Кпд системы отопления и ее эффективность

Сначала окунемся в теорию, почитаем техническую литературу, где и узнаем, как измеряют КПД. КПД (коэффициент полезного действия) – это отношение полезной работы к затраченной энергии. КПД является безразмерной величиной и часто измеряется в процентах. В формулах КПД обозначается буквой «Этта»: = A/Q, где А – затраченная работа, а Q полезная теплота. В силу закона сохранения энергии КПД всегда меньше или равно единице, то есть невозможно получить полезной работы больше, чем затрачено энергии, не бывает котлов со 100% КПД, который не греет ничего кроме воды. Даже электрический котел, где отсутствует дымоход, а нагревательный элемент находится непосредственно в нагреваемом теплоносителе, не может выдать 100-процентный результат, так как часть энергии тратится на побочные цели – нагрев металлических деталей котла, нагрев провода от котла к розетке и т.п.

Понятие КПД напрямую связано с понятиями энергии и мощности. Применительно к отопительным приборам энергосодержание, или теплосодержание (кВт*ч), является понятием, связанным с количеством топлива (дров, газа, электроэнергии), а мощность (кВт) является понятием, связанным с размерами пламени (размерами нагревательного элемента) и скоростью горения топлива.

Коэффициент полезного действия котла, печи или камина определяется отношением количества освободившейся энергии к количеству использованной на практике освободившейся энергии. Например КПД твердотопливного котла характеризует, какую часть (в %) из всего энергосодержания древесины можно направить при ее сжигании на нагрев воды в системе отопления по отношению к той энергии, которая пошла на другие цели, например на нагрев дымохода, воздуха в нем, какая-то часть древесины остается недогоревшей в виде углей, летучей золы, негорючих газов.

С величиной КПД также связано понятие потери. Например, если потери дымовых газов (т.е. количество энергии, теряемой вместе с дымовыми газами) составляют 20%, то КПД отопительного прибора может составлять не более 80%. Полный КПД складывается из двух величин: КПД горения и потери дымовых газов.

Например, если КПД горения равен 90% и потери дымовых газов составляют 20%, то полный КПД этого очага будет равен

0,9 * (1 – 0,2) = 72%.

Коэффициент полезного действия присущ не только отопительному прибору. Есть КПД и у системы отопления в целом и зачастую именно этот показатель «страдает», сводя на нет всю работу по энергосбережению. КПД системы отопления в целом, показывает, сколько энергии горячей воды тратится на отопление воздуха в том помещении, которое вы отапливаете, по отношению к энергии, которая отапливает трубы, стены, воздух, который не нужно отапливать, и т.д. КПД системы отопления можно увеличить, например, теплоизолировав трубы, проходящие по неотапливаемым помещениям, сократив расстояние от котла до конечной точки потребления энергии, модернизировав систему отопления.

Расход энергии на обогрев «лишних» площадей называется потерями на теплопередачу. Например, если отопительный прибор (обладающий КПД 72%) подсоединен к системе отопления, в которой потери на теплопередачу составляют 8%, то КПД всей отопительной системы составит

0,72 * (1 – 0,08) = 66%.

При использовании полного КПД отопительной системы можно рассчитать фактически необходимое количество топлива для отопления всего здания. Например, для отопления жилого дома площадью 380 м2 месячная потребность в энергии составляет примерно 13500 кВт*ч, полный КПД отопительной системы принимаем за 66%, из чего и вычисляем фактическую потребность в топливе:

13500 / 0,66 = 20500 кВт*ч.

Если энергосодержание 1 кг древесины равно примерно 4 кВт*ч, то месячный запас дров должен составить

20500 / 4 = 5125 кг,

т.е. 8-10 м3 дров.

Другиме составляющие эффективной системы отопления

Если перед вами стоит задача быстрого нагрева воздуха в комнатах дома, то говорить надо об эффективности системы отопления. А это уже речь не об отопительном приборе, а о приборе, который энергию теплоносителя расходует на нагрев воздуха, – радиаторы, системы теплых полов и т.п. Чем быстрее радиатор произведет теплообмен между водой и воздухом, тем эффективнее вся система в целом.

Наличие эффективной системы отопления помимо «радостей» влечет также и «хлопоты». Ведь необходимо следить за тем, чтобы радиатор, преобразующий тепло воды в теплый воздух, сам не остыл и чтобы вода на выходе из радиатора была не слишком холодной, иначе котел будет работать на износ, а это недопустимо. В этих «хлопотах» огромную помощь оказывает циркуляционный насос, поддерживающий такую скорость циркуляции воды, которая позволит и радиаторы держать в нужном температурном режиме, и воду возвращать в котел непереохлажденной.

Здесь сразу отсеивается целый ряд систем отопления, основанных на естественной циркуляции теплоносителя. Эти системы – неэффективны. Неэффективны в первую очередь по причине своей инертности: здесь скорость циркуляции напрямую зависит от температуры воды. Сначала мы ждем пока произойдет нагрев воды в котле, по мере нагревания она потихоньку начинает пе-ремещаться вверх по стояку, а оттуда – по радиаторам. Но достигнув их, процесс снова затормаживается: горячая вода в радиаторе находится наверху, она не попадет вниз, пока не остынет. Какая же тут эффективность?

Итак, разобрались – включив циркуляционный насос, мы устранили все естественные пробки, связанные с разницей температур. В нашей системе циркулирует теперь любая вода – холодная, горячая, очень холодная и очень горячая, вне зависимости от того, успела она остыть или нагреться – вода уходит в систему и возвращается обратно в котел с одной и той же скоростью.

КПД сети в режиме максимальных нагрузок:

где DР с - суммарные потери активной мощности во всех элементах сети в режиме максимальных нагрузок

КПД сети средневзвешенный за год:

где Э – величина электроэнергии, полученная потребителями за год.

%.

Оба КПД сети превышают 97%(потери электроэнергии не превышают 3%), что является допустимым, с точки зрения экономичности сети.

Расчёт себестоимости передачи и распределения электроэнергии.

Себестоимость передачи и распределения электроэнергии по сети:

Таким образом, себестоимость передачи и распределения составляет 9,2 коп/кВт·ч при цене за электроэнергию 1 руб/кВт·ч (то есть 3% от тарифа), что является допустимым, с точки зрения экономичности сети.

ЗАКЛЮЧЕНИЕ

В ходе разработки данного курсового проекта, был разработан оптимальный вариант электрической сети.

Из нескольких вариантов было выбрано два, отличающихся друг от друга, варианта сети, а именно, радиальная схема сети и схема сети с кольцевым участком. Проведенный технико-экономический расчет показал, что наиболее выгодным с точки зрения экономичности эксплуатации является радиальная схема сети.

Напряжение проектируемой сети составляет 110-220 кВ. Питание осуществляется от подстанции ПС А. Район нагрузок состоит из трех подстанций, от которых питаются потребители первой, второй и третьей категории.

Надежность электроснабжения обеспечивается путем прокладывания двухцепных линий и установкой двух трансформаторов на каждой подстанции. Для линии 220 кВ выбраны стальные двухцепные опоры и двухцепные (на линии 110 кВ) железобетонные опоры. Сечения проводов линий были выбраны с учетом экономической плотности тока и проверены по допустимому току перегрузки.

Качество электрической энергии, требуемое ГОСТом 13109-97, обеспечивается с помощью устройств РПН у всех трансформаторов и применения линейных регулировочных трансформаторов ЛТДН-40000 на шинах низшего напряжения ПС 2. Для сети выбраны следующие трансформаторы: АТДЦТН 125000/220/110 – для узловой подстанции,

ТРДН-25000/110– для ПС1, ТДН-10000/110 - для ПС3.

Установившиеся режимы были рассчитаны с помощью программы «Энергия». При анализе полученных результатов получили, что проектируемая сеть удовлетворяет предъявляемым к ней требованиям.

Для проверки правильности расчёта был составлен баланс активной и реактивной мощности для максимального и минимального режима.

По результатам механического расчёта проводов ЛЭП 110 кВ, соединяющей ПС2 и ПС3 были выбраны опоры ПБ 110-8 высотой 24,5 метров с пролётом 200 метров и высотой до нижней траверсы равной 14,7 метров с полимерными изоляторами.

В результате технико-экономического расчета получены следующие показатели сети:

1. Суммарные капиталовложения сети К СЕТИ = 3317600 тыс.руб.

2. Суммарные издержки на эксплуатацию сети И å =48236,406 тыс.руб./год.

3. Потери мощности и энергии в сети DР å =2,86 МВт, DЭ=10574,426 МВт час.

4. Себестоимость передачи энергии b = 9,2 коп/кВт час.

5. Коэффициент полезного действия сети =98%.

На основании того, что выбранный вариант электрической сети удовлетворяет предъявленным к нему требованиям, считаем его оптимальным.


Список литературы

1. Справочник по проектированию электрических сетей. Под редакцией Д.Л. Файбисовича. – М.: Изд-во НЦ ЭНАС, 2005 – 320 с. ил.

2. Правила устройства электроустановок. – 7-е изд., перераб. и доп. – М.: Энергоатомиздат, 2003. – 648 с.

3. Выбор силовых трансформаторов подстанций энергосистем и промышленных предприятий с учетом допустимых нагрузок. Методические указания. Б.Я. Прахин. – Иваново; ИЭИ, 1999г.

4. Учебное пособие к выполнению курсовой работы «проектирование электрической сети». А.Е.Аржанникова, Т.Ю. Мингалева. – Иваново; 2014г.

5. Методические указания по расчету установившихся режимов в курсовом проектировании электрических сетей. Бушуева О.А., Парфенычева Н.Н. - Иваново: ИГЭУ, 2004.

Производство и распределение электроэнергии.

На районной (т.е. приближенной к источникам энергоресурсов) электростанции электроэнергия вырабатывается чаще всего электромашинными генераторами переменного тока. Для уменьшения потерь при ее передаче и распределении напряжение, снимаемое на выходные электрогенератора, повышается трансформаторной подстанцией. Затем электроэнергия передается по высоковольтным линиям электропередачи (ЛЭП) на большие расстояния, которые могут измеряться сотнями километров. К ЛЭП подключен ряд распределительных подстанций, отводящих электроэнергию к местным центрам электропотребления. Поскольку далее электроэнергия передается по улицам и населенным районам, на подстанциях напряжение для безопасности еще раз понижается трансформаторами. К понижающим трансформаторам подстанций подключены линии магистральной сети. В удобных точках этой сети устанавливаются пункты ответвления для распределительной сети электропотребителей.

Электростанции.

Электростанции разных типов, расположенные в разных местах, могут быть объединены высоковольтными ЛЭП в энергосистему. В этом случае постоянную (базовую) нагрузку, потребляемую на всем протяжении суток, берут на себя атомные электростанции (АЭС), высокоэффективные паротурбинные тепловые электростанции и электроцентрали (ТЭС и ТЭЦ), а также гидроэлектростанции (ГЭС). В часы повышенной нагрузки к общей сети ЛЭП энергосистемы дополнительно подключаются гидроаккумулирующие электростанции (ГАЭС), газотурбинные установки (ГТУ) и менее эффективные ТЭС, работающие на ископаемом топливе.

Электроснабжение от энергосистем имеет существенные преимущества перед снабжением от изолированных электростанций: улучшается надежность энергоснабжения, лучше используются энергоресурсы района, снижается себестоимость электроэнергии за счет наиболее экономичного распределения нагрузки между электростанциями, уменьшается требуемая резервная мощность и т.д.

Коэффициент нагрузки.

Потребительская нагрузка изменяется в зависимости от времени суток, месяца года, погоды и климата, географического расположения и экономических факторов.

Максимального (пикового) уровня нагрузка может достигать на протяжении всего лишь нескольких часов в году, но мощность электростанции или энергосистемы должна быть рассчитана и на пиковую нагрузку. Кроме того, избыток, или резерв, мощности необходим для того, чтобы можно было отключать отдельные энергоблоки для технического обслуживания и ремонта. Резервная мощность должна составлять около 25% полной установленной мощности.

Эффективность использования электростанции и энергосистемы можно характеризовать процентным отношением электроэнергии (в киловатт-часах), фактически выработанной за год, к максимально возможной годовой производительности (в тех же единицах). Коэффициент нагрузки не может быть равен 100%, так как неизбежны простои энергоблоков для планового технического обслуживания и ремонта в случае аварийного выхода из строя.

КПД электростанции.

Термический КПД электростанции, работающей на угле, можно приближенно характеризовать массой угля в килограммах, которая сжигается для получения одного киловатт-часа электроэнергии. Этот показатель (удельный расход топлива) неуклонно снижался от 15,4 кг/кВтЧ ч в 1920-х до 3,95 кг/кВтЧ ч в начале 1960-х, но к 1990-м годам постепенно повысился до 4,6 кг/кВтЧ ч. Повышение в значительной мере объясняется введением пылезолоуловителей и газоочистителей, съедающих до 10% выходной мощности электростанции, а также переходом на экологически более чистый уголь (с низким содержанием серы), на который многие электростанции не были рассчитаны.

В процентном выражении термический КПД современной ТЭС не превышает 36%, в основном из-за потерь тепла, уносимого отходящими газами – продуктами горения.

У АЭС, работающих при более низких температурах и давлениях, несколько меньший полный КПД – около 32%.

Газотурбинные установки с котлом-утилизатором (парогенератором, использующим тепло выхлопных газов) и дополнительной паровой турбиной могут иметь КПД более 40%.

Термический КПД паротурбинной электростанции тем больше, чем выше рабочие температуры и давления пара. Если в начале 20 в. эти параметры составляли 1,37 МПа и 260° C, то в настоящее время обычны давления свыше 34 МПа и температуры свыше 590° C (АЭС работают при более низких температурах и давлениях, чем самые крупные ТЭС, поскольку нормативами ограничивается максимально допустимая температура активной зоны реактора).

На современных паротурбинных электростанциях пар, частично отработавший в турбине, отбирается в ее промежуточной точке для повторного нагревания (промежуточного перегрева) до исходной температуры, причем могут быть предусмотрены две или более ступеней промперегрева. Пар из других точек турбины отводится для предварительного нагрева питательной воды, подводимой к парогенератору. Такие меры намного повышают термический КПД.

Экономика электроэнергетики.

В таблице представлены ориентировочные данные о потреблении электроэнергии на душу населения в некоторых странах мира.

Таблица "Годовое потребление электроэнергии на душу населения"
ГОДОВОЕ ПОТРЕБЛЕНИЕ ЭЛЕКТРОЭНЕРГИИ НА ДУШУ НАСЕЛЕНИЯ
(кВт·ч, начало 1990-х годов)
Норвегия 22485 Бразилия 1246
Канада 14896 Мексика 1095
Швеция 13829 Турция 620
США 10280 Либерия 535
ФРГ 6300 Египет 528
Бельгия 5306 Китай 344
Россия 5072 Индия 202
Япония 5067 Заир 133
Франция 4971 Индонезия 96
Болгария 4910 Судан 50
Италия 3428 Бангладеш 39
Польша 3327 Чад 14

ПАРОТУРБИННЫЕ ЭЛЕКТРОСТАНЦИИ

Основную долю электроэнергии, производимой во всем мире, вырабатывают паротурбинные электростанции, работающие на угле, мазуте или природном газе.

Парогенераторы.

Парогенератор паротурбинной электростанции, работающей на ископаемом топливе, представляет собой котельный агрегат с топкой, в которой сжигается топливо, испарительными поверхностями, в трубах которых вода превращается в пар, пароперегревателем, повышающим температуру пара перед подачей в турбину до значений, достигающих 600° C, промежуточными (вторичными) пароперегревателями для повторного перегрева пара, частично отработавшего в турбине, экономайзером, в котором входная питательная вода нагревается отходящим топочным газом, и воздухоподогревателем, в котором топочный газ отдает свое остаточное тепло воздуху, подводимому к топке.

Для подачи в топку воздуха, необходимого для горения, применяются вентиляторы, создающие в ней искусственную, или принудительную, тягу. В одних парогенераторах тяга создается вытяжными вентиляторами (дымососами), в других – приточными (напорными), а чаще всего и теми и другими, что обеспечивает т.н. уравновешенную тягу с нейтральным давлением в топке.

При сгорании топлива негорючие компоненты, содержание которых может достигать 12–15% полного объема битуминозного и 20–50% бурого угля, оседают на подовине топочной камеры в виде шлака или сухой золы. Остальное проходит через топку в виде пыли, от которой полагается очищать отходящие газы, прежде чем выпускать их в атмосферу. Пылезолоочистка осуществляется циклонами и электрофильтрами, в которых частицы пыли заряжаются и осаждаются на коллекторных проволоках или пластинах, имеющих заряд противоположного знака.

Нормативами для новых электростанций ограничивается выброс в атмосферу не только твердых частиц, но и диоксида серы. Поэтому непосредственно перед дымовой трубой в газоходах предусматриваются химические скрубберы, часто устанавливаемые после электрофильтров. В скрубберах (мокрых или сухих) с помощью различных химических процессов из отходящих газов удаляют серу.

Из-за высокой требуемой степени пылезолоочистки в настоящее время применяют еще и тканевые рукавные фильтры с встряхиванием и обратной продувкой, содержащие сотни больших тканевых рукавов – фильтровальных элементов.

Электрогенераторы.

Электромашинный генератор приводится во вращение т.н. первичным двигателем, например турбиной. Вращающийся вал первичного двигателя связан соединительной муфтой с валом электрогенератора, который обычно несет на себе магнитные полюса и обмотки возбуждения. Магнитное поле тока, создаваемого в обмотке возбуждения небольшим вспомогательным генератором или полупроводниковым устройством (возбудителем), пересекает проводники обмотки статора (неподвижной станины генератора), благодаря чему в этой обмотке наводится переменный ток, который снимается с выходных зажимов генератора. Большие трехфазные генераторы вырабатывают три отдельных, но согласованных между собой тока в трех отдельных системах проводников, напряжение на которых достигает 25 кВ. Проводники присоединены к трехфазному повышающему трансформатору, с выхода которого электроэнергия передается по трехфазным же высоковольтным ЛЭП в центры потребления.

Мощные современные турбогенераторы имеют замкнутую систему вентиляции с водородом в качестве охлаждающего газа. Водород не только отводит тепло, но и уменьшает аэродинамические потери. Рабочее давление водорода составляет от 0,1 до 0,2 МПа. Для более интенсивного охлаждения генератора водород может также подаваться под давлением в полые проводники статора. В некоторых моделях генераторов обмотки статора охлаждаются водой.

В целях повышения эффективности охлаждения и уменьшения размеров генератора ведутся исследования возможности создания генератора, охлаждаемого жидким гелием.

Паровые турбины.

Пар от пароперегревателей парогенератора, поступивший в турбину, проходит через систему профилированных входных сопел (сопловой аппарат). При этом давление и температура пара понижаются, а скорость сильно увеличивается. Высокоскоростные струи пара ударяются о венец из рабочих лопаток (с аэродинамическим профилем), закрепленных на роторе турбины, и энергия пара преобразуется в энергию вращения ротора.

Пар проходит через последовательность направляющих и рабочих лопаточных решеток, пока его давление не понизится примерно до 2/3 атмосферного, а температура – до уровня (32–38° C), минимально необходимого для предотвращения конденсации пара.

На выходе турбины пар обтекает пучки труб конденсатора, по которым прокачивается холодная вода, и, отдавая тепло воде, конденсируется, благодаря чему здесь поддерживается небольшой вакуум. Конденсат, скапливающийся в нижней части конденсатора, откачивается насосами и, пройдя через ряд нагревательных теплообменников, возвращается в парогенератор, чтобы снова начать цикл. Пар для этих нагревательных теплообменников отбирается из разных точек парового тракта турбины со все более высокой температурой соответственно повышению температуры возвратного потока конденсата.

Поскольку для конденсатора требуются большие количества воды, крупные ТЭС целесообразно строить рядом с большими водоемами. Если запасы воды ограничены, то строятся градирни. В градирне вода, использованная для конденсации пара в конденсаторе, закачивается на вершину башни, откуда стекает по многочисленным перегородкам, распределяясь тонким слоем по поверхности большой площади. Входящий в башню воздух поднимается за счет естественной тяги или принудительной тяги, создаваемой мощными вентиляторами. Движение воздуха ускоряет испарение воды, которая за счет испарения охлаждается. При этом 1–3% охлаждающей воды теряется, уходя в виде парового облака в атмосферу. Охлажденная вода подается снова в конденсатор, и цикл повторяется. Градирни применяют и в тех случаях, когда вода забирается из водоема, – чтобы не сбрасывать отработанную теплую воду в естественный водный бассейн.

Мощность самых крупных паровых турбин достигает 1600 МВт. Ступени высокого, промежуточного и низкого давления могут быть выполнены на одном роторе, и тогда турбина называется одновальной. Но крупные турбины часто выпускаются в двухвальном исполнении: ступени промежуточного и низкого давления монтируются на роторе, отдельном от ступени высокого давления. Максимальная температура пара перед турбиной зависит от типа сталей, применяемых для паропроводов и пароперегревателей, и, как правило, составляет 540–565° C, но может достигать и 650° C.

Регулирование и управление.

Прежде всего необходимо точно поддерживать стандартную частоту вырабатываемого переменного тока. Частота тока зависит от частоты вращения вала турбины и генератора, а поэтому необходимо в полном соответствии с изменениями внешней нагрузки регулировать поток (расход) пара на входе в турбину. Это осуществляется при помощи очень точных регуляторов с компьютерным управлением, воздействующих на входные регулирующие клапаны турбины. Микропроцессорные контроллеры координируют работу разных блоков и подсистем электростанции. Компьютеры, находящиеся в центральной диспетчерской, автоматически осуществляют пуск и останов паровых котлов и турбин, обрабатывая данные, поступающие более чем из 1000 разных точек электростанции. Автоматизированные системы управления (АСУ) следят за синхронностью работы всех электростанций энергосистемы и регулируют частоту и напряжение.

ДРУГИЕ ВИДЫ ЭЛЕКТРОСТАНЦИЙ

Гидроэлектростанции.

Около 23% электроэнергии во всем мире вырабатывают ГЭС. Они преобразуют кинетическую энергию падающей воды в механическую энергию вращения турбины, а турбина приводит во вращение электромашинный генератор тока. Самый крупный в мире гидроэнергоблок установлен в Итайпу на р. Парана, там, где она разделяет Парагвай и Бразилию. Его мощность равна 750 МВт. Всего на ГЭС в Итайпу установлено 18 таких блоков.

Гидроаккумулирующие электростанции (ГАЭС) оборудуются агрегатами (гидравлическими и электрическими машинами), которые по своей конструкции способны работать как в турбинном, так и в насосном режиме. В часы малых нагрузок ГАЭС, потребляя электроэнергию, перекачивает воду из низового водоема в верховой, а в часы повышенных нагрузок в энергосистеме использует запасенную воду для выработки пиковой энергии. Время пуска и смены режимов составляет несколько минут.

Газотурбинные установки.

ГТУ довольно широко применяются на малых электростанциях, принадлежащих муниципалитетам или промышленным предприятиям, а также в качестве «пиковых» (резервных) блоков – на крупных электростанциях. В камерах сгорания ГТУ сжигается мазут или природный газ, и высокотемпературный газ высокого давления воздействует на рабочие колеса турбины примерно так же, как и пар в паровой турбине. Вращающийся ротор газовой турбины приводит во вращение электрогенератор, а также воздушный компрессор, который подводит к камере сгорания воздух, необходимый для горения. Примерно 2/3 энергии поглощается компрессором; горячие выхлопные газы после турбины выводятся в дымовую трубу. По этой причине КПД газотурбинных установок не очень высок, но зато малы и капитальные затраты в сравнении с паровыми турбинами той же мощности. Если ГТУ используется на протяжении лишь нескольких часов в году в периоды пиковой нагрузки, то высокие эксплуатационные расходы компенсируются низкими капитальными, так что применение ГТУ для обеспечения до 10% полной выходной мощности электростанции оказывается экономически целесообразным.

В комбинированных парогазотурбинных энергетических установках (ПГУ) высокотемпературные выхлопные газы газовой турбины направляются не в дымовую трубу, а в котел-утилизатор, который вырабатывает пар для паровой турбины. КПД такой установки выше, чем у лучшей паровой турбины, взятой отдельно (около 36%).

Электростанции с ДВС.

На электростанциях, принадлежащих муниципалитетам и промышленным предприятиям, для привода электрогенераторов часто применяются дизельные и бензиновые двигатели внутреннего сгорания.

У двигателей внутреннего сгорания низкий КПД, что связано со спецификой их термодинамического цикла, но этот недостаток компенсируется низкими капитальными расходами. Мощность самых больших дизелей составляет около 5 МВт. Их преимуществом являются малые размеры, позволяющие с удобством располагать их рядом с электропотребляющей системой в хозяйстве муниципалитета или на заводе. Они не требуют больших количеств воды, так как не приходится конденсировать выхлопные газы; достаточно охлаждать цилиндры и смазочное масло. На установках с большим числом дизелей или бензиновых двигателей их выхлопные газы собираются в коллектор и направляются на парогенератор, что существенно повышает общий КПД.

Атомные электростанции.

На АЭС электроэнергия вырабатывается так же, как и на обычных ТЭС, сжигающих ископаемое топливо, – посредством электромашинных генераторов, приводимых во вращение паровыми турбинами. Но пар здесь получается за счет деления изотопов урана или плутония в ходе управляемой цепной реакции, протекающей в ядерном реакторе. Теплоноситель, циркулирующий через охлаждающий тракт активной зоны реактора, отводит выделяющуюся теплоту реакции и непосредственно либо через теплообменники используется для получения пара, который подается на турбины.

Капитальные расходы на строительство АЭС крайне велики по сравнению с расходами на электростанции, сжигающие ископаемое топливо, той же мощности: в США в среднем около 3000 долл./кВт, тогда как для ТЭС на угле – 600 долл./кВт. Но АЭС потребляет очень малые количества ядерного топлива, а это может оказаться весьма существенным для стран, которым иначе пришлось бы импортировать обычное топливо. ЯДЕР ДЕЛЕНИЕ; АТОМНАЯ ЭНЕРГЕТИКА; СУДОВЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ДВИЖИТЕЛИ.

Солнечные, ветровые, геотермальные электростанции.

Солнечная энергия преобразуется непосредственно в электроэнергию полупроводниковыми фотоэлектрическими генераторами тока, но капитальные затраты на эти преобразователи и их установку таковы, что стоимость установленной мощности оказывается в несколько раз выше, чем на ТЭС. Существует ряд крупных действующих гелиоэлектростанций; самая крупная из них, мощностью 1 МВт, находится в Лос-Анджелесе (шт. Калифорния). Коэффициент преобразования составляет 12–15%. Солнечную радиацию можно также использовать для выработки электроэнергии, концентрируя солнечные лучи при помощи большой системы зеркал, управляемой компьютером, на парогенераторе, установленном в ее центре на башне. Опытная установка такого рода мощностью 10 МВт была построена в шт. Нью-Мексико. Гелиоэлектростанции в США вырабатывают около 6,5 млн. кВтЧ ч в год.

Создатели ветровых электростанций мощностью 4 МВт, построенных в США, встретились с многочисленными трудностями из-за их сложности и больших размеров. В штате Калифорния был построен ряд «ветровых полей» с сотнями малых ветровых турбин, включенных в местную энергосистему. Ветровые электростанции окупаются только при условии, что скорость ветра больше 19 км/ч, а ветры дуют более или менее постоянно. К сожалению, они очень шумны и поэтому не могут располагаться вблизи населенных пунктов.

Геотермальная электроэнергетика рассматривается в статье ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ.

ПЕРЕДАЧА ЭЛЕКТРОЭНЕРГИИ

Электроэнергия, вырабатываемая генератором, отводится к повышающему трансформатору по массивным жестким медным или алюминиевым проводникам, называемым шинами. Шина каждой из трех фаз (см. выше ) изолируется в отдельной металлической оболочке, которая иногда заполняется изолирующим элегазом (гексафторидом серы).

Трансформаторы повышают напряжение до значений, необходимых для эффективной передачи электроэнергии на большие расстояния.

Генераторы, трансформаторы и шины соединены между собой через отключающие аппараты высокого напряжения – ручные и автоматические выключатели, позволяющие изолировать оборудование для ремонта или замены и защищающие его от токов короткого замыкания. Защита от токов короткого замыкания обеспечивается автоматическими выключателями. В масляных выключателях дуга, возникающая при размыкании контактов, гасится в масле. В воздушных выключателях дуга выдувается сжатым воздухом или применяется «магнитное дутье». В новейших выключателях для гашения дуги используются изолирующие свойства элегаза.

Для ограничения силы токов короткого замыкания, которые могут возникать при авариях на ЛЭП, применяются электрические реакторы. Реактор представляет собой катушку индуктивности с несколькими витками массивного проводника, включаемую последовательно между источником тока и нагрузкой. Он понижает силу тока до уровня, допустимого для автоматического выключателя.

С экономической точки зрения, наиболее целесообразным, на первый взгляд, представляется открытое расположение большей части высоковольтных шин и высоковольтного оборудования электростанции. Тем не менее все чаще применяется оборудование в металлических кожухах с элегазовой изоляцией. Такое оборудование необычайно компактно и занимает в 20 раз меньше места, нежели эквивалентное открытое. Это преимущество весьма существенно в тех случаях, когда велика стоимость земельного участка или когда требуется нарастить мощность существующего закрытого распредустройства. Кроме того, более надежная защита желательна там, где оборудование может быть повреждено из-за сильной загрязненности воздуха.

Для передачи электроэнергии на расстояние используются воздушные и кабельные линии электропередачи, которые вместе с электрическими подстанциями образуют электросети. Неизолированные провода воздушных ЛЭП подвешиваются с помощью изоляторов на опорах. Подземные кабельные ЛЭП широко применяются при сооружении электросетей на территории городов и промышленных предприятий. Номинальное напряжение воздушных ЛЭП – от 1 до 750 кВ, кабельных – от 0,4 до 500 кВ.

РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОЭНЕРГИИ

На трансформаторных подстанциях напряжение последовательно понижается до уровня, необходимого для распределения по центрам электропотребления и в конце концов по отдельным потребителям. Высоковольтные ЛЭП через автоматические выключатели присоединяются к сборной шине распределительной подстанции. Здесь напряжение понижается до значений, установленных для магистральной сети, разводящей электроэнергию по улицам и дорогам. Напряжение магистральной сети может составлять от 4 до 46 кВ.

На трансформаторных подстанциях магистральной сети энергия ответвляется в распределительную сеть. Сетевое напряжение для бытовых и коммерческих потребителей составляет от 120 до 240 В. Крупные промышленные потребители могут получать электроэнергию с напряжением до 600 В, а также с более высоким напряжением – по отдельной линии от подстанции. Распределительная (воздушная или кабельная) сеть может быть организована по звездной, кольцевой или комбинированной схеме в зависимости от плотности нагрузки и других факторов. Сети ЛЭП соседних электроэнергетических компаний общего пользования объединяются в единую сеть.

Как известно, на данный момент еще не созданы такие механизмы, которые бы до конца превращали один вид энергии в другой. В процессе работы любой рукотворный прибор расходует часть энергии на сопротивление сил либо же впустую ее рассеивает в окружающую среду. То же самое происходит и в замкнутой электроцепи. Когда заряды протекают по проводникам, осуществляется сопротивление полной и полезной нагрузки работы электричества. Чтобы сопоставить их соотношения, потребуется произвести коэффициент полезного действия (КПД).

Для чего нужен расчет КПД

Коэффициент полезного действия электрической цепи – это отношение полезного тепла к полному.

Для ясности приведем пример. При нахождении КПД двигателя можно определить, оправдывает ли его основная функция работы затраты потребляемого электричества. То есть его расчет даст ясную картину, насколько хорошо устройство преобразовывает получаемую энергию.

Обратите внимание! Как правило, коэффициент полезного действия не имеет величины, а представляет собой процентное соотношение либо числовой эквивалент от 0 до 1.

КПД находят по общей формуле вычисления, для всех устройств в целом. Но чтобы получить его результат в электрической цепи, вначале потребуется найти силу электричества.

Нахождения тока в полной цепи

По физике известно, что любой генератор тока имеет свое сопротивление, которое еще принято называть внутренняя мощность. Помимо этого значения, источник электричества также имеет свою силу.

Дадим значения каждому элементу цепи:

  • сопротивление – r;
  • сила тока – Е;

Итак, чтобы найти силу тока, обозначение которого будет – I, и напряжение на резисторе – U, потребуется время – t, с прохождением заряда q = lt.

В связи с тем, что сила электричества постоянна, работа генератора целиком преобразуется в тепло, выделяемое на R и r. Такое количество можно рассчитать по закону Джоуля-Ленца:

Q = I2 + I2 rt = I2 (R + r) t.

Затем приравниваются правые части формулы:

EIt = I2 (R + r) t.

Осуществив сокращение, получается расчет:

Произведя у формулы перестановку, в итоге получается:

Данное итоговое значение будет являться электрической силой в данном устройстве.

Произведя таким образом предварительный расчет, теперь можно определить КПД.

Расчет КПД электрической цепи

Мощность, получаемая от источника тока, называется потребляемой, определение ее записывается – P1. Если эта физическая величина переходит от генератора в полную цепь, она считается полезной и записывается – Р2.

Чтобы определить КПД цепи, необходимо вспомнить закон сохранения энергии. В соответствии с ним, мощность приемника Р2 будет всегда меньше потребляемой мощности Р1. Это объясняется тем, что в процессе работы в приемнике всегда происходит неизбежная пустая трата преобразуемой энергии, которая расходуется на нагревание проводов, их оболочки, вихревых токов и т.д.

Чтобы найти оценку свойств превращения энергии, необходим КПД, который будет равен отношению мощностей Р2 и Р1.

Итак, зная все значения показателей, составляющих электроцепи, находим ее полезную и полную работу:

  • А полезная. = qU = IUt =I2Rt;
  • А полная = qE = IEt = I2(R+r)t.

В соответствии этих значений, найдем мощности источника тока:

  • Р2 = А полезная /t = IU = I2 R;
  • P1 = А полная /t = IE = I2 (R + r).

Произведя все действия, получаем формулу КПД:

n = А полезная / А полная = Р2 / P1 =U / E = R / (R +r).

У этой формулы получается, что R выше бесконечности, а n выше 1, но при всем этом ток в цепи остается в низком положении, и его полезная мощность мала.

Каждый желает найти КПД повышенного значения. Для этого необходимо найти условия, при которых P2 будет максимален. Оптимальные значения будут:

  • P2 = I2 R = (E / R + r)2 R;
  • dP2 / dR = (E2 (R + r)2 — 2 (r + R) E2 R) / (R + r)4 = 0;
  • E2 ((R + r) -2R) = 0.

В данном выражении Е и (R + r) не равны 0, следовательно, ему равно выражение в скобках, то есть (r = R). Тогда получается, что мощность имеет максимальное значение, а коэффициент полезного действия = 50 %.

Мотивы данной статьи навеяны неожиданной дискуссией на тему эффективности работы серверного оборудования ЦОД (см. комментарии в статье ). Вопрос о том, что действительно подразумевать под понятиями КПД и эффективности в отношении серверного оборудования в частности и всего ЦОД в целом требует дополнительных пояснений. Итак, …

Термины и определения

Наиболее логичным видится начало с определения используемых терминов.

Коэффициент Полезного Действия (КПД) – это отношение полезной совершаемой работы (энергии) к общей затраченной работе (энергии).

Совершенство – это отношение текущего (реального) значения параметра к теоретически максимально возможному при тех же условиях.

Различия в данных понятиях очень хорошо можно проиллюстрировать на примере систем кондиционирования. Так, например, КПД компрессора составляет порядка 85%. Оставшиеся 15% затрачиваются на трение, движение масла, перетечки, нагрев и др. КПД кондиционера в целом можно оценить примерно в 70% — здесь учитывается падения давления в трубопроводах, КПД дросселя, гидравлическое сопротивление теплообменников и т.д.

Однако, совершенство современного кондиционера лишь немного превышает 10%. Дело в том, что на 1кВт затраченной электроэнергии кондиционер должен генерировать почти 30кВт холода (27.5кВт для стандартных условий), а реальная холодопроизводительность составляет всего 3-4кВт. Отношение этих цифр в холодильной технике называется «степенью термодинамического совершенства цикла» или проще – «совершенство».

Итак, КПД и совершенство – это совершенно разные понятия и при КПД агрегата в 70% его совершенство может составлять всего 10%.

КПД ЦОД

Переходя к ЦОД, следует определиться в понятиях полезной и полной работы ЦОД и его максимально возможной работе при тех же условиях.

Ни для кого не секрет, что вычислительные мощности ЦОД генерируются ИТ-оборудованием и вся инженерная и архитектурная инфраструктура ЦОД направлена на размещение ИТ-оборудование и обеспечение его работоспособности. Как результат, за полезную работу принимают мощность ИТ-оборудования, а это ошибочно. ИТ-оборудование для вычислительных мощностей, является лишь методом их получения.

Действительно полезной работой ЦОД следует называть исключительно вычислительную мощность ЦОД, т.е. те электрические сигналы, которые были получены в ЦОД по запросу пользователей из вне и отправлены ему.

К сожалению, оценить мощность таких сигналов чрезвычайно трудно. Известно лишь то, что в большом ЦОД она измеряется ваттами, и она ничтожно мала по сравнению с затраченной на функционирование ЦОД мегаваттной мощностью. Разделив одно на другое, получаем, что КПД ЦОД пренебрежительно мало и, по сути, равно нулю.

КПД ЦОД ≈ 0%.

Ничтожно малый КПД объясняется несколькими факторами:

  • Несовершенство технологии: пренебрежительно малый КПД серверного оборудования. Современные технологии позволяют создать потрясающие вычислительные мощности, но затраты энергии на них на несколько порядков превышают мощности получаемых сигналов. Основной проблемой является энергоёмкость p-n-переходов, на которых и построен весь вычислительный процесс. Проблему может решить применение других материалов (что сдерживается их несравненно более высокой стоимостью) или новых технологий (главная из них – использование эффекта высокотемпературной сверхпроводимости на основе новых материалов (интерметаллидов), но на сегодняшний день под словом «высокотемпературная» скрываются температуры около 150К (-120С), что опять-таки недостижимо мало для машинных залов). В итоге в ближайшие годы изменения ситуации ждать не приходится.
  • Множество побочных процессов и необходимость задействовать несколько других единиц оборудования. Так, для формирования какого-либо вычисления необходимо обратиться к процессору (т.е. он должен быть включен), к базе данных на дисковом массиве (и он должен быть запитан), к оперативной памяти (а она также энергозависима) и т.д. В результате, для получения одного сигнала необходимо сгенерировать несколько вспомогательных, каждый из которых также требует обработки. В итоге круг «действующих лиц» очень широк и каждое такое «лицо» имеет свое энергопотребление. Конечно, современная миниатюризация всех элементов позитивно сказывается и на их энергопотреблении, поэтому прогресс в этой области налицо.

В целом же существенного отдаления КПД ЦОД от нулевой отметки ожидать не приходится.

Однако, для удобства КПД ЦОД есть смысл разбить на КПД инженерии и КПД ИТ.

КПД инженерии ЦОД = мощность ИТ / полная мощность ЦОД

КПД ИТ = вычислительная мощность / мощность ИТ

Тогда КПД ЦОД = КПД инженерии * КПД ИТ.

По вышеуказанным причинам КПД ИТ составляет около 0% и особого интереса не представляет ввиду отсутствия в ближайшее время путей её повышения.

В свою очередь КПД инженерии ЦОД вызывает самый живой интерес, является главным показателем эффективности работы ЦОД и, как правило, лежит в диапазоне от 35 до 95%. Столь широкий разброс объясняется режимом работы системы кондиционирования: при работе холодильного цикла диапазон сужается до 35-55%, а в случае режима фрикулинга получаем диапазон 75-95%.

Связь КПД с принятыми показателями

Стоит отметить, что эффективность ЦОД оценивается общепринятым коэффициентом PUE (Power Utilization Effectiveness, эффективность утилизации энергии) и коэффициентом DCiE (Data Cetner infrastructure Efficiency, эффективность инфраструктуры ЦОД). Обы они напрямую связаны с КПД инженерии:

DCiE = КПД инженерии ЦОД

PUE = 1 / КПД инженерии ЦОД

DCiE = 1 / PUE.

Итак, чем выше КПД, чем выше DCiE и чем ниже PUE, тем лучше.

Совершенство ЦОД

Как было сказано выше, совершенство представляет собой отношение практического полезного эффекта к максимально возможному теоретически. При этом учитывается конкретная технология получения полезного эффекта.

Так, для проведения вычислений другой технологии, кроме как использование полупроводников и p-n-переходов нет. Не касаясь области высокотемпературной сверхпроводимости совершенство сегодняшних серверов можно оценить в 60% (цифра неточная, неподтвержденная, взята у соответствующих специалистов). Это означает, что производя те же вычисления электропотребление ИТ-оборудования можно сократить на 40%.

Приведу два наглядных примера:

  • Мощность процессоров растет медленнее их производительности:

Pentium II – максимум 450МГц при 30Вт

Pentium III – максимум 1.4ГГц при 40Вт

Pentium IV – максимум 3.8ГГц при 120Вт

Pentium Dual-Core – 3.1ГГц при 65Вт

  • Энергопотребление жестких дисков заметно снизилось: если раньше потребляемый ток превышал 1А, то сейчас он составляет около 0.5А.

Совершенство инженерной инфраструктуры ЦОД резко снижается из-за систем кондиционирования (как было сказано в начале, их совершенство составляет около 10%, более точно – 12.2% при полной нагрузке).

В то же время совершенство систем распределения электропитания достаточно высоко (около 98%).

В итоге совершенство инженерии исчисляется 12%, а ЦОД в целом – 7.2%.

Получаем, что при гораздо более высоком КПД совершенство инженерии ЦОД проигрывает совершенству ИТ.

Ещё интереснее ситуация в случае свободного охлаждения. Совершенство фрикулинга оценивается примерно в 70%. Тогда совершенство инженерии составит 68.6%, а всего ЦОД – 41.1%.

Использование фрикулинга позволяет повысить как КПД ЦОД, так и его совершенство.

Loading...Loading...