Понятие оптимизации тепловых и гидравлических режимов работы тепловых сетей. Снижение потерь энергии и ресурсов в связи с оптимизацией работы тепловых сетей. Основные источники потерь в тепловых системах и способы их устранения

Неэффективное теплоснабжение приводит к огромному перерасходу энергетических, материальных и финансовых ресурсов. Эффективность функционирования систем централизованного теплоснабжения во многом зависит от режимов работы тепловых сетей и систем теплопотребления. Поэтому задача оптимизации режимов, проведения наладки и регулирования тепловых и гидравлических режимов в сложных системах средних и крупных городов является весьма актуальной.

Оптимизация режимов работы тепловых сетей относится к организационно-техническим мероприятиям, не требующих значительных финансовых затрат на внедрение, но приводящая к значительному экономическому результату и снижению затрат на топливно-энергетические ресурсы.

В работе по управлению и наладке режимов работы тепловых сетей задействованы практически все структурные подразделения «Тепловых сетей». Они разрабатывают оптимальные тепло-гидравлические режимы и мероприятия по их организации, анализируют фактические режимы, выполняют разработанные мероприятия и наладку САР, а также оперативно управляют режимами, контролируют потребление тепловой энергии и др.

Разработка режимов (в отопительный и межотопительный периоды) проводится ежегодно с учетом анализа режимов работы тепловых сетей в предыдущие периоды, уточнения характеристик по тепловым сетям и системам теплопотребления, ожидаемого присоединения новых нагрузок, планов капитального ремонта, реконструкции и технического перевооружения. С использованием данной информации осуществляются теплогидравлические расчеты с составлением перечня наладочных мероприятий, в том числе с расчетом дроссельных устройств для каждого теплового пункта.

Разработка режимов работы тепловых сетей в течение последних лет ведется при помощи программных обеспечений.

Основным критерием оптимизационной задачи при разработке режимов и перераспределения тепловых нагрузок является снижение затрат на производство и транспорт тепловой энергии (загрузка наиболее экономичных тепловых источников) при имеющихся технологических ограничениях (располагаемые мощности и характеристика оборудования тепловых источников, пропускная способность тепловых сетей и характеристики оборудования перекачивающих насосных станций, допустимые рабочие параметры систем теплопотребления и т.д.).

Основной задачей регулирования отпуска теплоты в системах теплоснабжения является поддержание комфортной температуры и влажности воздуха в отапливаемых помещениях при изменяющихся на протяжении всего отопительного периода внешних климатических условиях и постоянной температуре воды, поступающей в систему горячего водоснабжения при переменном в течение суток расходе. Выполнение этого условия является одним из критериев оценки эффективности системы.


Способы регулирования

Оптимизация теплогидравличесих режимов и эффективность работы СЦТ во многом зависит от применяемого метода регулирования тепловой нагрузки.

Основные способы регулирования могут быть определены из анализа совместного решения уравнений теплового баланса нагревательных приборов по общеизвестным формулам и зависит от:

Температуры теплоносителя;

Расхода теплоносителя;

Коэффициента теплопередачи;

Площади поверхности теплообмена. Централизованное регулирование от тепловых источников возможно осуществлять путем изменения двух величин: температуры и расхода теплоносителя. В целом регулирование отпуска тепловой энергии может осуществляться тремя способами:

1) качественным - заключающимся в регулировании отпуска тепловой энергии путем изменения температуры теплоносителя на входе в прибор при сохранении постоянным количества расхода теплоносителя, подаваемого в регулируемую установку;

2) количественным, заключающимся в регулировании отпуска теплоты путем изменения расхода теплоносителя при постоянной температуре на входе в регулируемую установку;

3) качественно-количественным, заключающимся в регулировании отпуска теплоты путем одновременного изменения расхода и температуры теплоносителя.

Для поддержания комфортных условий внутри зданий регулирование должно быть минимум двухуровневым: централизованное (на источниках тепла) и местное (на тепловых пунктах).

Широко используемый в практике график качественного регулирования отопительной нагрузки показывает зависимость температур теплоносителя в подающем и обратном трубопроводах в зависимости от температуры наружного воздуха. Расчет графика производится по общеизвестным формулам, которые выводятся из уравнения баланса нагревательного прибора при расчетных и других температурных условиях.

В действительности все теплообменные процессы, происходящие в элементах системы теплоснабжения, нестационарные, и эта особенность должна быть учтена при анализе и регулировании тепловой нагрузки. Однако на практике эта особенность не учитывается и проектные графики используются при эксплуатации и оперативном управлении.

Тепловой режим зданий

Тепловой режим зданий формируется как результат совокупного влияния непрерывно изменяющихся внешних (изменения температуры наружного воздуха, скорости и направления ветра, интенсивности солнечной радиации, влажности воздуха) и внутренних (изменение подачи тепла от системы отопления, выделение тепла при приготовлении пищи, работа электроосветительных приборов, действие солнечной радиации сквозь остекление, тепло, выделяемое людьми) возмущающих воздействий.

Основным параметром, определяющим качество теплоснабжения потребителя и создания комфортных условий, является поддержание температуры воздуха внутри помещений в пределах допустимых отклонений ± (К2) °С.

Особенности оперативного регулирования тепловых режимов

Оперативное регулирование приводит к:

1) уменьшению вероятности повреждений трубопроводов и повышение надежности;

2) повышению экономичности:

При производстве энергии за счет разности приростов расхода топлива на выработку энергии на ТЭЦ при разных температурах теплоносителя;

При транспорте и распределении тепловой энергии за счет разности прироста тепловых потерь трубопроводами при разных температурах теплоносителя;

3) снижению количества пусков-остановов основного теплогенерирующего оборудования, что также повышает надежность и экономичность.

2. Классификация СО по типу передачи тепла от нагревательного прибора воздуху.

Передача тепла от от.прибора воздуху осущ-ся след. способами:
1.Конвекцией- распространением воздуха.
2. Электромагнитными волнами - излучением.

Первый способ используют конвекционные отопительные системы. В этом случае тепловая энергия согретого воздуха распространяется в пространство постепенной передачей энергии (тепла).

Необходимым условием такого распространения тепла является вещественная среда, так как передача энергии (тепла) происходит при непосредственном соприкасании молекулы вещества с более высокой температурой с молекулой более низкой температуры. Человек в отапливаемом пространстве становится составной частью системы и ощущает тепло как непосредственную тепловую энергию окружающего воздуха и предметов, с которыми соприкасается. Таким образом, для конвекционно отапливаемого пространства температура воздуха (tv), согретого конвекторами, выше или равняется температуре окружающих предметов (tp), которые должны быть согреты этим воздухом.

Энергия электромагнитного излучения трансформируется в тепло после попадания излучения на поверхность предметов, которые данную энергию поглощают. Если мы нагреваем тело, оно начинает излучать электромагнитные волны (энергию) в окружающее пространство. Если данная энергия поглощается другим телом, это приводит к его нагреванию, что и используется при лучистом отоплении, В этом случае лучистые отопительные устройства, которые размещают на определенной высоте над полом, излучают электромагнитные волны, которые поглощаются полом, вследствие чего повышается температура пола и предметов, на которые попадает излучение. Согретый таким образом пол нагревает воздух.

Приведенные свойства можно отобразить следующим образом:
1. Передача тепла конвекцией: tv > tp.
Передача тепла: конвекционное тело - согревание воздуха - согревание человека.
2. Передача тепла излучением: tv < tp.
Излучающее устройство: согревание предметов и человека - согревание воздуха.

Тепловые характеристики типичных зданий при температуре наружного воздуха -6С.
1. С лучевым отоплением:
температура внутренних стен - 23-25 град,
температура наружных стен - 21 -22 град,
температура воздуха в помещении 21 град.
Ощущение людей: свежо и тепло - комфортно.
2. Панельный дом с конвекторным отоплением:

температура внутренних стен - 20 -21 град,
температура наружных стен - 18 -19 град (местами видна плесень),
температура воздуха в помещении - 24 град.
Ощущение людей: «душно и холодно» - дискомфорт.

3. Виды ремонтов и их планирование

Виды ремонтов и их планирование

Основными видами ремонтов установок и сетей являются капитальный и текущий.

При капитальном ремонте должны быть восстановлены исправность и полный или близкий к полному ресурс с заменой или восстановлением любых частей, включая базовые.

При текущем ремонте должна быть восстановлена работоспособность, заменены и (или) восстановлены отдельные части (кроме базовых).

При типовом капитальном ремонте, например, котельных агрегатов выполняются следующие работы:

Полный наружный осмотр котла и его трубопроводов при полном давлении;

Полный внутренний осмотр котла после его остановки и расхолаживания;

Проверка наружных диаметров труб всех поверхностей нагрева с заменой дефектных;

Промывка труб пароперегревателя, регуляторов перегрева, пробоотборников, холодильников и т.д.;

Проверка состояния и ремонт (или замена) арматуры котла и главных паропроводов;

Проверка и ремонт механизмов топок (питатель, цепная решетка, мельницы, горелки и т.п.);

Проверка и ремонт обмуровки котла, гарнитуры, устройств для очистки наружных поверхностей нагрева;

Опрессовка воздушного тракта и воздухоподогревателя, ремонт воздухоподогревателя;

Опрессовка газового тракта и его уплотнение;

Проверка состояния и ремонт тягодутьевых устройств и их осевых направляющих аппаратов;

Проверка и ремонт золоуловителей и устройств для удаления золы;

Наружная и внутренняя очистки поверхностей нагрева барабанов и коллекторов;

Проверка и ремонт системы шлакоудаления;

Проверка состояния и ремонт тепловой изоляции горячих поверхностей котла.

Капитальный ремонт котлов производят раз в 1-2 года, а капремонт тепловых сетей, работающих без перерыва, - раз в 2-3 года. Как правило, одновременно с капремонтом котла ремонтируется его вспомогательное оборудование, средства измерения и система автоматического регулирования. Продолжительность капитального ремонта – 30 – 40 суток.

При текущем ремонте оборудования производится его чистка и осмотр, частичная разборка узлов с быстро изнашивающимися деталями и замена деталей, выработавших свой ресурс, ремонт или замена отдельных деталей, устранение дефектов, выявленных в процессе эксплуатации, составление предварительной ведомости дефектов и изготовление заказов или сверка чертежей на запасные детали.

Текущий ремонт котельных агрегатов проводится один раз в 3-4 месяца, а тепловых сетей - не реже 1 раза в год. Продолжительность текущего ремонта составляет в среднем 8-10 суток.

Мелкие дефекты оборудования (парение, пыление, присосы воздуха и т.п.) устраняются без его остановки, если это разрешено правилами техники безопасности.

Система плановых выводов оборудования из работы носит название системы планово-предупредительных ремонтов (ППР) . На предприятиях в целом и в каждом его подразделении должна быть разработана система ППР, состоящая из текущих и капитальных ремонтов, выполняемых в соответствии с графиком, утвержденным главным инженером предприятия.

Кроме плановых ремонтов для ликвидации последствий аварий при эксплуатации оборудования приходится выполнять восстановительные ремонты с целью восстановления оказавшихся поврежденными в результате аварий узлов и

Как показывает анализ, причиной большинства аварий является перегрузка оборудования, нарушение правил эксплуатации и низкое качество плановых ремонтов.

Планирование ремонтов заключатся в разработке перспективных, годовых и месячных планов. Этим занимаются отделы главного энергетика (механика).

При планировании ППР следует предусматривать продолжительность ремонта, рациональное распределение работ, определение численности персонала в цехах и по специальностям. Ремонт теплотехнического оборудования должен быть увязан с ремонтом технологического оборудования и режимами его работы.

Так, например, капремонт котлов следует проводить в летний период, а текущий ремонт - в периоды пониженных нагрузок.

Планирование ремонта должно базироваться на сетевой модели , в состав которой входят сетевые графики для конкретного оборудования, выводимого в ремонт. Сетевой график должен отображать технологический процесс ремонта и содержать информацию о ходе ремонтных работ, что позволяет осуществлять ремонт с наименьшими затратами материалов, труда и времени.

Началом ремонта считается момент выдачи ремонтной бригаде наряда - допуска на производство ремонтных работ и вывод оборудования из эксплуатации (отключение от паропроводов) или резерва, о чем начальником цеха или его за-

местителем делается запись в оперативном журнале.

Контроль за качеством ремонта осуществляется пооперационно, а также путем контроля за качеством основных материалов, узлов и деталей.

По окончании ремонта производятся поузловые и общая окончательная приемки и оценка качества выполненного ремонта.

Поузловая приемка производится по мере готовности и сопровождается предъявлением следующих документов: ведомости объема работ с указанием выполненных работ; формуляров, сертификатов и др. данных о качестве материалов; чертежей по реконструктивным работам (если выполнялись). При этом выполняется тщательный осмотр узла, вращающиеся механизмы опробуются на холостом ходу и под нагрузкой. После этого составляется акт, в котором указывается объем выполненных работ, обнаруженные недостатки, результаты опробования и предварительная оценка работ.

По окончании капремонта проводится предварительная приемка комиссией под председательством главного инженера (энергетика, механика) с участием начальника цеха и руководителя работ от подрядчика. При этом предъявляются документы: ведомость объема работ с отметкой о выполненных работах, графики ремонта, акты сдачи отдельных узлов, заполненные сертификаты и формуляры на материалы, копии удостоверений сварщиков и результаты испытания образцов, чертежи и схемы реконструктивных работ. Производится осмотр оборудования и устанавливаются сроки устранения выявленных дефектов. После устранения дефектов производится пуск оборудования и приемка его под нагрузкой в течение 24 часов.

Окончательная оценка качества ремонтных работ производится после месячной эксплуатации оборудования. Все пусковые послеремонтные работы выполняет оперативный персонал в соответствии с письменным распоряжением начальника цеха или его заместителя. Результаты ремонта заносятся в технический паспорт оборудования.

Сегодня все более, жизненнее перед каждым человеком встает вопрос энергосбережения. Такая острая проблема решается как на государственном уровне, так и на международном, в виде внедрения в жизнь общества механизмов специально созданных, для достижения этой цели, программ. Одной из основных составляющих их него действия является сохранение тепла в жилых, государственных и других типах помещений.

Вопрос тепло сбережения обоснован тремя главными причинами, к которым относят:

  • значительный рост цен на энергоресурсы;
  • уменьшение природных запасов энергетического сырья, из которого вырабатывается тепловая энергия;
  • значительное негативное влияние выбросов от сжигания энергетического сырья на климат и природу.
Поэтому одним из основных технических решений указанных проблем является наружная теплоизоляция конструкций зданий и тепловых магистралей.

Наружная теплоизоляция стен зданий

Главной задачей наружных теплоизоляционных материалов является уменьшение тепловых потерь и влажности в зданиях. Важнейшие приоритетные их особенности – это надежная эффективная защита внешних конструктивных элементов строений и значительное сохранение внутренних площадей их помещений. Грамотный подход к выбору теплоизоляционных материалов позволяет добиться высоких показателей в сохранении тепла, даже при низких затратах.

В современных строительных технологиях центральным техническим и технологическим средством, с помощью которого выполняется теплоизоляция наружных стен, является минеральная вата. Этот материл, изготавливается производителями в виде ватных плит из базальта и кремнезема, которые покрываются водостойким веществом. Основным способом укладки этого теплоизоляционного средства является его монтаж под облицовочную кирпичную кладку, что позволяет создать так называемую вентилируемую прослойку стен.

В строительной индустрии применяют следующие основные способы утепления стен:

  • теплоизоляция при помощи пенополистирола – способ наклейки специального пенопласта или нанесение жидкого пенополиуретана на наружную сторону стен, которые могут быть с вентилируемой прослойкой и без нее;
  • теплоизоляция при помощи создания, так называемого «мокрого» вида стен – этот способ предусматривает монтаж на стену ватных плит, на которые наклеивается специальная армирующая сетка, и дальнейшее покрытие их шпаклевочным материалом;
  • наружная теплоизоляция стен дома с вентилирующей прослойкой, при которой используется, для предотвращения возможности появления разрушающего стены конденсата, пароизоляционный материал и ватные плиты, с последующей их обработкой фасадным материалом, через деревянную обрешетку.

Теплоизоляция тепловых магистралей

Не оспоримым является тот факт что, какие бы способы не использовались для утепления конструкций здания, но без теплоизоляции тепловых устройств, механизмов и трубопроводов вопрос сбережения тепла будет считаться пустым звуком. Особенно важным техническим решением такой проблемы, как снижение тепловых потерь является наружная теплоизоляция трубопроводов.

На сегодняшний день, одной из самых передовых технологий при утеплении трубных магистралей является создание специальной теплоизоляционной скорлупы из пенополистирола. Диаметр и толщина такого изоляционного материала изготавливаются производителями исходя из существующих размеров труб и по индивидуальному заказу.

Эффективность в снижении тепловых потерь при использовании в качестве утеплителя для труб изоляционной скорлупы достигается особенными его характеристиками:

  • высокая степень водонепроницаемости;
  • устойчивость к разным видам процессов гниения (грибки, плесень).

Специфика теплоснабжения
Важность решения проблем теплоснабжения определяется несколькими факторами.

Затраты топлива на теплоснабжение колоссальны. Только на перекачку сетевой воды в системах централизованного теплоснабжения необходимо около 50 млрд кВт. ч электроэнергии в год; а с учетом расхода электроэнергии на тепловых пунктах и на прямой электрообогрев, расхода природного газа и жидких углеводородов на местный обогрев жилищ, затраты органического топлива на теплоснабжение составляют более 40% от всего используемого в стране, т.е. почти столько же, сколько тратится на все остальные отрасли промышленности, транспорт и т.д. вместе взятые. Потребление топлива теплоснабжением сопоставимо со всем топливным экспортом страны.
Наибольшие резервы экономии энергоресурсов также сосредоточены в процессе обеспечения теплом. Экономию электрической энергии можно достичь в основном за счет улучшения энергоустановок (источники электроэнергии, транспорт, энергоиспользующие установки у потребителя), а экономию тепловой энергии можно достичь не только за счет совершенствования источников тепла, тепловых сетей, теплопотребляющих установок, но и за счет улучшения характеристик отапливаемых объектов (ограждающие конструкции зданий и сооружений, вентиляция, конструкция окон и т.д.).
В электроэнергетике с принятием пакета законов о реформировании, появились условия для развития конкуренции (зависимость цены на рынке электроэнергии от времени, конкуренция источников и т.п.), что создает финансовые стимулы для участников рынка совершенствовать свои энергетические процессы для снижения издержек. А федеральный закон «О теплоснабжении» до сих пор не принят, и даже с его введением возможности по созданию системы конкуренции будут сильно ограничены. Соответственно, там, где нет рыночных отношений трудно создать систему стимулов к энергосбережению.
Существует тесная связь теплоснабжения с системами топливо- и газоснабжения, а также электроснабжения. Электрическая энергия является замещающим видом энергии для систем централизованного теплоснабжения (ЦТ). Нарушения в системах ЦТ критичны для систем электроснабжения, при сильных похолоданиях потребности в тепле гораздо больше, чем в электроэнергии, и при нарушении режимов обеспечения теплом электрическая энергия используется самым нерациональным способом - на обогрев помещений. Также тепловая нагрузка систем ЦТ является основой для теплофикации, т.е. использования тепловых отходов процесса производства электроэнергии для целей теплоснабжения.
Что касается систем централизованного теплоснабжения, то далеко не у всех есть понимание огромных преимуществ ЦТ в плане экономии энергоресурсов, их надо разъяснять. Агрессивная реклама индивидуальных источников тепла, предлагаемых к внедрению в зоне действия систем ЦТ со ссылкой на зарубежный опыт, вводит потребителей в заблуждение. На Западе как раз принимаются программы поддержки развития систем централизованного теплоснабжения как основы когенерации. В отличие от нашей страны, где исторически развивается преимущественно ЦТ, основной из проблем там является трудность прокладки тепловых сетей в стесненных городских условиях и переориентация потребителей с автономного на централизованное теплоснабжение.



Фактические нагрузки и потери
По результатам энергетических обследований, расчетные и договорные присоединенные тепловые нагрузки существенно отличаются от фактических обычно в сторону превышения. Завышение нагрузок, при недостаточной оснащенности потребителей приборами учета и расчетах по приборам учета на источниках, дает возможность теплоснабжающим организациям занижать сверхнормативные потери в сетях и, соответственно, завышать объемы реализованной тепловой энергии.
Расчетные нагрузки являются основными исходными данными для разработки нормативных энергетических характеристик. При их отличии от фактических получаются расчетные режимные характеристики, недостижимые в реальности. Отсутствие достоверных нормативов не позволяет проводить полноценный анализ энергоэффективности сетей.
Фактические нагрузки также важны для определения резервов системы теплоснабжения.
Отпуск теплоты с источников = Потребление + Фактические потери в сетях
Для сведения баланса надо знать хотя бы две составляющие. При отсутствии 100% оснащенности приборами учета в большинстве случаев проще определиться с отпуском теплоты с источников и фактическими потерями в сетях. Отпуск, при условии проверки достоверности, можно определить по приборам учета тепловой энергии на теплоисточниках либо топливному балансу источника при наличии учета топлива. Фактические потери в сетях определяются по методикам, разрешенным к применению при процедуре энергоаудита, т.е. используются архивы имеющихся у потребителей приборов учета (минимум 20% потребителей). При применении этих методик нет необходимости проводить дополнительные измерения и испытания.
Определение фактических нагрузок и потерь должно быть составной частью разработки общего топливно-энергетического баланса муниципального образования.
Фактические потери сетевой воды, по результатам энергетических обследований, как правило, соизмеримы с нормативной утечкой, равной 0,25% объема тепловых сетей в час. В ряде регионов они не превышают нормативные. Так, в Москве фактические потери сетевой воды и, соответственно, потери тепловой энергии с ними в 2-3 раза ниже нормативных. Данный факт характеризует, прежде всего, не только удовлетворительное состояние тепловых сетей, а завышенные нормы, которые не отражают возможности новых технологий. Необходимо на федеральном и региональном уровнях скорректировать нормативы потерь сетевой воды в сторону уменьшения.
Определение потерь тепловой энергии через тепловую изоляцию в соответствии с «Методическими указаниями по определению тепловых потерь в водяных тепловых сетях (РД 34.09.255-97)» практически нигде не проводится. Тем самым нарушаются требования «Правил технической эксплуатации электрических станций и сетей РФ». Причина заключается в трудоемкости и дороговизне испытаний, в необходимости отключения потребителей.
Результаты энергоаудита систем теплоснабжения показывают, что фактические потери в обследованных тепловых сетях превышают нормативные в 1,2-2 раза.
Приведение тепловых потерь к нормативным значениям, помимо экономии тепловой энергии и снижения затрат электроэнергии на ее транспорт, обеспечит высвобождение тепловой мощности. При этом может исчезнуть необходимость строительства новых источников тепла. Таким образом, при оценке экономической эффективности перекладки участков тепловых сетей должны учитываться не только сэкономленное тепло, но и капитальные затраты на строительство новых источников.
Необходимо признать факт наличия сверхнормативных тепловых потерь, который становится все более очевидным при тенденции увеличения доли потребителей, оснащенных приборами учета.
В практику теплоснабжающих организаций необходимо ввести анализ состояния тепловых сетей не только по показателю отношения потерь тепловой энергии к отпуску, но и по показателю отношения фактических потерь к нормативным. Применяемый в настоящее время для анализа первый показатель некорректен, т.к. он характеризует не только состояние тепловой сети, но и ее конфигурацию и нормы проектирования тепловой изоляции.

Методы снижения потерь в тепловых сетях
Основными методами являются уменьшения потерь энергии:



периодическая диагностика и мониторинг состояния тепловых сетей;
осушение каналов;
замена ветхих и наиболее часто повреждаемых участков тепловых сетей (прежде всего, подвергаемых затоплениям) на основании результатов инженерной диагностики, с использованием современных теплоизоляционных конструкций;
прочистка дренажей;
восстановление (нанесение) антикоррозионного, тепло- и гидроизоляционного покрытий в доступных местах;
обеспечение качественной водоподготовки подпиточной воды;
организация электрохимзащиты трубопроводов;
восстановление гидроизоляции стыков плит перекрытий;
вентиляция каналов и камер;
установка сильфонных компенсаторов;
применение улучшенных трубных сталей и неметаллических трубопроводов;
организация определения в режиме реального времени фактических потерь тепловой энергии в магистральных тепловых сетях по данным приборов учета тепловой энергии на тепловой станции и у потребителей с целью оперативного принятия решений по устранению причин возникновения повышенных потерь;
усиление надзора при проведении аварийно-восстановительных работ со стороны административно-технических инспекций;
перевод потребителей с теплоснабжения от центральных на индивидуальные тепловые пункты.

Должны быть созданы стимулы и критерии для персонала. Сегодняшняя задача аварийной службы: приехать, раскопать, залатать, засыпать, уехать. Введение только одного критерия оценки деятельности - отсутствие повторных разрытий, сразу кардинально изменяет ситуацию (разрывы происходят в местах наиболее опасного сочетания коррозионных факторов и к замененным локальным участкам теплосети должны предъявляться повышенные требования в части защиты от коррозии). Сразу появится диагностическая аппаратура, появится понимание, что если эта теплотрасса затоплена, надо ее осушить, а если труба гнилая, то аварийная служба первая будет доказывать, что участок сети надо менять.
Можно создать систему, при которой тепловая сеть, на которой произошел разрыв, будет считаться как бы «больной» и поступать на лечение в службу ремонта, как в больницу. После «лечения» она будет возвращаться в эксплуатационную службу с восстановленным ресурсом.
Очень важны экономические стимулы и для эксплуатационного персонала. 10-20% экономии от снижения потерь с утечками (при соблюдении нормы жесткости сетевой воды) выплачиваемые персоналу срабатывает лучше всяких внешних инвестиций. Одновременно из-за уменьшения числа подтопленных участков снижаются потери через изоляцию и увеличивается срок службы сетей.
Потери тепла в тепловых сетях не должны превышать 5–7 %, как это происходит в странах Европы. Однако наши тепловые сети значительно уступают зарубежным. В настоящее время в большинстве тепловых сетей в странах СНГ технологический расход тепловой энергии на ее транспортировку достигает 30 % от передаваемой тепловой энергии. Эта величина зависит от состояния теплосетей и, в первую очередь, от состояния тепловой изоляции.
Необходимо кардинально улучшить качество замены тепловых сетей за счет:

предварительного обследования перекладываемого участка с целью определения причин невыдерживания нормативного срока службы и подготовки качественного технического задания на проектирование;
обязательной разработки проектов капитального ремонта с обоснованием прогнозируемого срока службы;
независимой приборной проверки качества прокладки тепловых сетей;
введения персональной ответственности должностных лиц за качество прокладки.

Техническая проблема обеспечения нормативного срока службы тепловых сетей была решена еще в 50-е годы XX в. за счет применения толстостенных труб и высокого качества строительных работ, в первую очередь антикоррозийной защиты. Сейчас набор технических средств гораздо шире.
Ранее техническая политика определялась приоритетом уменьшения капитальных вложений. С меньшими затратами требовалось обеспечить максимальный прирост производства, чтобы этот прирост компенсировал в дальнейшем затраты на ремонт. В сегодняшней ситуации такой подход не приемлем. В нормальных экономических условиях собственник не может позволить себе прокладывать сети со сроком службы 10-12 лет, это для него разорительно. Тем более это недопустимо, когда основным плательщиком становится население города. В каждом муниципальном образовании должен осуществляться жесткий контроль за качеством прокладки тепловых сетей.
Должны быть изменены приоритеты в расходовании средств, большая часть которых тратится сегодня на замену участков тепловых сетей, по которым были разрывы труб в процессе эксплуатации или летней опрессовке, на предотвращение образования разрывов путем контроля скорости коррозии труб и принятия мер по ее снижению.
Очевидным способом снижения потерь тепловой энергии при ее передаче по тепловым сетям является замена традиционной для России прокладки трубопроводов в минеральной вате в качестве тепловой изоляции на прокладку в пенополиуретане или в другой тепловой изоляции, не менее эффективной.
Замена сальниковых компенсаторов на сильфонные, устаревшей запорной арматуры – на новые шаровые клапаны и т. д. обеспечивает резкое снижение потерь теплоносителя вследствие его утечки, а значит, и потерь тепловой энергии.
Однако существует менее очевидный, но более дешевый путь снижения энергетических затрат в системах теплоснабжения – оптимизация гидравлических режимов функционирования тепловых сетей. Ликвидация разрегулировки тепловых сетей приносит снижение потерь тепловой энергии и затрат электроэнергии на передачу теплоносителя в системе теплоснабжения в некоторых случаях до 40–50 %. Объясняется это тем, что для «обогрева» потребителей, расположенных дальше остальных от источника теплоснабжения, ближайших потребителей приходится перегревать, увеличивая расход теплоносителя. Кроме того, для осуществления хоть какой-то циркуляции в системах отопления этих отдаленных зданий зачастую прибегают к работе «на слив». Вот почему ликвидация разрегулировки тепловых сетей и нормализация теплоснабжения приносят значительный экономический эффект.
Все затраты на новые трубы, пенополиуретановую изоляцию, сильфонные компенсаторы и шаровые клапаны становятся напрасными без регулирования тепловых сетей, то есть без проведения специальных работ по оптимизации гидравлических режимов. Дело в том, что водонагревательные установки источников теплоснабжения, их тепловые сети и системы теплопотребления, особенно при присоединении их к тепловым сетям по зависимой схеме, представляют собой единую сложную гидравлическую систему, объединенную общим режимом функционирования.
Организация гидравлических режимов функционирования тепловой сети, при которых было бы обеспечено требуемое распределение расхода теплоносителя между всеми потребителями, является одной из важнейших, но сложных задач. Ее необходимо решить, чтобы наладить эффективную работу системы теплоснабжения в целом и каждой системы теплопотребления в отдельности. Для этого нужны совместные усилия всех организаций, эксплуатирующих систему теплоснабжения, поскольку приходится иметь дело, как было сказано, с единой гидравлической системой – водяной тепловой сетью с многочисленными системами теплопотребления, по которым циркулирует теплоноситель – сетевая вода.
Из-за высокой плотности теплоносителя водяные тепловые сети отличаются низкой гидравлической устойчивостью. Вследствие этого они подвержены разрегулировке при любых возмущениях – подключении или отключении потребителей, изменении коммутации тепловой сети, изменении расхода теплоносителя в отдельных системах теплопотребления, например, при работе регуляторов горячего водоснабжения и т. п.
Системы централизованного теплоснабжения с момента создания находятся в непрерывном изменении. Протяженность трубопроводов растет или, наоборот, сокращается из-за отключения части потребителей. Это периодически создает трудности в организации гидравлических режимов тепловых сетей и управлении ими.
Немало тепла «уходит» через стены, полы, потолки, окна и двери зданий и сооружений старой постройки. В старых зданиях из кирпича потери составляют примерно 30 %, а в зданиях из бетонных плит со встроенными радиаторами – до 40 %. Потери тепла в зданиях увеличиваются и из-за неравномерности распределения тепла в помещениях, поэтому желательно проводить выравнивание разности температур (пол – потолок) с помощью потолочных вентиляторов. За счет этого потери тепла можно уменьшить до 30 %. Для сокращения утечек тепла из помещений желательно делать воздушный завес.
Возрастают потери тепла и при избыточном отоплении. Выходом из ситуации является установка снаружи зданий щитов из теплоизоляционного материала (теплошубы), а также замена оконных рам стеклопакетами. Поскольку стеклопакеты имеют несколько воздушных промежутков, их установка позволяет уменьшить потери тепла через окна в два раза. Эти мероприятия называют тепловой реабилитацией. Они позволяют уменьшить потери тепла в старых зданиях до 10–15 %. При постройке новых зданий тепловая реабилитация уже предусмотрена.
Снизить потери тепловой энергии в помещениях помогает и регулирование тепла с учетом ориентации дома по частям света, что у нас пока не делается.
Основным условием нормального функционирования систем теплоснабжения является обеспечение в тепловых сетях, перед тепловыми пунктами потребителей, располагаемого напора, достаточного для возникновения в системах теплопотребления расхода теплоносителя, соответствующего их тепловой потребности. Однако из-за низкой гидравлической устойчивости тепловых сетей при различных возмущениях в них происходит разрегулировка – тем большая, чем ниже их гидравлическая устойчивость.
Существует возможность значительно повысить гидравлическую устойчивость тепловых сетей и систем теплоснабжения.
Анализ функционирования многих тепловых сетей показал, что их гидравлическая устойчивость тем выше, чем меньше потери напора в трубопроводах тепловых сетей и чем больше располагаемый напор перед тепловым пунктом самого отдаленного потребителя.
Для повышения гидравлической устойчивости тепловых сетей необходимо избыточную часть располагаемого напора дросселировать с помощью гидравлических сопротивлений постоянного или переменного сечения – дроссельных диафрагм и сопел элеваторов или регулирующих клапанов средств автоматического регулирования. Эти сопротивления должны быть установлены перед каждой системой теплопотребления или перед отдельными теплообменными аппаратами.
Итак, наладка водяных тепловых сетей базируется на всемерном повышении их гидравлической устойчивости путем повсеместной установки специально рассчитанных дросселирующих устройств – перед каждой из систем теплопотребления независимо от ее тепловой нагрузки. В результате каждая из систем теплопотребления в единой системе централизованного теплоснабжения ставится в одинаковые условия по сравнению с остальными. Все системы теплопотребления становятся гидравлически равноудаленными от источника теплоснабжения.
Регулирование водяных тепловых сетей заключается в распределении расхода теплоносителя между всеми подключенными системами теплопотребления пропорционально их расчетной тепловой нагрузке.
Регулирование тепловой сети сводится к регулировке функционирования отдельных систем теплопотребления путем изменения при необходимости гидравлического сопротивления, установленных дросселирующих устройств.
Критериями правильности регулирования тепловых сетей являются следующие показатели:
- установление расчетного расхода теплоносителя в тепловой сети и в каждой из систем теплопотребления;
- соблюдение необходимого температурного перепада в каждой из систем теплопотребления;
- поддержание в отапливаемых зданиях расчетной температуры воздуха.
Регулированию тепловой сети обязательно должны предшествовать тщательное обследование системы теплоснабжения и разработка оптимальных для конкретной тепловой сети эксплуатационных режимов. На основании этого должны быть разработаны и осуществлены в полном объеме наладочные (оптимизационные) мероприятия.
Попытки регулирования тепловой сети без разработки конкретно для нее оптимального гидравлического режима и оптимизационных мероприятий (и их выполнения в полном объеме) приводят к еще большей разрегулировке системы теплоснабжения и, следовательно, к чрезмерным затратам топлива, электроэнергии и воды на подпитку тепловой сети.
Учет отпуска и потребления тепловой энергии и теплоносителей производится в соответствии с правилами учета тепловой энергии и теплоносителя, утвержденными первым заместителем Министра топлива и энергетики Российской Федерации 12 сентября 1995 г.
Однако степень оснащенности систем теплового потребления и некоторых источников теплоснабжения (в основном отопительных котельных систем коммунального теплоснабжения) не позволяет производить расчеты за полученные теплоэнергию и теплоносители на основании правил . Правила пользования электрической и тепловой энергией, утвержденные Приказом Министерства энергетики и электрификации СССР № 310 от 6 декабря 1981 г., отменены в 2000 г.
Таким образом, ст. 11 Федерального закона № 28-ФЗ от 03.04.1996 (редакция от 05.04.2003) «Об энергосбережении» не выполняется. Учет тепловой энергии и теплоносителей, который сам по себе не может дать энергосберегающего эффекта, но должен стимулировать энергосбережение в процессе теплоснабжения, в настоящий период не имеет должной нормативной базы.
Функции разработки и утверждения правил учета тепловой энергии не упомянуты ни в положении о Минэнерго, ни в положении о Минрегионразвитии. Вследствие этого правила коммерческого учета тепловой энергии, отражающие реальное положение, до сих пор не рассмотрены и не утверждены.
Программа повышения надежности тепловых сетей
Для реализации потенциала энергосбережения необходимо внедрение целого комплекса мероприятий, среди которых приоритетное значение имеют мероприятия, направленные на повышение надежности функционирования тепловых сетей. Та работа, которая ведется в тепловых организациях по реконструкции тепловых сетей, способствует повышению эффективности систем транспорта и распределения тепловой энергии. Но очень часто ожидаемый эффект не реализуется из-за нарушений требований нормативно-технических документов НТД, которые предъявляются к эксплуатации, строительству и капитальному ремонту тепловых сетей.
К числу таких нарушений при эксплуатации относятся:

отсутствие контроля фактического состояния теплопроводов в период эксплуатации, не проводятся периодические технические освидетельствования тепловых сетей;
не проводятся мероприятия по продлению срока службы действующих теплопроводов;
эксплуатационный персонал не владеет методами защиты от коррозии, учеба не проводится и не планируется;
не ведется постоянный контроль за состоянием трубопроводов в ППУ - изоляции с системами ОДК из-за отсутствия или неисправности приборов контроля;
низкое качество проведения аварийно-ремонтных работ;
не ведется контроль фактических потерь тепловой энергии через тепловую изоляцию теплопроводов, характеризующих состояние тепловых сетей.

Нарушения при строительстве и капитальном ремонте тепловых сетей:

капитальный ремонт осуществляется без проектов и анализа причин преждевременного выхода из строя теплопроводов, что приводит к повторению ранее допущенных ошибок;
в проектах нового строительства тепловых сетей не учитываются реальные условия прокладки трассы;
оформление проектов не соответствует нормативным документам, также на согласование поступают проекты низкого технического качества, ошибки в расчетах на прочность и цикличность, применение марок стали, не предусмотренных ГОСТом, непродуманная транссировка и т.д.
в техническом задании на проектирование не указаны данные, на основании которых разрабатываются основные мероприятия, необходимые для защиты от наружной коррозии и обеспечения расчетного срока службы теплопроводов, реальные условия эксплуатации и причины, сократившие расчетный срок службы;
в проектах отсутствует расчетный срок службы тепловых сетей;
интенсифицируются процессы коррозии из-за применения при прокладке тепловых сетей материалов и изделий, не отвечающих требованиям действующих НТД;
работы по проектированию, монтажу и приемке в эксплуатацию систем оперативно-дистанционного контроля трубопроводов в ППУ-изоляции ведутся с нарушением требований действующего НТД, что ведет к снижению срока службы тепловых сетей ниже расчетного, качество прокладки самих труб в ППУ-изоляции не всегда соответствует нормативным документам, некачественные узлы перехода с ППУ на стандартную тепловую изоляцию, отсутствие стыковки участков ОДК в единую систему, строительство зданий повышенной этажности в непосредственной близости от тепловой сети;
низкая квалификация персонала подрядных организаций, производящих работы;
в эксплуатацию принимаются теплопроводы, прокладываемые с нарушением положений действующих НТД (качество антикоррозионных покрытий, толщина тепловой изоляции и т.п.).

С учетом вышесказанного к числу первоочередных мероприятий необходимо отнести разработку программы повышения надежности тепловых сетей. В программе необходимо сформулировать все мероприятия по повышению надежности тепловых сетей, апробированных на действующих тепловых сетях, но не получивших широкого распространения.
Программа должна включать в себя перечень организационных и технических мероприятий, проводимых при эксплуатации, текущем ремонте, замене и новом строительстве тепловых сетей с обоснование каждого мероприятия.
Среди организационных мероприятий необходимо отметить следующее:

организация в теплоснабжающих предприятиях службы по защите от коррозии, возложением на нее ответственности за координацию работы по контролю коррозионного состояния тепловых сетей, внедрению защитных мероприятий, определению ресурса, внедрению методов экономического стимулирования, разработке технических заданий в части защиты от коррозии, подготовке планов научно-технических работ, учебе персонала;
восстановить государственную приемку в эксплуатацию тепловых сетей с проведением независимого приборного контроля качества прокладки;
произвести постепенный переход от разрушающих методов контроля тепловых сетей к неразрушающим, массово внедрять систему локального профилактического ремонта с заменой конкретных мест максимального коррозионного разрушения, с переориентацией аварийных служб, с устранения аварий на их предупреждение;
проводить обязательное расследование причин преждевременного выхода из строя трубопроводов тепловых сетей с определением причин, конкретных виновных и мер, необходимых для предотвращения подобных ситуаций, расследование должно проводиться с участием представителей Ростехнадзора.;
организовать обязательную учебу эксплуатационного персонала методами защиты от коррозии требованиям нормативных документов.

Разумеется, приводимый перечень мероприятий не претендует на исключительность и не является исчерпывающим. Ибо возможностей на пути к обеспечению энергетической эффективности – великое множество, а действенная программа энергосбережения – продукт интеллектуального труда, результат совместного труда энергоаудитора и энергетической службы организации – потребителя ТЭР.
Наладка систем теплоснабжения
Для повышения эффективности существующих систем энергоснабжения поселений необходима действенная система контроля над показателями эффективности их работы.
Существующий контроль качества прохождения отопительного сезона фактически сводится к учету аварий и инцидентов. Но это не говорит о действительном качестве теплоснабжения (достаточности количества потребленного тепла и его качественных показателей, эффективности использования температурного потенциала теплоносителя, минимальности затрат на транспорт и распределение тепла).
Существующая система оплаты за полученное тепло учитывает только его количество. Назрела необходимость наряду с количеством учитывать и качество получаемого тепла, что предусматривает повышение ответственности, как со стороны теплоснабжающих организаций, так и потребителей.
Все более важное значение приобретает наладка систем теплоснабжения, предназначенная для обеспечения надежного и экономичного режима распределения теплоносителя по потребителям в соответствии с их тепловыми нагрузками. Во всех регионах РФ наблюдается гидравлическая разрегулировка систем теплоснабжения, независимо от тепловой мощности источников тепловой энергии. Отсутствие производства наладочных работ является причиной перетопов у одних потребителей и непрогревов у других, при этом наблюдается значительный перерасход топлива, до 30%. Учитывая, что структура тепловых сетей в малых городах РФ развивается зачастую хаотично, необходимость производства наладочных работ особенно остра. При росте цен на энергоресурсы необходимость производства наладочных работ только возрастает.
Режимная наладка системы централизованного теплоснабжения заключается в обеспечении расчетных температур внутри отапливаемых помещений и заданных режимов работы калориферных, водоподогревательных и различного рода технологических установок, потребляющих тепловую энергию от тепловой сети при оптимальном режиме работы системы в целом.
Режимная наладка охватывает основные звенья системы централизованного теплоснабжения:

водоподогревательную установку ТЭЦ или котельную;
центральный тепловой пункт (ЦТП);
водяную тепловую сеть с установленными на ней контрольно-распределительными пунктами (КРП), насосными, дроссельными подстанциями и прочими сооружениями;
индивидуальные тепловые пункты (ИТП);
местные системы теплопотребления.

Задачи регулирования систем централизованного теплоснабжения включают:

обеспечение источником тепла заданных гидравлического и теплового режимов;
обеспечение расчетного расхода теплоносителя по всем подключенным к тепловой сети системам теплопотребления, а также по теплопотребляющим приборам;
обеспечение расчетных внутренних температур воздуха в помеще

---IV. Повышение эффективности систем энергоснабжения
------4.4. Тепловые сети

4.4.3. Методы снижения потерь в тепловых сетях

VIII. Использование возобновляемых энергоресурсов

Основными методами являются:

  • периодическая диагностика и мониторинг состояния тепловых сетей;
  • осушение каналов;
  • замена ветхих и наиболее часто повреждаемых участков тепловых сетей (прежде всего, подвергаемых затоплениям) на основании результатов инженерной диагностики, с использованием современных теплоизоляционных конструкций;
  • прочистка дренажей;
  • восстановление (нанесение) антикоррозионного, тепло- и гидроизоляционного покрытий в доступных местах;
  • повышение pH сетевой воды;
  • обеспечение качественной водоподготовки подпиточной воды;
  • организация электрохимзащиты трубопроводов;
  • восстановление гидроизоляции стыков плит перекрытий;
  • вентиляция каналов и камер;
  • установка сильфонных компенсаторов;
  • применение улучшенных трубных сталей и неметаллических трубопроводов;
  • организация определения в режиме реального времени фактических потерь тепловой энергии в магистральных тепловых сетях по данным приборов учета тепловой энергии на тепловой станции и у потребителей с целью оперативного принятия решений по устранению причин возникновения повышенных потерь;
  • усиление надзора при проведении аварийно-восстановительных работ со стороны административно-технических инспекций;
  • перевод потребителей с теплоснабжения от центральных на индивидуальные тепловые пункты.

Должны быть созданы стимулы и критерии для персонала. Сегодняшняя задача аварийной службы: приехать, раскопать, залатать, засыпать, уехать. Введение только одного критерия оценки деятельности - отсутствие повторных разрытий, сразу кардинально изменяет ситуацию (разрывы происходят в местах наиболее опасного сочетания коррозионных факторов и к замененным локальным участкам теплосети должны предъявляться повышенные требования в части защиты от коррозии). Сразу появится диагностическая аппаратура, появится понимание, что если эта теплотрасса затоплена, надо ее осушить, а если труба гнилая, то аварийная служба первая будет доказывать, что участок сети надо менять.

Можно создать систему, при которой тепловая сеть, на которой произошел разрыв, будет считаться как бы «больной» и поступать на лечение в службу ремонта, как в больницу. После «лечения» она будет возвращаться в эксплуатационную службу с восстановленным ресурсом.

Очень важны экономические стимулы и для эксплуатационного персонала. 10-20% экономии от снижения потерь с утечками (при соблюдении нормы жесткости сетевой воды) выплачиваемые персоналу срабатывает лучше всяких внешних инвестиций. Одновременно из-за уменьшения числа подтопленных участков снижаются потери через изоляцию и увеличивается срок службы сетей.

Первое, что сделали в теплоснабжающих предприятиях бывших стран СЭВ и Прибалтики после перехода к рыночным отношениям, - это осушили каналы тепловых сетей. Из всех возможных технических мер по снижению издержек эта оказалась самой экономически выгодной.

Необходимо кардинально улучшить качество замены тепловых сетей за счет:

  • предварительного обследования перекладываемого участка с целью определения причин невыдерживания нормативного срока службы и подготовки качественного технического задания на проектирование;
  • обязательной разработки проектов капитального ремонта с обоснованием прогнозируемого срока службы;
  • независимой приборной проверки качества прокладки тепловых сетей;
  • введения персональной ответственности должностных лиц за качество прокладки.

Техническая проблема обеспечения нормативного срока службы тепловых сетей была решена еще в 50-е годы XX в. за счет применения толстостенных труб и высокого качества строительных работ, в первую очередь антикоррозийной защиты. Сейчас набор технических средств гораздо шире.

Ранее техническая политика определялась приоритетом уменьшения капитальных вложений. С меньшими затратами требовалось обеспечить максимальный прирост производства, чтобы этот прирост компенсировал в дальнейшем затраты на ремонт. В сегодняшней ситуации такой подход не приемлем. В нормальных экономических условиях собственник не может позволить себе прокладывать сети со сроком службы 10-12 лет, это для него разорительно. Тем более это недопустимо, когда основным плательщиком становится население города. В каждом муниципальном образовании должен осуществляться жесткий контроль за качеством прокладки тепловых сетей.

Должны быть изменены приоритеты в расходовании средств, большая часть которых тратится сегодня на замену участков тепловых сетей, по которым были разрывы труб в процессе эксплуатации или летней опрессовке, на предотвращение образования разрывов путем контроля скорости коррозии труб и принятия мер по ее снижению.

Просим Вас оставлять свои замечания и предложения по стратегии . Для чтения документа выберите интересующий Вас раздел.

Энергосберегающие технологии и методы

Loading...Loading...