Регуляторы температуры для гвс. Погодное регулирование. Типовые схемы регулирования отопления

Монтаж автоматики на ГВС для экономии горячей воды и поддержании стабильного давления в системе водоснабжения. Услуги предоставляются в Москве и Московской области.

Регулировка ГВС - Проектирование. Монтаж. Настройка. Сервисное обслуживание.

Автоматизация ГВС центрального теплоснабжения и водоснабжения. Экономия достигается за счёт регулировки потребления теплоносителя для нагрева горячей воды в теплообменных аппаратах. Регулировка горячего водоснабжения устанавливается в многоквартирные и многоэтажные дома, жилые здания, заводы, детские сады, школы, МКД, ТСЖ. Автоматическая регулировка ГВС повышает энергоэффективность зданий, подключённых к центральным тепловым сетям

Узнать подробней!

За счёт чего достигается экономия ГВС?

  • Потребитель сам решает, когда и какой температуры будет горячая вода
  • Регулировка потребления теплоносителя для нагрева ГВС
  • Снижение потребления теплоносителя в ночное время
  • Уменьшение теплопотерь от перегретых теплообменников
  • Отсутствие закипания теплообменников пластинчатых или кожухотрубных
  • Увеличение срока службы трубопроводов, системы отопления и ГВС
  • Контроль ИТП online, с оповещением об аварийных ситуациях

Комфорт проживания.

  • Нет нужды использовать электрообогреватели.
  • Температура горячей воды постоянная, без резких скачков.
  • Уверенность, что дети не ошпарятся кипятком.

Стоимость установки регуляторов на систему ГВС

Гарантия 2 года.

6 лет юридическому лицу, это значит обязательства будут выполнены, а гарантия исполнена.

Регулировка ГВС клапаном прямого действия.

Предназначены для автоматического поддержания заданной температуры регулируемой среды путём изменения расхода теплоносителя. Клапан закрывается при повышении температуры горячей воды.

Регулятор состоит из термосистемы (датчика температуры) и регулирующего устройства (регулирующего клапана). Термосистема, в свою очередь, состоит из термобаллона совмещенного с узлами настройки и перегрузки, соединенных с узлом перестановки капилляром. Внутренняя герметичная полость термосистемы заполнена теплочувствительной жидкостью.

  • Не требуется дополнительных источников энергии
  • Простота конструкции
  • Доступная цена

Регулировка ГВС электронным регулятором.

Регуляторы расхода тепловой энергии РРТЭ состоят из регулирующего клапана КР, микропроцессорного контроллера и датчика температуры.

На специальный контроллер-регулятор, который является мозгом всей системы, приходит сигнал от датчика температуры находящегося на трубопроводе горячей воды. Далее в контроллере анализируются данные. После вычисления, регулятор отправляет команду на исполнительный механизм - клапан с электроприводом. Регулирующий клапан ограничивает поступление теплоносителя в теплообменник.

Основной принцип автоматических систем заключается в регулировании расхода по измеряемой температуре горячей воды.

За счет снижения величины расхода, происходит уменьшение значение потребляемой тепловой энергии.

  • Высокая энергоэффективность
  • Функции день/ночь, режим выходного дня
  • Архив параметров, графики, отчёты
  • Высокая точность регулирования
  • Простота в ремонте механизмов
  • Отсутствуют ограничения от длины капилляра
  • Возможность работы в ручном режиме

Возможность установки автоматики ГВС определяется инженером-теплотехником на месте.

Выезд специалиста бесплатный и ни к чему не обязывает.

Заказать бесплатный выезд инженера!

Нажимая "Отправить", Вы даёте согласие на обработку своих персональных данных в соответстии с Федеральным законом №152-ФЗ "О персональных данных" и принимаете условия.*

Как происходит регулировка температуры ГВС?

Схема с предвключенным подогревателем горячего водоснабжения . Достоинством этой схемы является постоянный расход теплоносителя на тепловой пункт в течение всего отопительного сезона, который поддерживается регулятором расхода РР. Это делает гидравлический режим тепловой сети стабильным. Недогрев помещений в периоды максимальной нагрузки ГВС компенсируется подачей сетевой воды повышенной температуры в систему отопления в периоды минимального водоразбора или при его отсутствии в ночные часы. Использование теплоаккумулирующей способности зданий практически исключает колебания температуры воздуха в помещениях.

Параллельная схема включения подогревателя горячего водоснабжения. Схема имеет простую коммутацию. Подогреватель и тепловая сеть рассчитываются на максимальный расход ГВС. В этой схеме теплота сетевой воды используется недостаточно рационально. Не используется теплота обратной сетевой воды, имеющая температуру 40 - 60 о С, хотя она позволяет покрыть значительную долю нагрузки ГВС, и поэтому имеет место завышенный расход сетевой воды на абонентский ввод.


Двухступенчатая последовательная схема.
Преимуществом последовательной схемы по сравнению с двухступенчатой смешанной является выравнивание суточного графика тепловой нагрузки, лучшее использование теплоносителя, что приводит к уменьшению расхода воды в сети. Возврат сетевой воды с низкой температурой улучшает эффект теплофикации, т.к. для подогрева воды можно использовать отборы пара пониженного давления. Сокращение расхода сетевой воды по этой схеме составляет (на тепловой пункт) 40% по сравнению с параллельной и 25% - по сравнению со смешанной.

1-й этап (первая ступень) - нагрев воды с температуры с 5 до 30-40 °С. Нагрев воды происходит в теплообменнике первой ступени, который подключен к обратному трубопроводу системы теплоснабжения.

2-й этап (вторая ступень) - нагрев воды с температуры 30-40 до 60 - 150 °С. Почему такой большой разбег в температуре? Т.к. температура теплоносителя изменяется (72 - 150 °С) в зависимости от температуры наружного воздуха, таковы особенности теплоснабжения.


Двухступенчатая смешанная схема горячего водоснабжения.
Она получила применение и позволяет также использовать теплоаккумулирующую способность зданий. В отличие от обычной смешанной схемы регулятор расхода устанавливается не перед системой отопления, а на вводе до места отбора сетевой воды на вторую ступень подогревателя. Он поддерживает расход не выше заданного.

Помочь разобраться в схемах!

Нажимая "Отправить", Вы даёте согласие на обработку своих персональных данных в соответстии с Федеральным законом №152-ФЗ "О персональных данных" и принимаете условия.*

Регулировка давления горячей воды

СНиП 2.04.02-84 Минимальный свободный напор в сети водопровода населенного пункта при максимальном хозяйственно-питьевом водопотреблении на вводе в здание над поверхностью земли должен приниматься при одноэтажной застройке не менее 10 м, при большей этажности на каждый этаж следует добавлять 4 м.

Нормой давления ГВС для городской водопроводной сети считается 40-50 метров водного столба. Его увеличение в два раза способно разорвать соединения труб и вывести из строя сантехнику. А серьезное снижение приводит к отсутствию напора.

В случае если давление упадет до 0,1 МПа, Вы не сможете нормально постирать, вымыть посуду в посудомойке, нагреть воду в колонке и просто помыться в душе. При таком низком напоре в сети, вода не поднимается до верхних этажей.

В домах с централизованным водоснабжением, когда напора в городской сети элементарно не хватает на всех из-за устаревшего оборудования в ЦТП или увеличения числа потребителей в результате массовой застройки, выручить жильцов многоквартирных домов могут насосы повышения давления.

Получить бесплатную консультацию инженера!

Нажимая "Отправить", Вы даёте согласие на обработку своих персональных данных в соответстии с Федеральным законом №152-ФЗ "О персональных данных" и принимаете условия.*


Повысительные насосы
для воды применяются, когда уровень давления в системе холодного или горячего водоснабжения недостаточен. Функции выключателя берет на себя датчик давления воды для насоса. При открытии крана или включении он активизирует работу насоса, который стабилизирует напор в сети.

Автоматизация подачи воды, оборудование насосов устройствами плавного пуска и частотно-регулируемыми преобразователями снижает риски порыва труб, бережет насосную технику, позволяет экономить водные и электроресурсы.


Насосная станция снабжена шкафом управления с частотно-регулируемым преобразователем, что обеспечивает интеллектуальное управление станцией с учетом текущего разбора воды.

Частотный привод - устройство, используемое для контроля скорости и/или момента двигателей переменного тока путем изменения частоты и напряжения питания электродвигателя. Частотник регулирует производительность насоса, поддерживая давление в системе водоснабжения на заданном значении.

Ещё одним способом регулирования давления воды в ЖКХ является автоматизированная система с электроклапаном, т.е. изменение входного сечения труб с помощью открытия/закрытия запорной арматуры.


Для стабилизации напора воды в бытовых трубопроводах используется регулятор типа «после себя». Устройство стабилизирует давление в системе водоснабжения так же, как и РДВ, но работает совершенно по-другому.

Основной функцией, которую выполняют ограничители водяного давления, является стабилизация напора в системе и поддержание его на заданном уровне, предохраняя магистраль и приборы потребления от высоких нагрузок и гидроударов. РДВ представляет собой предохранительный механизм в металлическом корпусе с входным и выходным резьбовым соединением. Устройство может снабжаться манометром и регулировочным винтом для настройки силы напора воды.

Заказать бесплатное обследование специалистом!

Нажимая "Отправить", Вы даёте согласие на обработку своих персональных данных в соответстии с Федеральным законом №152-ФЗ "О персональных данных" и принимаете условия.*

Какие задачи решает автоматика ГВС?

Обеспечивать работу тепловых пунктов без постоянного присутствия персонала в ИТП.

Поддержание заданной температуры горячей воды

Ограничение максимального расхода воды из тепловой сети

Поддержание требуемого перепада давлений

Поддержания статического давления

Защита системы ГВС от завышения температуры воды

Поддержание заданного давления воды в системе ГВС

Контроль работы повысительных насосов

Режим включения или выключения резервного насоса при отключении рабочего

Алгоритм подачи воды в бак-аккумулятор

Наши работы:




Проектирование системы автоматической регулировки

температуры и давления ГВС.

Компания «Аудит-ТеплоКонтроль» специализируется на разработке и согласовании проектов автоматических систем регулирования, потребления теплоносителя в ресурсоснабжающих организациях для следующих потребителей:

Многоквартирных жилых домов (ТСЖ, МКД, ТСН, УК)

Офисных центров

Промышленных предприятий, заводов

Зданий бюджетной сферы (школ, детских садов, гимназии)

В чём особенность ЖКХ: Проектно-техническую документацию необходимо согласовывать с множеством организаций.

В каждой сфере есть свои особенности. Наши клиенты считают нас классными специалистами в сфере ЖКХ. В подтверждение этого их добрые отзывы.

Узнайте стоимость проекта!

  • для автоматического регулирования температуры вторичного теплоносителя (горячей воды) в закрытых системах горячего водоснабжения путем изменения расхода первичного теплоносителя — терморегулятор для системы отопления;
  • для автоматического изменения температуры горячей воды в необходимое время в соответствии с функциональными возможностями устройства управления;
  • для комплектования оборудования центральных и индивидуальных тепловых пунктов (ЦТП, ИТП);
  • для применения в системах отопления с насосным смешением, в системах вентиляции и кондиционирования воздуха и других технологических установках.

Состав

  • Устройство управления « », выполненное на базе однокристальной микро-ЭВМ.
  • Клапан проходной типа КП.
  • Датчик температуры теплоносителя.

Термомайзеры изготавливаются в 8 исполнениях (см. в таблице).

Обозначение исполнения термомайзера Ду присоединения клапана, мм Условная пропускная способность, м3/ч Масса, кг Примечание
Р-2.Т-25-2,5 25 2,5 17,5
Р-2.Т-25-4,0 25 4,0 17,5
Р-2.Т-25-6,0 25 6,0 17,5
Р-2.Т-50-10,0 50 10,0 23,0
Р-2.Т-50-16,0 50 16,0 23,0
Р-2.Т-50-25,0 50 25,0 23,0
Р-2.Т-80-56,0 80 56,0 52,0 спецзаказ
Р-2.Т-80-71,0 80 71,0 52,0 спецзаказ

Условия эксплуатации

  • Окружающая среда – воздух;
  • Температура окружающей среды от +5˚С до +45˚С;
  • Относительная влажность воздуха до 85% при температуре +25˚С;
  • Атмосферное давление от 84,0 до 106,6 кПа;
  • Температура теплоносителя в питающей среде до +150˚С;
  • Перепад давления теплоносителя в сетевом и обратном трубопроводах 0,15-0,3 МПа;
  • Напряжение питания или напряжение управляющих импульсов от 187 до 242 В частоты (501) Гц.

Могут применяться в различных случаях: промышленные системы отопления и т.д.

Автоматический регулятор температуры ГВС. Применение термомайзеров в системах горячего водоснабжения

Терморегуляторы для отопления. Применение термомайзеров в системах отопления

Отопление здания, промышленные системы отопления. Режим работы, при котором автоматический регулятор температуры отопления обеспечивают контроль и ограничение температуры теплоносителя в здании. Типовая схема включения регулятора температуры отопления в систему отопления изображена на рисунке.

— датчик температуры теплоносителя в подающем трубопроводе;
— датчик температуры теплоносителя в обратном трубопроводе;
— датчик температуры наружного воздуха.
Отопление комнаты. Режим, при котором устройство обеспечивает контроль температуры воздуха в отдельной комнате, например, где установлено оборудование, требующее для своей работы поддержания постоянной температуры. Типовая схема, где терморегулятор для радиатора отопления включен в систему отопления изображена на рисунке.
В данном режиме используется три температурных датчика:
— датчик температуры теплоносителя в подающем трубопроводе (опционально);
— датчик температуры воздуха в первой точке;
— датчик температуры воздуха во второй точке.

Устройство и работа термомайзера

Термомайзер (терморегуляторы отопления и водоснабжения, терморегулятор для системы отопления) выполнен на базе проходных клапанов типа КП (в дальнейшем – клапан); регулятор температуры — устройство управления типа «Теплур» осуществляет управление клапанами. Регулирование температуры вторичного теплоносителя (воды, воздуха) осуществляется изменением количества первичного теплоносителя, поступающего в теплообменник или смесительное устройство, путем регулирования сечения проточной части клапана. Невысока на такой регулятор температуры цена .

При отклонении текущей температуры вторичного теплоносителя от заданной или расчетной, устройство управления подает в электромоторный привод клапана – механизм электрический исполнительный – управляющие импульсы, в результате чего происходит перемещение регулирующего органа в необходимом направлении до получения требуемого параметра теплоносителя. В регуляторах для систем горячего водоснабжения устанавливается один датчик температуры горячей воды. Количество датчиков температуры для других случаев применения регуляторов определяется по согласованию с заказчиком. Промышленные системы отопления уже многих наших клиентов работают с применением термомайзер Р 2 Т .

Устройство и работа клапана проходного типа КП

В основе работы лежит принцип управления потоком рабочей среды путем регулирования сечения проточной части. Регулирование температуры вторичного теплоносителя (воды, воздуха) осуществляется изменением количества первичного теплоносителя, поступающего в теплообменник или систему отопления путем регулирования пропускной способности клапана. При отклонении текущей температуры вторичного теплоносителя от заданной или расчетной, устройство управления подает МЭИ клапана управляющие импульсы, в результате чего происходит перемещение регулирующего органа в необходимом направлении до получения требуемого параметра теплоносителя.

Купить регулятор температуры вы можете, просто позвонив нам или оставив заявку на сайте.

Температура горячей воды. Кто и как должен обеспечить температурный режим горячего водоснабжения (ГВС) в наших квартирах? ТРЖ – что это? Как устроен ТРЖ? Попробуем разобраться в обозначенных вопросах.

Как Вам уже известно, что в соответствии с пунктом 2.4 СанПиН 2.1.4.2496-09 изменений к СанПиН 2.1.4.1074-01 «Гигиенические требования к обеспечению безопасности систем горячего водоснабжения», и согласно пункта 9.5.8 «Правил технической эксплуатации тепловых энергоустановок» зарегистрированных Минюстом РФ 02.04.03 за № 4358, температура горячей воды в местах водоразбора должна быть в пределах не ниже 60°С и не выше 75°С.

А почему именно такая температура? Да все очень просто, здесь соблюден компромисс между потребителями и «производителями» горячей воды.

С одной стороны потребителям выгоднее иметь более горячую воду, чтобы счетчик учитывал, как можно меньше кубических метров дорогой горячей воды, а разбавить ее холодной мы всегда сможем. В тоже время мы пользуемся водой (подставляем руки под горячую воду) с температурой 40-50°С, и чем выше температура горячей воды, тем больше шансов ошпарить свое любимое тело, и не дай Бог, если это маленькие дети. Пластиковые трубы, водомеры, смесители также рассчитаны на рабочую температуру 75-85°С.

С другой стороны энергетикам и поставщикам ГВС выгоднее производить менее горячую воду, т.к. потребители ее будут использовать в большем количестве и соответственно количество кубических метров в показаниях счетчиков будет больше, а значит и энергетики получат больше денег. Менее горячую воду к тому же дешевле и быстрее нагреть, меньше нагрузка на оборудование и сети, меньше теплопотери в сетях.

А если в отопительный период вода в сети 100°С и больше, без снижения температуры в ГВС нас могут серьезно ошпарить, т.к. это уже температура парообразования. Даже в радиаторы запрещено подавать теплоноситель свыше 95°С, т.к. в случае любой незначительной аварии из-за резкого падения давления теплоносителя будет происходить интенсивное парообразование, людей заживо сварит, а теперь представьте, что из вашего смесителя пошел пар. А вот здесь, чтобы обеспечить нормативную температуру горячей воды, обязаны поработать управляющие компании , обслуживающие организации и местный сантехник . С технической точки зрения с этой проблемой успешно справляются регуляторы температуры (ТРЖ – терморегулятор жидкости), которые должны быть установлены на каждую систему ГВС от ТЭЦ, т.е. в наших с вами домах.

Приведем пример наиболее часто применяемых (в нашем случае и более дешевых) ТРЖ в российском ЖКХ.

Наиболее применяемый в ЖКХ регулятор температуры это ТРЖ сильфонного типа (см.эскиз):

  1. Сварной стальной корпус
  2. Сильфон (внутри заполнен легко испаряемым веществом), имеет вид цилиндрической металлической «гармошки».
  3. Крышка корпуса.
  4. Шток для регулировки температуры.
  5. Сальниковое уплотнение штока.

Принцип работы очень простой: сетевая горячая вода поступает в ТРЖ сверху через гильзу с отверстиями, вода, остывшая после отдачи тепла в батареях, поступает справа, внутри ТРЖ они смешиваются и из левого патрубка вода уходит к потребителю в квартиры. Если вода очень горячая сильфон удлиняется, отверстия гильзы перекрываются и уменьшается подача сетевой воды, если вода остыла, сильфон сжимается и горячей сетевой воды поступает больше. Все происходит в автоматическом режиме. ТРЖ можно отрегулировать вручную на подачу воды от 30 до 90°С. Поворотом штока по часовой стрелке мы поднимаем сильфон вверх и тем самым уменьшаем поступление горячей сетевой воды, против часовой - опускаем сильфон и вода на выходе будет горячее.

Пример регуляторов температуры сильфонного типа: - ТРТС-50-ОС , - РТЕ-21М.

Для примера, наиболее применяемая и доступная модель ТРЖ-М-1. Принцип действия и регулировки аналогичен выше указанному прибору, но в отличие от него в ТРЖ-М-1 вместо сильфона установлен термостат, подобный автомобильному.

У данной модели есть преимущества и недостатки по сравнению с сильфонным ТРЖ.

Преимущества: в случае выхода из строя термочувствительного клапана, можно заменить только датчик.

Недостатки :

  1. Датчик регулирует температуру воды в диапазоне 15°С (45-55; 55-65; 75-85…), для каждого режима требуется свой датчик.
  2. В летний период когда вода подается только по одному трубопроводу и температура воды превышает на 20°С верхнюю градацию установленного датчика, его нужно извлечь из корпуса ТРЖ, иначе он выйдет из строя и потребует замены.

Если у слесаря – сантехника на обслуживании 30-60 систем ГВС, это очень хлопотно.

Внешний вид термостата и датчиков устанавливаемых внутри корпуса ТРЖ-М-1 (как в двигателе автомашины).

2. В настоящее время на рынке активно продвигаются регуляторы температуры РТВЖ «КОРАЛ»

Пример: РТВЖ исполнение-2, Ру16, но это совершенно другая ценовая ниша ≈ в 3÷5 раз дороже вышеназванных ТРЖ, хотя принцип работы такой же. В целом рынок предлагает множество моделей ТРЖ, но к сожалению другие модели, особенно импортные, очень дорогие и их применение рядовым собственникам жилья и муниципальным учреждениям просто не по карману.

Д.т.н. П.В. Ротов, заместитель главного инженера;
А.А. Сивухин, начальник ПТО, МУП «Городской теплосервис»;
д.т.н. В.И. Шарапов, профессор, заведующий кафедрой «Теплогазоснабжение и вентиляция», ФГБОУ ВПО «Ульяновский государственный технический университет», г. Ульяновск

Автоматическое регулирование нагрузки системы ГВС

Потребление горячей воды в жилых и общественных зданиях характеризуется значительной неравномерностью как в течение суток, так и в отдельные дни недели. Мгновенный расход потребляемой воды является случайной величиной. При этом, в разные дни недели, в одно и то же время при прочих равных условиях, вероятность потребления аналогичного количества воды мала. В рабочие дни наибольшее потребление воды наблюдается в вечерние часы, в выходные дни - с утра. Кроме того, на неравномерность потребления могут оказывать влияние климатические условия, периоды массовых отпусков и школьные каникулы, даже телевизионные передачи.

Для компенсации тепловых потерь в трубопроводах системы ГВС предусматривают циркуляцию. Но, поскольку данные по тепловым потерям во внутридомовых системах ГВС зачастую отсутствуют, то для их определения используют долевую часть от расхода воды, а именно 10% от расчетного расхода воды, определенного для неотопительного периода . В потери теплоты трубопроводами систем ГВС учитываются прибавлением доли среднего за отопительный период расхода воды в системах ГВС с учетом коэффициента, учитывающего потери теплоты трубопроводами в зависимости от конструктивных особенностей и наличия изоляции, который изменяется в пределах от 0,15 до 0,35.

Проведенное обследование систем ГВС жилых домов показало, что реальное значение циркуляционного расхода в трубопроводах систем ГВС существенно превышает расчетные значения и составляет 40-90% от расхода в подающем трубопроводе и 70-500% от расхода воды на ГВС. При этом расход воды в циркуляционном трубопроводе зависит от режима потребления горячей воды. Установка на циркуляционных трубопроводах жилых домов дроссельных шайб с постоянным отверстием не позволяет в полной мере учесть режим работы систем ГВС. Повышенный циркуляционный расход способствует росту температуры воды в циркуляционном трубопроводе относительно температуры воды в обратном трубопроводе тепловой сети более чем на 10 О С, что, в свою очередь, влияет на экономичность работы источника теплоснабжения.

Повысить эффективность работы системы ГВС возможно путем автоматического регулирования расхода воды в циркуляционном трубопроводе с учетом неравномерности режима потребления горячей воды. Одна из таких технологий, разработанная в научно-исследовательской лаборатории «Теплоэнергетические системы и установки» (НИЛ «ТЭСУ») УлГТУ, реализована в 2014 г. на ЦТП Ульяновского МУП «Городской теплосервис» . На рис. 1 показана принципиальная схема ЦТП с установленным оборудованием. Регулирование расхода воды в циркуляционном трубопроводе осуществляется запорно-регулирующим клапаном (регулятором температуры) 11, установленном на циркуляционном трубопроводе. Управление запорно-регулирующим клапаном осуществляется программируемым логическим контроллером по импульсу от датчика температуры 12. В период водоразбора тепловые потери в системе ГВС компенсируются за счет слива воды, поэтому можно снизить расход воды в циркуляционном трубопроводе. При отсутствии водоразбора расход воды в циркуляционном трубопроводе поддерживается в зависимости от определенного перепада температур в подающем и обратном трубопроводе системы ГВС, тем самым обеспечивая необходимую тепловую нагрузку.

В течение 2014 г. проводился инженерный эксперимент, в результате которого анализировались параметры работы ЦТП при различных режимах настройки регулятора температуры, установленного на циркуляционном трубопроводе. Настройка регулятора температуры по времени суток осуществлялась на основании предварительного анализа работы ЦТП. На рис. 2 представлена диаграмма изменения расхода воды в системе ГВС за 6 дней, из которой следует, что максимальный отбор горячей воды происходит в период с 8:00 до 15:00-16:00. Среднечасовое значение температуры горячей воды за этот же период составило 60,3 О С. Во время минимального разбора горячей воды настройка регулятора температуры производилась на температурный перепад в системе ГВС, равный 10 О С.

В период с 19.06.2014 г. по 06.08.2014 г. анализировались режимы работы ЦТП с различными настройками регулятора температуры на циркуляционном трубопроводе. В I режиме регулятор температуры был настроен на круглосуточном поддержании температуры воды, равной 50 О С, в циркуляционном трубопроводе. Во II режиме настройки регулятора температуры изменялись в течение суток по графику: с 9:00 до 15:00 поддерживалась температура циркуляционной воды, равная 45 О С, в остальное время температура циркуляционной воды поддерживалась равной 50 О С. В III режиме регулирование температуры воды в циркуляционном трубопроводе не производилось.

Среднечасовые значения параметров работы ЦТП в каждом из трех режимов представлены в табл. 1. Экономия тепловой энергии на ЦТП определялась для I и II режимов в сравнении с III режимом, когда не производилось регулирование циркуляционного расхода воды.

Таблица 1. Режимные показатели работы ЦТП при регулировании циркуляционного расхода в период с 19.06.2014 г. по 06.08.2014 г.

В результате анализа данных, представленных в табл. 1, установлено, что экономия тепловой энергии на ЦТП в режимах с регулированием циркуляционного расхода горячей воды относительно режима без регулирования составляет 12-14% (0,03 Гкал/ч). При этом в режиме с дифференцированной по времени суток температурой воды в циркуляционном трубопроводе ГВС достигается большая экономия теплоты.

В отопительном периоде с 19.10.2014 г. по 17.11.2014 г. на том же ЦТП проводился анализ режимных параметров в условиях регулирования и отсутствия регулирования температуры циркуляционной воды в системе ГВС. В первом периоде (I режим) настройки регулятора температуры изменялись в течение суток по графику: с 9 до 15 ч поддерживалась температура циркуляционной воды равная 45 О С, в остальное время температура циркуляционной воды поддерживалась равной 50 О С. Во втором периоде (II режим) регулирование температуры воды в циркуляционном трубопроводе не производилось.

Анализ среднечасовых показателей работы ЦТП в отопительном периоде показывает, что в I режиме теплоты потребляется на 20% меньше, чем во II (табл. 2).

Таблица 2. Режимные показатели работы ЦТП при регулировании циркуляционного расхода в период с 19.10.2014 г. по 17.11.2014 г.

На рис. 3-5 показана динамика изменения расхода теплоносителя, температуры воды и теплопотребления в системе ГВС по часам суток при различных режимах работы ЦТП в период с 19.10.2014 г по 17.11.2014 г На приведенных диаграммах четко видно снижение температуры циркуляционной воды, расхода воды и теплопотребления в системе ГВС в период регулирования температуры циркуляционной воды. Снижение теплопотребления приводит к соответствующей экономии топливно-энергетических ресурсов. Равенство температуры воды, подаваемой на ГВС при различных режимах, показывает, что снижение расхода теплоносителя и количества тепловой энергии обусловлено только оптимизацией режима работы системы ГВС за счет регулирования расхода воды в циркуляционном трубопроводе. При этом температура воды в подающем трубопроводе системы ГВС соответствует нормативным требованиям (рис. 3).

С целью оценки инвестиционной привлекательности проведено технико-экономическое обоснование реализованной технологии регулирования нагрузки системы ГВС. На основании анализа режимов работы системы ГВС определена минимальная среднечасовая экономия теплоты 0,03 Гкал/ч (табл. 1). Предполагаемое время работы системы ГВС с регулированием циркуляционного расхода составляет 3600 ч в год. Суммарная экономия теплоты на одном ЦТП за этот период составит 108 Гкал, что при тарифе за тепловую энергию 1500 руб./Гкал равно 162 тыс. руб. Затраты на приобретение оборудования для системы автоматического регулирования составили 74,6 тыс. руб., т.е. технология окупается за половину временного периода работы системы автоматического регулирования, т.е. за 2,5-3 месяца.

Энергосберегающий потенциал разработанной технологии при ее реализации на всех ЦТП системы теплоснабжения Ульяновска составляет более 12 млн руб. в год, что, с учетом небольшого срока окупаемости, является выгодным инвестиционным проектом.

При технико-экономическом обосновании не учитывались снижение затрат электроэнергии на транспорт теплоносителя, снижение тепловых потерь в трубопроводах системы ГВС, возможное увеличение комбинированной выработки электроэнергии на ТЭЦ за счет снижения температуры обратной сетевой воды. С учетом этих составляющих срок окупаемости такой технологии будет еще меньше.

Поквартирные тепловые пункты

Примером энергоэффективных технологий использования теплоты в системах теплопотребления в ряде случаев могут служить поквартирные тепловые пункты (ПТП), которые представляют собой комплекс устройств, преобразующих параметры теплоносителя, перераспределяющих потоки теплоносителя в контурах отопления и ГВС квартиры и управляющих тепловыми нагрузками этих контуров. Применение ПТП в системах водоснабжения и отопления позволяет упростить схему разводящих внутри- домовых сетей теплоснабжения, снизить затраты на эксплуатацию объекта капитального строительства (за счет отсутствия централизованной системы ГВС) . При этом владельцы квартир могут по своему усмотрению устанавливать необходимый экономичный тепловой режим и тем самым определять приемлемую оплату за потребленную тепловую энергию.

Недостатком открытой схемы теплоснабжения (рис. 6) в основном является наличие постоянного круглосуточного расхода циркуляционной воды в системе ГВС, что приводит к сверхнормативным тепловым потерям в системе ГВС и высоким энергетическим затратам на циркуляцию воды в системе ГВС. Типовая открытая система теплоснабжения характеризуется большой металлоемкостью, что приводит к увеличению начальных затрат на ее сооружение.

В НИЛ «ТЭСУ» УлГТУ разработан ряд технологий ГВС на основе ПТП , одна из которых представлена на рис. 7.

Основным принципом работы такой системы теплоснабжения является то, что подготовка горячей воды происходит в непосредственной близости от водоразборных кранов, при этом отсутствуют тепловые потери в трубопроводе подачи ГВС, что позволяет полностью исключить циркуляцию воды в системе ГВС.

Определим экономию от внедрения ПТП в открытой системе теплоснабжения на примере одного стояка системы ГВС в 9-этажном многоквартирном жилом доме. Протяженность циркуляционных трубопроводов принята равной 60 м, диаметр - 20 мм.

Суммарный расход воды на нужды теплоснабжения определяем по формуле:

Gт=Gот+Gвс (1)

где Gот, Gгвс - расходы воды соответственно на отопление и ГВС.

Расход воды на ГВС определяем по формуле:

Gгвс=Gг+Gц, (2)

где G г G u - расходы горячей воды соответственно в водоразборных приборах и в циркуляционном трубопроводе.

Тепловые потери в циркуляционном трубопроводе при этом составят:

Q ц тп =q ц *l ц =632,9 ккал/ч, (3)

где q ц - плотность теплового потока через 1 м циркуляционного трубопровода:

1 ц =60 м - протяженность циркуляционного трубопровода; t ц - температура циркуляционной воды, О С; t нв - температура наружного воздуха, О С; λст- - коэффициент теплопроводности стали, Вт/(м. О С); d вн - внутренний диаметр трубопровода, м; d н - наружный диаметр трубопровода, м; α в - коэффициент теплоотдачи от воды к внутренней стенке трубы, Вт/(м 2 .К); α вн - коэффициент теплоотдачи от наружной стенки трубы к наружному воздуху, Вт/(м 2 .К).

При годовой работе системы ГВС тепловые потери в циркуляционном трубопроводе составят:

где τ гвс год =8160 - количество часов работы системы ГВС в год, ч.

Отсутствие теплопотерь в циркуляционном трубопроводе при использовании ПТП приведет к снижению расхода топлива:

ΔВ=(Q ц тп)/(Q P н *η бр)* τ гвс год =0,8 т у. т. в год, (6)

где Q P н - низшая теплота сгорания топлива, Дж/кг; η бр, - КПД котла.

При стоимости 1 т у.т. равной 3700 руб. экономия с одного стояка внутридомовой системы ГВС составит П тэ =3,0 тыс. руб. в год.

Расход воды на циркуляцию:

Gц= Q ц тп /(c*∆t ц)=63,3 кг/ч, (7)

где с - удельная теплоемкость воды, ккал/(кг О С); ∆t ц - температурный перепад в циркуляционном трубопроводе, О С.

Годовой расход воды в циркуляционном трубопроводе составит:

G ц год =G ц * τ гвс год = 516,5 т/год. (8)

Расход электроэнергии циркуляции горячей воды при этом:

Nэ=γ*H*G ц /η н =2,16 кВт*ч, (9)

где γ - удельный вес перекачиваемой жидкости, Н/м 3 ; Н - напор насоса, м; η н - КПД насоса.

Потребление электроэнергии на привод насоса составит 17,6 кВтч/год, что в денежном эквиваленте при стоимости электроэнергии 4 руб./кВт*ч составит П э =70,4 тыс. руб. в год.

Общая экономия эксплуатационных затрат при использовании в системах ГВС ПТП составит:

Побщ=Пэц+Птэ+Пэ=81,2 тыс. руб. в год. (10)

Кроме того, при отсутствии циркуляционного трубопровода уменьшается и металлоемкость системы ГВС, которая при стоимости трубы Ду 20 - 50 тыс. руб./т приведет к экономии с одного стояка внутридомовой системы ГВС П м =5,0 тыс. руб.

Определим капитальные затраты на внедрение ПТП с учетом дополнительного оборудования, устанавливаемого в них. В качестве основных капитальных затрат принята установка регулятора температуры и регулятора перепада давления. Стоимость этого оборудования в одном ПТП составит около 60 тыс. руб. Капитальные затраты на один стояк внутридомовой системы ГВС в 9-этажном многоквартирном доме составят порядка 540 тыс. руб. .

Срок окупаемости затрат от внедрения способа приготовления ГВС в ПТП составляет порядка 6 лет. Данные результаты основаны на расчетном объеме потребления ГВС.

Проведенное обследование систем ГВС жилых домов показало, что реальное значение циркуляционного расхода существенно превышает расчетные значения. Очевидно, если фактический расход воды в циркуляционном трубопроводе системы ГВС будет превышать расчетный в 3-6 раз, срок окупаемости также пропорционально снизится. Таким образом, реальный срок окупаемости технологии ГВС с использованием ПТП составляет не более одного года.

Выводы

1. В системе теплоснабжения г. Ульяновска на одном из ЦТП реализована технология регулирования нагрузки системы горячего водоснабжения, учитывающая неравномерность потребления горячей воды. Особенностью разработанной и реализованной технологии является регулирование расхода воды в циркуляционном трубопроводе в зависимости от температуры воды после водоразборных точек в системе горячего водоснабжения.

2. Проведен анализ параметров ЦТП при различных режимах работы и определена величина экономии теплоты. В режимах работы ЦТП с регулированием циркуляционного расхода горячей воды относительно режима работы без регулирования теплопотребление ЦТП уменьшается на 12-20%.

3. Выполнен технико-экономический расчет реализованной технологии регулирования нагрузки системы горячего водоснабжения. Расчетная годовая экономия теплоты на одном ЦТП составляет 162 тыс. руб. Срок окупаемости, определенный с учетом затрат на покупку и монтаж оборудования, составляет менее трех месяцев.

4. Выполнен сравнительный анализ технологий обеспечения тепловой нагрузки в системах горячего водоснабжения с использованием поквартирных тепловых пунктов. Реализация таких технологий позволяет повысить экономичность работы систем горячего водоснабжения за счет снижения тепловых потерь и затрат на транспорт горячей воды в связи с отсутствием циркуляционного расхода.

5. Расчетный срок окупаемости технологии горячего водоснабжения с использованием поквартирных тепловых пунктов составляет около 6 лет. При фактических затратах на циркуляцию воды в существующих системах ГВС срок окупаемости сокращается до 1 года.

Литература

1. . М.: ЦИТП Госстроя СССР, 1988. 50 с.

2. Строительные нормы и правила. СНиП 2.04.07-86*. Тепловые сети. М.: Минстрой России, 1994. 46 с.

3. О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов. Постановление Правительства РФ от 06.05.2011 г. № 354 // Российская газета. 2006. № 116. 01.06.2011.

4. Ротов П.В. Регулирование нагрузки городских теплофикационных систем / П.В. Ротов, В.И. Шарапов. Ульяновск: УлГТУ, 2013. 309 с.

5. Квартирные тепловые пункты в многоквартирных жилых домах. Рекомендации АВОК Р НП «АВОК» 3.2.1-2009. М.: ООО ИИП «АВОК-ПРЕСС». 2009. 46 с.

6. Патент 2549089 Российская Федерация. МПК 7 F 24 D 3/08. Способ работы открытой двухтрубной системы теплоснабжения/ П.В. Ротов, М.Е. Орлов, В.И. Шарапов, А.А. Сивухин; заявитель и патентообладатель УлГТУ № 2013145525/12; заявл. 10.10.13; опубл. 20.04.15, Бюл. № 11. 5 с.

7. Сивухин А.А. Сравнительный анализ технологий обеспечения нагрузки горячего водоснабжения / А.А. Сивухин, П.В. Ротов, В.И. Шарапов // Новые технологии в теплоснабжении и строительстве: сборник работ аспирантов и студентов - сотрудников научно-исследовательской лаборатории «Теплоэнергетические системы и установки». Ульяновск: УлГТУ, 2015, Выпуск. 13. С. 373-379.

Loading...Loading...