДж/кг; / ок - температура конденсата после ОК, °С.

Потери теплоты от теплообменников в окружающую среду можно принять равными 2% от передаваемой теплоты, Г| то = 0,98.

Расход пара на вентиляцию, кг/с:

р ОТ, кДж/кг.

Расход пара на горячее водоснабжение, кг/с:

где / п, / к - энтальпия пара и конденсата соответственно, определяются по р от, кДж/кг.

Для определения номинальной паропроизводительности котельной необходимо рассчитать расход пара, отпускаемого внешним потребителям:

При подробных расчетах тепловой схемы определяются расход добавочной воды и доля продувки, расход пара на деаэратор, расход пара на разогрев мазута, на отопление котельной и другие нужды. При ориентировочных расчетах можно ограничиться оценкой расхода пара на собственные нужды котельной ~ 6% от расхода на внешних потребителей.

Тогда максимальная производительность котельной с учетом приближенного расхода пара на собственные нужды определяется как

где к сн = 1,06 - коэффициент затрат пара на собственные нужды котельной.

По величине, давлению р и топливу выбирается тип и количество котлов в котельной с номинальной паропроизводительностью 1Г ом из стандартного ряда. К установке в котельной рекомендуются, например, котлы типа КЕ и ДЕ Бийского котельного завода. Котлы КЕ предназначены для работы на различных видах твердого топлива, котлы ДЕ - для газа и мазута.

В котельной должно устанавливаться более одного котла. Суммарная производительность котлов должна быть больше или равна D™*. Рекомендуется устанавливать в котельной котлы одного типоразмера. Резервный котел предусматривается при расчетном числе котлов один или два. При расчетном числе котлов три и более резервный котел обычно не устанавливается.

При расчете тепловой схемы водогрейной котельной тепловая мощность внешних потребителей определяется, также как при расчете тепловой схемы паровой котельной. Затем определяется суммарная тепловая мощность котельной:

где Q K0T - тепловая мощность водогрейной котельной, МВт; к сн = = 1,06 - коэффициент расхода теплоты на собственные нужды котельной; Q BHi - тепловая мощность /-го потребителя теплоты, МВт.

По величине Q K0T подбирается типоразмер и число водогрейных котлов. Так же как в паровой котельной, число котлов должно быть не менее двух. Характеристики водогрейных котлов приведены в .

Статья подготовлена при информационной поддержке инженеров компании Теплодар https://www.teplodar.ru/catalog/kotli/ – отопительные котлы по ценам от производителя.

Главнейшая характеристика, учитываемая при покупке котлов отопления, как газовых, так и электрических или твердотопливных - это их мощность. Поэтому многих потребителей, собирающихся приобрести теплогенератор для системы обогрева помещения, волнует вопрос, как рассчитать мощность котла, исходя из площади помещений и прочих данных. Об этом речь в следующих строках.

Параметры расчёта. Что необходимо учитывать

Но для начала разберёмся, что из себя вообще представляет эта столь важная величина, а главное, почему она так важна.

В сущности, описываемая характеристика теплового генератора, работающего на любом виде топлива, показывает его производительность - то есть, какой площади помещение он сможет обогреть вместе с отопительным контуром.

Например, отопительный аппарат с величиной мощности в 3 – 5 кВт способен, как правило, «охватить» теплом однокомнатную или даже двухкомнатную квартиру, а также дом площадью до 50 кв. м. Установка со значением 7 – 10 кВт «потянет» на трёхкомнатное жильё площадью до 100 кв. м.

Иными словами, обычно принимают мощность, равную примерно десятой доле всей отапливаемой площади (в кВт). Но это только в самом общем случае. Для получения конкретного значения нужен расчёт. В вычислениях должны учитываться различные факторы. Перечислим их:

  • Общая отапливаемая площадь.
  • Регион, где действует рассчитываемое отопление.
  • Стены дома, их теплоизоляция.
  • Теплопотери крыши.
  • Вид топлива котла.

А теперь непосредственно поговорим о расчёте мощности применительно к разным видам котлов: газовым, электрическим и твердотопливным.

Газовые котлы

Исходя из вышесказанного, мощность котельного оборудования для отопления рассчитывается по одной достаточно простой формуле:

N котла = S х N уд. / 10.

Здесь значения величин расшифровываются так:

  • N котла - мощность данного конкретного агрегата;
  • S - полная сумма площадей всех отапливаемых системой помещений;
  • N уд. – удельная величина теплового генератора, требуемая для прогрева 10 кв. м. площади помещения.

Один из главных определяющих факторов для расчёта - это климатическая зона, регион, где используется это оборудование. То есть расчёт мощности твердотопливного котла ведётся со ссылкой на конкретные климатические условия.

Что характерно, если когда-то, во время существования ещё советских норм назначения мощности отопительной установки, считали 1 кВт. всегда равным 10 кв. метрам, то сегодня крайне необходимо производить точный расчёт для реальных условий.

При этом нужно принимать следующие значения N уд.

Для примера сделаем расчёт мощности твердотопливного котла отопления относительно Сибирского региона, где зимние морозы порой достигают -35 градусов по Цельсию. Возьмём N уд. = 1,8 кВт. Тогда для отопления дома общей площадью 100 кв. м. понадобится установка с характеристикой следующей расчётной величины:

N котла = 100 кв. м. х 1,8 / 10 = 18 кВт.

Как видим, примерное отношение количества киловатт к площади как один к десяти здесь не имеет силу.

Важно знать! Если известно, сколько киловатт у конкретной установки на твёрдом топливе, можно посчитать тот объём теплоносителя, иными словами, объём воды, который необходим для наполнения системы. Для этого просто достаточно полученную N теплогенератора умножить на 15.

В нашем случае объём воды в системе отопления равен 18 х 15 = 270 литров.

Однако учёта климатической составляющей для расчёта силовой характеристики теплогенератора в ряде случаев недостаточно. Необходимо помнить, что могут иметь место тепловые потери из-за определённой конструкции помещений. Прежде всего, нужно учитывать, каковы стены жилого помещения. Насколько утеплён дом - этот фактор имеет большое значение. Также важно учитывать строение крыши.

В целом можно воспользоваться специальным коэффициентом, на который нужно умножить полученную по нашей формуле мощность.

Этот коэффициент имеет такие приближённые значения:

  • К = 1, если дому более 15 лет, а стены выполнены из кирпича, пеноблоков или дерева, причём стены утеплены;
  • К = 1.5, если стены не утеплены;
  • К = 1.8, если, кроме неутеплённых стен, у дома плохая крыша, которая пропускает тепло;
  • К = 0.6 у современного дома с утеплением.

Предположим, в нашем случае дому 20 лет, он выстроен из кирпича и хорошо утеплён. Тогда мощность, рассчитанная в нашем примере, остаётся прежней:

N котла = 18х1 = 18 кВт.

Если же котёл устанавливается в квартире, то здесь необходимо учесть подобный коэффициент. Но для обычной квартиры, если она не на первом или последнем этаже, К будет равен 0,7. Если же квартира на первом или последнем этаже, то следует принять К = 1,1.

Как рассчитать мощность для электрокотлов

Электрические котлы используются для отопления нечасто. Основная причина в том, что электроэнергия сегодня слишком дорога, а максимальная мощность таких установок невысока. К тому же, возможны сбои и долговременные отключения электричества в сети.

Расчёт здесь можно произвести по той же формуле:

N котла = S х N уд. / 10,

после чего следует умножить полученный показатель на необходимые коэффициенты, о них мы уже писали.

Однако есть и другой, более точный в этом случае, метод. Укажем его.

Этот способ основывается на том, что первоначально берётся величина 40 Вт. Данная величина означает, что столько мощности без учёта дополнительных факторов необходимо для прогрева 1 м3. Далее расчёт ведётся так. Поскольку окна и двери являются источниками теплопотерь, то нужно прибавлять на каждое окно 100 Вт, а на дверь - 200 Вт.

На последнем этапе учитывают те же самые коэффициенты, о которых уже упоминалось выше.

Для примера рассчитаем таким способом мощность электрического котла, устанавливаемого в доме 80 м2 с высотой потолков 3 м, с пятью окнами и одной дверью.

N котла = 40х80х3+500+200=10300 Вт, или приближенно 10 кВт.

Если расчёт ведётся для квартиры на третьем этаже, необходимо полученную величину умножить, как уже говорилось, на понижающий коэффициент. Тогда N котла = 10х0.7=7 кВт.

Теперь поговорим о твердотопливных котлах.

Для твердотопливных

Этот вид оборудования, как ясно из названия, отличается использованием для отопления твёрдого топлива. Преимущества таких агрегатов очевидны большей частью в отдалённых посёлках и дачных обществах, где нет газопроводов. В качестве твёрдого топлива используются обычно дрова или пеллеты - прессованная стружка.

Методика расчёта мощности твердотопливных котлов идентична приведённой выше методике, характерной для газовых котлов отопления . Иными словами, расчёт ведётся по формуле:

N котла = S х N уд. / 10.

После расчёта силового показателя по этой формуле, его также умножают на приведённые выше коэффициенты.

Однако в этом случае необходимо учесть тот факт, что у твердотопливного котла низкий КПД. Поэтому после расчёта описанным методом следует прибавить запас мощности примерно 20%. Впрочем, если в системе отопления планируется использовать тепловой аккумулятор в виде ёмкости для накопления теплоносителя, то можно оставить расчётную величину.

Схема присоединения зависит от типа установленных в котельной котлов. ^ Возможны следующие варианты:

Паровые и водогрейные котлы;

Пароводогрейные котлы;

Паровые, водогрейные и пароводогрейные котлы;

Водогрейные и пароводогрейные котлы;

Паровые и пароводогрейные котлы.

Схемы присоединения паровых и водогрейных котлов, входящих в состав пароводогрейной котельной, аналогичны предыдущим схемам (см. рис. 2.1 – 2.4).

Схемы присоединения пароводогрейных котлов зависят от их конструкции. Возможны 2 варианта:

I . Присоединение пароводогрейного котла с подогревом сетевой воды внутри барабана котла (см. рис. 2.5)

^ 1 – пароводогрейный котел; 2 –РОУ; 3 – подающий паропровод; 4 – кон-денсатопровод; 5 – деаэратор; 6 питательный насос; 7 – ХВО; 8 и 9 – ПЛТС и ОЛТС; 10 сетевой насос; 11 – встроенный в барабан котла подогреватель сетевой воды; 12 – регулятор температуры воды в ПЛТС; 13 – регулятор подпитки (регулятор давления воды в ОЛТС); 14 – подпиточный насос.

^ Рисунок 2.5 – Схема присоединения пароводогрейного котла с подогревом сетевой воды внутри барабана котла

Встроенный в барабан котла подогреватель сетевой воды представляет собой теплообменник смешивающего типа (см. рис. 2.6).

Сетевая вода поступает в барабан котла через успокоительный короб в полость распределительного короба, имеющего перфорированное ступенчатое днище (направляющий и барботажный листы). Перфорация обеспечивает струйное течение воды навстречу пароводяной смеси, поступающей из испарительных поверхностей нагрева котла, что приводит к нагреву воды.

^ 1 – корпус барабана котла; 2 – вода из ОЛТС; 3 и 4 – запорный и обратный клапаны; 5 – коллектор; 6 – успокоительный короб; 7 – распределительный короб, имеющий ступенчатое перфорированное днище; 8 – направляющий лист; 9 – барботажный лист; 10 – пароводяная смесь от испарительных поверх-ностей нагрева котла; 11 – возврат воды в испарительные поверхности нагрева; 12 – выход насыщенного пара в пароперегреватель; 13 – сепарационное устройство, например, потолочный перфорированный лист 14 – желоб для отбора сетевой воды; 15 – подача воды в ПЛТС;.

^ Рисунок 2.6 – Встроенный в барабан котла подогреватель сетевой воды

Теплопроизводительность котла Qк складывается из двух составляющих (теплоты сетевой нагретой воды и теплоты пара):

Q К = M C (i 2 – i 1) + D П (i П – i ПВ), (2.1)

Где M C – массовый расход нагреваемой сетевой воды;

I 1 и i 2 – энтальпии воды до и после нагрева;

D П – паропроизводительность котла;

I П – энтальпия пара;

После преобразования (2.1):

. (2.2)

Из уравнения (2.2) следует, что расход нагреваемой воды M C и паропроизводительность котла D П взаимосвязаны: при Q K = const с увеличением паропроизводительности уменьшается расход сетевой воды, а с уменьшением паропроизводительности увеличивается расход сетевой воды.

Соотношение между расходом пара и количеством нагреваемой воды может быть различным, однако расход пара должен быть не менее 2% от общей массы пара и воды для возможности выхода из котла воздуха и других неконденсирующихся фаз.

II. Присоединения пароводогрейного котла с подогревом сетевой воды во встроенных в газоход котла поверхностях нагрева(см. рис. 2.7)

Рисунок 2.7 – Схема присоединения пароводогрейного котла с подогревом

сетевой воды во встроенных в газоход котла поверхностях нагрева

На рисунке 2.7: 11* - подогреватель сетевой воды, выполненный в виде поверхностного теплообменника, встроенного в газоход котла; остальные обозначения те же, что и на рисунке 2.5.

Поверхности нагрева сетевого подогревателя размещаются в газоходе котла, рядом с экономайзером, в виде дополнительной секции. В летний период, когда отсутствует отопительная нагрузка, встроенный сетевой подогреватель выполняет функцию секции экономайзера.

^ 2.3 Технологическая структура, тепловая мощность и технико-экономические показатели котельной

2.3.1 Технологическая структура котельной

Оборудование котельной обычно разделяют на 6 технологических групп (4 основные и 2 дополнительные).

^ К основным технологическим группам относится оборудование:

1) для подготовки топлива перед сжиганием в котле;

2) для подготовки котловой питательной и сетевой подпиточной воды;

3) для выработки теплоносителя (пара или нагретой воды), т.е. котлоагре-

Гаты и их вспомогательное оборудование;

4) для подготовки теплоносителя к транспорту по тепловой сети.

^ К числу дополнительных групп относятся:

1) электрооборудование котельной;

2) контрольно-измерительные приборы и системы автоматики.

В паровых котельных в зависимости от способа присоединения котлоагрегатов к теплоподготовительным установкам, например, к сетевым подогревателям, различают следующие технологические структуры:

1. Централизованная, при которой пар от всех котлоагрегатов направляется

В центральный паропровод котельной, а затем распределяется по теплоподго-товительным установкам.

2. Секционная , при которой каждый котлоагрегат работает на вполне опре-

Деленную теплоподготовительную установку с возможностью переключения пара на смежные (расположенные рядом) теплоподготовительные установки. Оборудование, связанное возможностью переключения, образует секцию котельной .

3. Блочная структура , при которой каждый котлоагрегат работает на опре-

Деленную теплоподготовительную установку без возможности переключения.

^ 2.3.2 Тепловая мощность котельной

Тепловая мощность котельной представляет собой суммарную теплопроизводительность котельной по всем видам теплоносителей, отпускаемых с котельной через тепловую сеть внешним потребителям.

Различают установленную, рабочую и резервную тепловые мощности.

^ Установленная тепловая мощность – сумма тепловых мощностей всех установленных в котельной котлов при работе их в номинальном (паспортном) режиме.

Рабочая тепловая мощность – тепловая мощность котельной при работе ее с фактической тепловой нагрузкой в данный момент времени.

В резервной тепловой мощности различают тепловую мощность явного и скрытого резерва.

^ Тепловая мощность явного резерва – сумма тепловых мощностей установленных в котельной котлов, находящихся в холодном состоянии.

Тепловая мощность скрытого резерва – разность между установленной и рабочей тепловыми мощностями.

^ 2.3.3 Технико-экономические показатели котельной

Технико-экономические показатели котельной разделяются на 3 группы: энергетические, экономические и эксплуатационные (рабочие) , которые, соответственно, предназначены для оценки технического уровня, экономичности и качества эксплуатации котельной.

^ Энергетические показатели котельной включают:



. (2.3)

Количество теплоты, выработанной котлоагрегатом, определяется:

Для паровых котлов:

Где D П – количество пара, получаемое в котле;

I П – энтальпия пара;

I ПВ – энтальпия питательной воды;

D ПР – количество продувочной воды;

I ПР – энтальпия продувочной воды.

^ Для водогрейных котлов:

, (2.5)

Где M C – массовый расход сетевой воды через котел;

I 1 и i 2 – энтальпии воды до и после нагрева в котле.

Количество теплоты, полученное от сжигания топлива, определяется произведением:

, (2.6)

Где B K – расход топлива в котел.


  1. Доля расхода теплоты на собственные нужды котельной (отношение абсолютного расхода теплоты на собственные нужды к количеству теплоты, выработанной в котлоагрегате):

, (2.7)

Где Q СН – абсолютный расход теплоты на собственные нужды котельной, который зависит от особенностей котельной и включает расход теплоты на подготовку котловой питательной и сетевой подпиточной воды, подогрев и распыливание мазута, отопление котельной, горячее водоснабжение котельной и прочее.

Формулы для расчета статей расхода теплоты на собственные нужды приведены в литературе


  1. К.п.д. котлоагрегата нетто , который в отличие от к.п.д. котлоагрегата брутто, не учитывает расход теплоты на собственные нужды котельной:

, (2.8)

Где
- выработка теплоты в котлоагрегате без учета расхода теплоты на собственные нужды.

С учетом (2.7)


  1. К.п.д. теплового потока , который учитывает потери теплоты при транспортировке теплоносителей внутри котельной вследствие передачи теплоты в окружающую среду через стенки трубопроводов и утечек теплоносителей: η т n = 0,98÷0,99.

  2. ^ К.п.д. отдельных элементов тепловой схемы котельной:
к.п.д. редукционно-охладительной установки – η роу;

К.п.д. деаэратора подпиточной воды – η дпв ;

К.п.д. сетевых подогревателей – η сп.

6. К.п.д. котельной – произведение к.п.д. всех элементов, агрегатов и установок, образующих тепловую схему котельной, например:

^ К.п.д. паровой котельной, отпускающей потребителю пар:

. (2.10)

К.п.д паровой котельной, отпускающей потребителю нагретую сетевую воду:

К.п.д. водогрейной котельной:

. (2.12)


  1. Удельный расход условного топлива на выработку тепловой энергии - масса условного топлива, затраченного на выработку 1 Гкал или 1 ГДж тепловой энергии, отпускаемой внешнему потребителю:

, (2.13)

Где B кот – расход условного топлива в котельной;

Q отп – количество теплоты, отпущенное с котельной внешнему потреби-телю.

Расход условного топлива в котельной определяется выражениями:

,
; (2.14)

,
, (2.15)

Где 7000 и 29330 – теплота сгорания условного топлива в ккал/кг у.т. и

КДж/кг у.т.

После подстановки (2.14) или (2.15) в (2.13):

, ; (2.16)

. . (2.17)

К.п.д. котельной
и удельный расход условного топлива
являются важнейшими энергетическими показателями котельной и зависят от типа установленных котлов, вида сжигаемого топлива, мощности котельной, вида и параметров отпускаемых теплоносителей.

Зависимость и для котлов, применяемых в системах теплоснабжения, от вида сжигаемого топлива:

^ Экономические показатели котельной включают:


  1. Капитальные затраты (капиталовложения) К, которые представляют собой сумму затрат, связанных с сооружением новой или реконструкции
существующей котельной.

Капитальные затраты зависят от мощности котельной, типа установленных котлов, вида сжигаемого топлива, вида отпускаемых теплоносителей и ряда конкретных условий (удаленность от источников топлива, воды, магистральных дорог и прочее).

^ Ориентировочная структура капитальных затрат:

Строительно-монтажные работы – (53÷63)% К;

Затраты на оборудование – (24÷34)% К;

Прочие затраты – (13÷15)% К.


  1. Удельные капитальные затраты k УД (капитальные затраты, отнесенные к единице тепловой мощности котельной Q КОТ):

. (2.18)

Удельные капитальные затраты позволяют определить ожидаемые капитальные затраты на сооружение вновь проектируемой котельной
по аналогу:

, (2.19)

Где - удельные капитальные затраты на сооружение аналогичной котельной;

- тепловая мощность проектируемой котельной.


  1. ^ Ежегодные затраты , связанные с выработкой тепловой энергии, включают:
расходы на топливо, электроэнергию, воду и вспомогательные материалы;

Заработную плату и соответствующие отчисления;

Амортизационные отчисления, т.е. перенос стоимости оборудования по мере его износа на стоимость вырабатываемой тепловой энергии;

Текущий ремонт;

Общекотельные расходы.



. (2.20)


  1. Приведенные затраты , которые представляют собой сумму ежегодных затрат, связанных с выработкой тепловой энергии, и части капитальных затрат, определяемой нормативным коэффициентом эффективности капиталовложения E н:
. (2.21)

Величина, обратная E н, дает срок окупаемости капитальных затрат. Например, при E н =0,12
срок окупаемости
(года).

Эксплуатационные показатели , указывают на качество эксплуатации котельной и, в частности, включают:



. (2.22)


. (2.23)



. (2.24)

Или с учетом (2.22) и (2.23):

. (2.25)

^ 3 ТЕПЛОСНАБЖЕНИЕ ОТ ТЕПЛОЭЛЕКТРОЦЕНТРАЛЕЙ (ТЭЦ)

3.1 Принцип комбинированной выработки тепловой и электрической энергии

Теплоснабжение от ТЭЦ называют теплофикацией – централизованное теплоснабжение на базе комбинированной (совместной) выработки тепловой и электрической энергии.

Альтернативой теплофикации является раздельная выработка тепловой и электрической энергии, т.е., когда электроэнергия вырабатывается на конденсационных тепловых электростанциях (КЭС), а тепловая энергия – в котельных.

Энергетическая эффективность теплофикации заключается в том, что для выработки тепловой энергии используют теплоту отработавшего в турбине пара, что исключает:

Потери остаточной теплоты пара после турбины;

Сжигание топлива в котельных для выработки тепловой энергии.

Рассмотрим раздельную и комбинированную выработку тепловой и электрической энергии (см. рис. 3.1).

1 – парогенератор; 2 – паровая турбина; 3 – электрогенератор; 4 – конденсатор паровой турбины; 4* - подогреватель сетевой воды; 5 – насос; 6 – ПЛТС; 7 – ОЛТС; 8 – сетевой насос.

Рисунок 3.1 – Раздельная (а) и комбинированная (б) выработка тепловой и электрической энергии

Для возможности использования остаточной теплоты отработавшего в турбине пара на нужды теплоснабжения его выводят из турбины с несколько более высокими параметрами, чем в конденсатор, а вместо конденсатора можно установить сетевой подогреватель (4*). Сравним циклы КЭС и ТЭЦ на

TS – диаграмме, в которой площадь под кривой указывает на количество теплоты, подведенной или отведенной в циклах (см. рис. 3.2)

Рисунок 3.2 – Сравнение циклов КЭС и ТЭЦ

Обозначения к рисунку 3.2:

1-2-3-4 и 1*-2-3-4 – подвод теплоты в циклах электростанций;

1-2, 1*-2 – нагрев воды до температуры кипения в экономайзере котла;

^ 2-3 – испарение воды в испарительных поверхностях нагрева;

3-4 – перегрев пара в пароперегревателе;

4-5 и 4-5* - расширение пара в турбинах;

5-1 – конденсация пара в конденсаторе;

5*-1* - конденсация пара в сетевом подогревателе;

q е к – количество теплоты, эквивалентное выработанной электроэнергии в цикле КЭС;

q е т – количество теплоты, эквивалентное выработанной электроэнергии в цикле ТЭЦ;

q к – теплота пара, отведенная через конденсатор в окружающую среду;

q т – теплота пара, использованная в теплоснабжении на подогрев сетевой воды.

И
з сравнения циклов следует, что в теплофикационном цикле, в отличие от конденсационного, теоретически отсутствуют потери теплоты пара: часть теплоты расходуется на выработку электроэнергии, а оставшаяся теплота идет на теплоснабжение. При этом снижается удельный расход теплоты на выработку электроэнергии, что можно проиллюстрировать циклом Карно (см. рис. 3.3):

Рисунок 3.3 – Сравнение циклов КЭС и ТЭЦ на примере цикла Карно

Обозначения к рисунку 3.3:

Тп – температура подвода теплоты в циклах (температура пара на входе в

Турбину);

Тк – температура отвода теплоты в цикле КЭС (температура пара в конденсаторе);

Тт - температура отвода теплоты в цикле ТЭЦ (температура пара в сетевом подогревателе).

q е к , q е т , q к , q т - то же, что и на рисунке 3.2.

Сравнение удельных расходов теплоты на выработку электроэнергии.


Показатели

КЭС

ТЭЦ

Количество теплоты,
подведенной
в цикле КЭС и ТЭЦ:

q П =Тп·ΔS

q П =Тп·ΔS

Количество теплоты,
эквивалентное
выработаной электроэнергии:

Таким образом, теплофикация по сравнению с раздельной выработкой тепловой и электрической энергии обеспечивает:

  1. Исключение котельных в системах теплоснабжения.

  2. Уменьшение удельного расхода теплоты на выработку электроэнергии.

  3. Централизацию теплоснабжения (за счет большой тепловой мощности ТЭЦ), что по сравнению с децентрализацией имеет ряд преимуществ (см. 1.3).
Loading...Loading...