Итп индивидуальный тепловой пункт принцип работы. ИТП для разных целей потребления. Индивидуальный автоматизированный тепловой пункт

При централизованном теплоснабжении тепловой пункт может бытьместным - индивидуальным (ИТП) для теплопотребляющих систем конкретного здания игрупповым - центральным (ЦТП) для систем группы зданий. ИТП размещается в специальном помещении здания, ЦТП чаще всего представляет собой отдельно стоящее одноэтажное строение. Проектирование тепловых пунктов ведётся в соответствии с нормативными правилами.
Роль теплогенератора при независимой схеме присоединения теплопотребляющих систем к наружной тепловой сети выполняет водяной теплообменник.
В настоящее время применяют так называемые скоростные теплообменники различных типов. Кожухотрубный водяной теплообменник состоит из стандартных секций длиной до 4 м. Каждая секция представляет собой стальную трубу диаметром до 300 мм, внутрь которой помещены несколько латунных трубок. В независимой схеме системы отопления или вентиляции греющая вода из наружного теплопровода пропускается по латунным трубкам, нагреваемая - противотоком в межтрубном пространстве, в системе горячего водоснабжения нагреваемая водопроводная вода пропускается по трубкам, а греющая вода из тепловой сети - в межтрубном пространстве. Более совершенный и значительно более компактный, пластинчатый теплообменник, набирается из определённого количества стальных профилированных пластин. Греющая и нагреваемая вода протекает между пластинами противотоком или перекрёстно. Длину и число секций кожухотрубного теплообменника или размеры и число пластин в пластинчатом теплообменнике определяют в результате специального теплового расчета.
Для нагревания воды в системах горячего водоснабжения, особенно в индивидуальном жилом доме, больше подходит не скоростной, а емкостной водонагреватель. Его объём определяется исходя из расчётного количества одновременно работающих точек водоразбора и предполагаемых индивидуальных особенностей водопотребления в доме.
Общим для всех схем, является применение насоса для искусственного побуждения движения воды в теплопотребляющих системах. В зависимых схемах насос помещают на тепловой станции, и он создаёт давление, необходимое для циркуляции воды, как в наружных теплопроводах, так и в местных теплопотребляющих системах.
Насос, действующий в замкнутых кольцах систем, заполненных водой, не поднимает, а только перемещает воду, создавая циркуляцию, и поэтому называется циркуляционным. В отличие от циркуляционного насоса насос в системе водоснабжения перемещает воду, поднимая её к точкам разбора. При таком использовании насос называют повысительным.
В процессах заполнения и возмещения потери (утечки) воды в системе отопления циркуляционный насос не участвует. Заполнение происходит под воздействием давления в наружных теплопроводах, в водопроводе или, если этого давления недостаточно, с помощью специального подпиточного насоса.
До последнего времени циркуляционный насос включался, как правило, в обратную магистраль системы отопления для увеличения срока службы деталей, взаимодействующих с горячей водой. Вообще же для создания циркуляции воды в замкнутых кольцах местоположение циркуляционного насоса безразлично. При необходимости несколько понизить гидравлическое давление в теплообменнике или котле насос может быть включён и в подающую магистраль системы отопления, если его конструкция рассчитана на перемещение более горячей воды. Все современные насосы обладают этим свойством и устанавливаются чаще всего после теплогенератора (теплообменника). Электрическая мощность циркуляционного насоса определяется количеством перемещаемой воды и развиваемым при этом давлением.
В инженерных системах, как правило, применяют специальные бесфундаментные циркуляционные насосы, перемещающие значительное количество воды и развивающие сравнительно небольшое давление. Это бесшумные насосы, соединённые в единый блок с электродвигателями и закрепляемые непосредственно на трубах. В систему включают два одинаковых насоса, действующих попеременно: при работе одного из них второй находится в резерве. Запорная арматура (задвижки или краны) до и после обоих насосов (действующего и бездействующего) постоянно открыты, особенно, если предусмотрено автоматическое их переключение. Обратный клапан в схеме препятствует циркуляции воды через бездействующий насос. Легко монтируемые бесфундаментные насосы иногда устанавливают в системах по одному. При этом резервный насос хранят на складе.
Понижение температуры воды в зависимой схеме со смешением до допустимой происходит при смешении высокотемпературной воды с обратной (охлаждённой до заданной температуры) водой местной системы. Снижение температуры теплоносителя осуществляется путем смешения обратной воды от инженерных систем при помощи смесительного аппарата - насоса или водоструйного элеватора. Насосная смесительная установка имеет преимущество перед элеваторной. Ее КПД выше, в случае аварийного повреждения наружных теплопроводов возможно, как и при независимой схеме присоединения, сохранение циркуляции воды в системах. Смесительный насос можно применять в системах со значительным гидравлическим сопротивлением, тогда как при использовании элеватора потери давления в теплопотребляющей системе должны быть сравнительно небольшими. Водоструйные элеваторы получили широкое распространение благодаря безотказному и бесшумному действию.
Внутреннее пространство всех элементов теплопотребляющих систем (труб, отопительных приборов, арматуры, оборудования и т. д.) заполнено водой. Объём воды в процессе эксплуатации систем претерпевает изменения: при повышении температуры воды он увеличивается, при понижении температуры - уменьшается. Соответственно изменяется внутреннее гидростатическое давление. Эти изменения не должны отражаться на работоспособности систем и, прежде всего, не должны приводить к превышению предела прочности любых их элементов. Поэтому в систему вводится дополнительный элемент - расширительный бак.
Расширительный бак может бытьоткрытым, сообщающимся с атмосферой, и закрытым, находящимся под переменным, но строго ограниченным избыточным давлением. Основное назначение расширительного бака - приём прироста объёма воды в системе, образующегося при её нагревании. При этом в системе поддерживается определённое гидравлическое давление. Кроме того, бак предназначен для восполнения убыли объёма воды в системе при небольшой утечке и при понижении её температуры, для сигнализации об уровне воды в системе и управления действием подпиточных устройств. Через открытый бак удаляется вода в водосток при переполнении системы. В отдельных случаях открытый бак может служить воздухоотводчиком из системы.
Открытый расширительный бак размещают над верхней точкой системы (на расстоянии не менее 1 м) в чердачном помещении или в лестничной клетке и покрывают тепловой изоляцией. Иногда (например, при отсутствии чердака) устанавливают неизолированный бак в специальном утепленном боксе (будке) на крыше здания.
Современная конструкция закрытого расширительного бака представляет собой стальной цилиндрический сосуд, разделённый на две части резиновой мембраной. Одна часть предназначена для воды системы, вторая заполнена в заводских условиях инертным газом (обычно азотом) под давлением. Бак может быть установлен непосредственно на пол котельной или теплового пункта, а также закреплён на стене (например, при стеснённых условиях в помещении).
В крупных теплопотребляющих системах группы зданий расширительные баки не устанавливаются, а гидравлическое давление регулируется при помощи постоянно действующих подпиточных насосов. Эти насосы также возмещают обычно имеющие место потери воды через неплотные соединения труб, в арматуре, приборах и других местах систем.
Помимо рассмотренного выше оборудования в котельной или тепловом пункте размещаются устройства автоматического регулирования, запорно-регулирующая арматура и контрольно-измерительные приборы, с помощью которых обеспечивается текущая эксплуатация системы теплоснабжения. Используемая при этом арматура, а также материал и способы прокладки теплопроводов рассмотрены в разделе "Отопление зданий".

Тепловой пункт (ТП) - это комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.

Тепловой пункт и присоединённое здание

Назначение

Основными задачами ТП являются:

  • Преобразование вида теплоносителя
  • Контроль и регулирование параметров теплоносителя
  • Распределение теплоносителя по системам теплопотребления
  • Отключение систем теплопотребления
  • Защита систем теплопотребления от аварийного повышения параметров теплоносителя
  • Учет расходов теплоносителя и тепла

Виды тепловых пунктов

ТП различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых, определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП. Различают следующие виды ТП :

  • Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
  • Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • Блочный тепловой пункт (БТП). Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

Источники тепла и системы транспорта тепловой энергии

Источником тепла для ТП служат теплогенерирующие предприятия (котельные , теплоэлектроцентрали). ТП соединяется с источниками и потребителями тепла посредством тепловых сетей. Тепловые сети подразделяются на первичные магистральные теплосети , соединяющие ТП с теплогенерирующими предприятиями, и вторичные (разводящие) теплосети, соединяющие ТП с конечными потребителями. Участок тепловой сети, непосредственно соединяющий ТП и магистральные теплосети, называется тепловым вводом .

Магистральные тепловые сети, как правило, имеют большую протяженность (удаление от источника тепла до 10 км и более). Для строительства магистральных сетей используют стальные трубопроводы диаметром до 1400 мм. В условиях, когда имеется несколько теплогенерирующих предприятий, на магистральных теплопроводах делаются закольцовки, объединяющие их в одну сеть. Это позволяет увеличить надёжность снабжения тепловых пунктов, а, в конечном счёте, потребителей теплом. Например, в городах, в случае аварии на магистрали или местной котельной, теплоснабжение может взять на себя котельная соседнего района. Также, в некоторых случаях, общая сеть даёт возможность распределять нагрузку между теплогенерирующими предприятиями. В качестве теплоносителя в магистральных теплосетях используется специально подготовленная вода . При подготовке в ней нормируются показатели карбонатной жёсткости, содержания кислорода, содержания железа и показатель pH. Неподготовленная для использования в тепловых сетях (в том числе водопроводная, питьевая) вода непригодна для использования в качестве теплоносителя, так как при высоких температурах, вследствие образования отложений и коррозии, будет вызывать повышенный износ трубопроводов и оборудования. Конструкция ТП предотвращает попадание относительно жёсткой водопроводной воды в магистральные теплосети.

Вторичные тепловые сети имеют сравнительно небольшую протяженность (удаление ТП от потребителя до 500 метров) и в городских условиях ограничиваются одним или парой кварталов. Диаметры трубопроводов вторичных сетей, как правило, находятся в пределах от 50 до 150 мм. При строительстве вторичных тепловых сетей могут использоваться как стальные, так и полимерные трубопроводы. Использование полимерных трубопроводов наиболее предпочтительно, особенно для систем горячего водоснабжения, так как жёсткая водопроводная вода в сочетании с повышенной температурой приводит к интенсивной коррозии и преждевременному выходу из строя стальных трубопроводов. В случае с индивидуальным тепловым пунктом, вторичные тепловые сети могут отсутствовать.

Источником воды для систем холодного и горячего водоснабжения служат водопроводные сети .

Системы потребления тепловой энергии

В типичном ТП имеются следующие системы снабжения потребителей тепловой энергией:

Принципиальная схема теплового пункта

Схема ТП зависит с одной стороны от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях, на котельных и ТЭЦ существуют системы подпитки , источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего, часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру, вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Центральный тепловой пункт (в последующем ЦТП) является одним из элементов тепловой сети, расположенной в поселениях городского типа. Он выступает в роли связывающего звена между магистральной сетью и распределительными тепловыми сетями, которые идут непосредственно к потребителям тепловой энергии (в жилые дома, детсады, больницы и т.д.).

Обычно центральные тепловые пункты размещаются в отдельно стоящих сооружениях и обслуживают несколько потребителей. Это так называемые квартальные ЦТП. Но иногда такие пункты располагаются в техническом (чердачном) или подвальном помещении здания и предназначаются для обслуживания только этого здания. Такие тепловые пункты называются индивидуальными (ИТП).

Основные задачи тепловых пунктов – распределение теплоносителя и защита теплосетей от гидравлических ударов и утечек. Также в ТП контролируется и регулируется температура и давление теплоносителя. Температура воды, поступающая в отопительные приборы, подлежит регулировке относительно температуры наружного воздуха. То есть чем холоднее на улице, тем выше температура, подаваемая в распределительные тепловые сети.

Особенности работы ЦТП монтаж тепловых пунктов

Центральные тепловые пункты могут работать по зависимой схеме, когда теплоноситель с магистральной сети поступает непосредственно к потребителям. В этом случае ЦТП выступает в роли распределительного узла – теплоноситель делится для системы горячего водоснабжения (ГВС) и системы отопления. Вот только качество горячей воды, льющейся из наших кранов при зависимой схеме подключения, часто вызывает нарекания потребителей.

При независимом режиме работы, здание ЦТП оборудуется специальными подогревателями – бойлерами. В этом случае перегретая вода (с магистрального трубопровода) нагревает воду, проходящую по второму контуру, которая в дальнейшем и идет к потребителям.

Зависимая схема является экономически выгодной для ТЭЦ. Она не требует постоянного присутствия персонала в здании ЦТП. При такой схеме монтируются автоматические системы, которые позволяют дистанционно управлять оборудованием центральных тепловых пунктов и регулировать основные параметры теплоносителя (температуру, давление).

ЦТП оборудуются различными приборами и агрегатами. В зданиях тепловых пунктов монтируется запорно-регулирующая арматура, насосы ГВС и отопительные насосы, приборы контроля и автоматики (регуляторы температуры, регуляторы давления), водо-водяные подогреватели и прочие приборы.

Помимо рабочих насосов отопления и ГВС обязательно должны присутствовать резервные насосы. Схема работы всего оборудования в ЦТП продумывается таким образом, что работа не прекращается даже в аварийных ситуациях. При длительном выключении электроэнергии или в случае возникновения чрезвычайных происшествий жители не останутся надолго без горячей воды и отопления. В этом случае будут задействованы аварийные линии подачи теплоносителя.

К обслуживанию оборудования, непосредственно связанного с тепловыми сетями, допускаются только квалифицированные работники.

Центральный тепловой пункт блочного типа будет иметь надежное оборудование. Причина и отличия от пресловутого ЦТП? Пункты тепловые западного производителя почти не имеет никаких запасных элементов. Как правило, подобные тепловые пункты укомплектованные паянными теплообменниками, что как минимум в полтора, а то и два раза дешевле, чем разборные. Но важно сказать, что тепловые центральные пункты такого типа будут обладать сравнительно небольшой массой и габаритов. Элементы ИТП очищают химическим путем – собственно, это главная причина, по которой такие теплообменники способны прослужить около десятилетия.

Основные этапы проектирования ЦТП

Неотъемлемой частью капитального строительства или реконструкции центрального теплового пункта является его проектирование. Под ним понимаются комплексные поэтапные действия, направленные на расчет и создание точной схемы теплового пункта, получение необходимых согласований у снабжающей организации. Также проектирование ЦТП включает в себя рассмотрение всех вопросов, непосредственно связанных с конфигурацией, функционированием и обслуживанием оборудования для теплового пункта.

На начальном этапе проектирования ЦТП производится сбор необходимых сведений, которые в последующем необходимы для проведения расчетов параметров оборудования. Для этого сначала устанавливается общая длина коммуникаций трубопроводов. Эта информация для проектировщика представляет особую ценность. Кроме того, в сбор сведений входит информация о температурном режиме здания. Эти сведения в последующем необходимы для правильной настройки оборудования.

При проектировании ЦТП необходимо указывать меры безопасности эксплуатации оборудования. Для этого нужна информация о структуре всего здания – расположение помещений, их площадь и прочие необходимые сведения.

Согласование в соответствующих органах.

Все документы, которые включает в себя проектирование ЦТП, обязательно должны быть согласованы с муниципальными эксплуатационными органами. Для быстрого получения положительного результата важно грамотно составить всю проектную документацию. Поскольку реализация проекта и сооружение центрального теплового пункта производится только после того, как процедура согласования будет окончена. В противном случае требуется доработка проекта.

Документация по проектированию ЦТП кроме непосредственно самого проекта должна содержать пояснительную записку. Она содержит необходимые сведения и ценные указания для монтажников, которые будут осуществлять установку центрального теплопункта. В пояснительной записке указывается порядок выполнения работ, их последовательность и необходимые инструменты для монтажа.

Составление пояснительной записки – заключительный этап. Этим документом заканчивается проектирование ЦТП. Монтажники в своей работе обязательно должны следовать указаниям, изложенным в пояснительной записке.

При тщательном подходе к разработке проекта ЦТП и правильном расчете необходимых параметров и режимов работы удается добиться безопасной работы оборудования и его продолжительной безупречной работы. Поэтому важно учитывать не только номинальные показатели, но также и запас мощности.

Это крайне важный аспект, поскольку именно запас мощности позволит сохранить пункт подачи тепла в рабочем состоянии после аварии или возникновения внезапной перегрузки. Нормальное функционирование теплового пункта напрямую зависит от правильно составленных документов.

Руководство по монтажу центрального теплового пункта

Кроме самого составления проекта центрального теплового пункта в проектной документации должна находиться и пояснительная записка, которая содержит указания монтажникам по использованию различных технологий при проведении монтажа теплового пункта, указывается в этом документе последовательность работ, вид инструментов и др.

Пояснительная записка это документ, составлением которого заканчивается проектирование ЦТП , и которым обязательно должны руководствоваться монтажники при монтажных работах. Неукоснительное следование рекомендациям, записанным в этом важном документе, будет гарантировать нормальное функционирование оборудования центрального теплового пункта в соответствии с предусмотренными расчетными характеристиками.

Проектирование ЦТП предусматривает также разработку предписаний по текущему и сервисному обслуживанию оборудования ЦТП. Тщательная разработка этой части проектной документации позволяет продлить срок эксплуатации оборудования, а также повысить безопасность его использования.

Центральный тепловой пункт - монтаж

При монтаже ЦТП проводятся неизменные определенные этапы выполняемых работ. Первым делом составляется проект. В нем учитываются основные особенности функционирования ЦТП, такие, как количество обслуживаемой площади, расстояние для прокладки труб, соответственно минимальная мощность будущей котельной. После проводится углубленный анализ проекта и поставляемой с ним технической документации для исключения всех возможных ошибок и неточностей для обеспечения нормальной функциональности монтируемых ЦТП длительное время. Составляется смета, потом закупается все необходимое оборудование. Следующим шагом является монтаж теплотрассы. Он содержит в себе непосредственно прокладку трубопровода и установку оборудования.

Что такое тепловой пункт?

Тепловой пункт - это специальное помещение, где расположен комплекс технических устройств, являющихся элементами тепловых энергоустановок. Благодаря этим элементам обеспечивается присоединение энергоустановок к теплосети, работоспособность, возможность управления разными режимами теплопотребления, регулирование, трансформацию параметров носителя тепла, а также распределение теплоносителя согласно типам потребления.

Индивидуальный – лишь тепловой пункт, в отличие от центрального, можно смонтировать и в коттедже. Обратите внимание, что такие тепловые пункты не требуют постоянного присутствия обслуживающего персонала. Вновь выгодно отличаясь от центрального теплового пункта. Да и вообще – обслуживание ИТП , по сути, состоит лишь в проверке на утечки. Теплообменник же теплового пункта способен самостоятельно очищаться от возникающей тут накипи – это заслуга молниеносного температурного перепада во время разбора горячей воды.

Тепловой пункт или сокращенно ТП это комплекс оборудования расположенный в отдельном помещении обеспечивающий отопление и горячее водоснабжение здания или группы зданий. Основное отличие ТП от котельной заключается в том, что в котельной происходит нагрев теплоносителя за счет сгорания топлива, а тепловой пункт работает с нагретым теплоносителем, поступающим из централизованной системы. Нагрев теплоносителя для ТП производят теплогенерирующие предприятия - промышленные котельные и ТЭЦ. ЦТП это тепловой пункт обслуживающий группу зданий , например, микрорайон, поселок городского типа, промышленное предприятие и т.д. Необходимость в ЦТП определяется индивидуально для каждого района на основании технических и экономических расчетов, как правило, возводят один центральный тепловой пункт для группы объектов с расходом теплоты 12-35 МВт

Центральный тепловой пункт в зависимости от назначения состоит из 5-8 блоков. Теплоноситель - перегретая вода до 150°С. ЦТП, состоящие из 5-7 блоков, рассчитаны на тепловую нагрузку от 1,5 до 11,5 Гкал/ч. Блоки изготавливаются по типовым альбомам, разработанным АО "Моспроект-1" выпуски с 1 (1982 г) по 14 (1999 г.) "Центральные тепловые пункты систем теплоснабжения", "Блоки заводского изготовления", "Блоки инженерного оборудования заводского изготовления для индивидуальных и центральных тепловых пунктов", а также по индивидуальным проектам. В зависимости от вида и количества подогревателей, диаметра трубопроводов, обвязки и запорно-регулирующей арматуры блоки имеют различные массы и габаритные размеры.

Для лучшего понимания функций и принципов работы ЦТП дадим краткую характеристику тепловым сетям. Тепловые сети состоят из трубопроводов и обеспечивают транспортировку теплоносителя. Они бывают первичные, соединяющие теплогенерирующие предприятия с тепловыми пунктами и вторичные, соединяющие ЦТП с конечными потребителями. Из этого определения можно сделать вывод, что ЦТП являются посредником между первичными и вторичными тепловыми сетями или теплогенерирующими предприятиями и конечными потребителями. Далее подробно опишем основные функции ЦТП.

4.2.2 Задачи, решаемые тепловыми пунктами

Подробнее распишем задачи, решаемые центральными тепловыми пунктами:

    преобразование теплоносителя, например, превращение пара в перегретую воду

    изменение различных параметров теплоносителя, таких как давление, температура и т. д.

    управление расходом теплоносителя

    распределение теплоносителя по системам отопления и горячего водоснабжения

    водоподготовка для ГВС

    защита вторичных тепловых сетей от повышения параметров теплоносителя

    обеспечение отключения отопления или горячего водоснабжения в случае необходимости

    контроль расхода теплоносителя и других параметров системы, автоматизация и управление

4.2.3 Устройство тепловых пунктов

Ниже приведена принципиальная схема теплового пункта

Схема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем горячего водоснабжения (ГВС) и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служитсистема подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Прежде чем описывать устройство и функции ЦТП (центральный тепловой пункт) приведем общее определение тепловых пунктов. Тепловой пункт или сокращенно ТП это комплекс оборудования расположенный в отдельном помещении обеспечивающий отопление и горячее водоснабжение здания или группы зданий. Основное отличие ТП от котельной заключается в том, что в котельной происходит нагрев теплоносителя за счет сгорания топлива, а тепловой пункт работает с нагретым теплоносителем, поступающим из централизованной системы. Нагрев теплоносителя для ТП производят теплогенерирующие предприятия - промышленные котельные и ТЭЦ. ЦТП это тепловой пункт обслуживающий группу зданий , например, микрорайон, поселок городского типа, промышленное предприятие и т.д. Необходимость в ЦТП определяется индивидуально для каждого района на основании технических и экономических расчетов, как правило, возводят один центральный тепловой пункт для группы объектов с расходом теплоты 12-35 МВт.

Для лучшего понимания функций и принципов работы ЦТП дадим краткую характеристику тепловым сетям. Тепловые сети состоят из трубопроводов и обеспечивают транспортировку теплоносителя. Они бывают первичные, соединяющие теплогенерирующие предприятия с тепловыми пунктами и вторичные, соединяющие ЦТП с конечными потребителями. Из этого определения можно сделать вывод, что ЦТП являются посредником между первичными и вторичными тепловыми сетями или теплогенерирующими предприятиями и конечными потребителями. Далее подробно опишем основные функции ЦТП.

Функции центрального теплового пункта (ЦТП)

Как мы уже писали основная функция ЦТП служить посредником между централизованными теплосетями и потребителями, то есть распределение теплоносителя по системам отопления и горячего водоснабжения (ГВС) обслуживаемых зданий, а так же функции обеспечения безопасности, управления и учета.

Подробнее распишем задачи, решаемые центральными тепловыми пунктами:

  • преобразование теплоносителя, например, превращение пара в перегретую воду
  • изменение различных параметров теплоносителя, таких как давление, температура и т. д.
  • управление расходом теплоносителя
  • распределение теплоносителя по системам отопления и горячего водоснабжения
  • водоподготовка для ГВС
  • защита вторичных тепловых сетей от повышения параметров теплоносителя
  • обеспечение отключения отопления или горячего водоснабжения в случае необходимости
  • контроль расхода теплоносителя и других параметров системы, автоматизация и управление

Итак, мы перечислили основные функции ЦТП. Далее постараемся описать устройство тепловых пунктов и установленное в них оборудование.

Устройство ЦТП

Как правило, центральный тепловой пункт - это отдельно стоящее одноэтажное здание с расположенным в нем оборудованием и коммуникациями.

Перечислим основные узлы ЦТП:

  • теплообменник, в ЦТП является аналогом отопительного котла в котельной, т.е. работает в качестве теплогенератора. В теплообменнике происходит нагрев теплоносителя для отопления и ГВС, но не посредством сжигания топлива, а за счёт передачи тепла от теплоносителя в первичной тепловой сети.
  • насосное оборудование, выполняющее различные функции представлено циркуляционными, повысительными, подпиточными и смесительными насосами.
  • клапаны регуляторы давления и температуры
  • грязевые фильтры на вводе и выходе трубопровода из ЦТП
  • запорная арматура (краны для перекрытия различных трубопроводов в случае необходимости)
  • системы контроля и учета расхода теплоты
  • системы электроснабжения
  • системы автоматизации и диспетчеризации

Подводя итог, скажем, что основная причина, по которой возникает необходимость в строительстве ЦТП, является несоответствие параметров теплоносителя поступающего от теплогенерирующих предприятий параметрам теплоносителя в системах потребителей тепла. Температура и давление теплоносителя в магистральном трубопроводе значительно выше, чем должна быть в системах отопления и горячего водоснабжения зданий. Можно сказать, теплоноситель с заданными параметрами является основным продуктом работы ЦТП.

Loading...Loading...