Фактическая удельная тепловая характеристика здания. Расчетная и фактическая удельная отопительная характеристика здания

Все здания и сооружения, независимо от типа и классификации, имеют определенные технико-эксплуатационные параметры, которые обязательно должны быть зафиксированы в соответствующей документации. Одним из самых важных показателей считается удельная тепловая характеристика, которая оказывает прямое влияние на размеры оплаты за потребленную тепловую энергию и позволяет определить класс энергоэффективности конструкции.

Удельной отопительной характеристикой принято называть значение максимального теплового потока, который необходим для обогрева конструкции при разнице между внутренней и наружной температурой, равной одному градусу Цельсия. Усреднённые показатели определяются строительными нормами, рекомендациями и правилами. При этом любого характера отклонения от нормативных величин позволяют говорить об энергетической эффективности отопительной системы.

Удельная тепловая характеристика может быть как фактической, так и расчетной. В первом случае для получения максимально приближенных к действительности данных необходимо обследовать здание с использованием тепловизионной аппаратуры, а во втором – показатели определяются с помощью таблицы удельной отопительной характеристики здания и специальных расчетных формул.

С недавних пор определение класса энергетической эффективности является обязательной процедурой для всех жилых домов. Такая информация должна быть включена в энергетический паспорт строения, поскольку каждый класс имеет установленный минимум и максимум расхода энергоресурсов в течение года.

Чтобы определить класс энергетической эффективности сооружения, необходимо уточнить следующую информацию:

  • тип сооружения или здания;
  • строительные материалы, которые были использованы в процессе строительства и отделки здания, а также их технические параметры;
  • отклонение фактических и расчетно-нормативных показателей. Фактические данные могут быть получены расчетным или практическим путем. При проведении расчетов необходимо учитывать климатические особенности конкретной местности, кроме того, нормативные данные должны включать в себя информацию о расходах на кондиционирование, теплоснабжение и вентиляцию.

Повышение энергоэффективности многоэтажного здания

Расчетные данные, в большинстве случаев, говорят о низкой энергетической эффективности многоквартирного жилья. Когда речь идет о повышении этого показателя необходимо четко понимать, что сократить расходы на отопление можно только путем проведения дополнительной термоизоляции, которая поможет сократить теплопотери. Снизить потери тепловой энергии в жилом многоквартирном доме, конечно, можно, однако решение этой задачи будет весьма трудоемким и дорогостоящим процессом.

К основным методам повышения энергетической эффективности многоэтажного здания можно отнести следующее:

  • устранение мостиков холода в строительных конструкциях (улучшение показателей на 2-3%);
  • установка оконных конструкций на лоджиях, балконах и террасах (эффективность методики 10-12%);
  • использование микросистем микровентиляции;
  • замена окон современными многокамерными профилями с энергосберегающими стеклопакетами;
  • приведение к норме площади остекленных конструкций;
  • повышение термического сопротивления строительной конструкции путем отделки подвальных и технических помещений, а также облицовки стен с применением высокоэффективных термоизоляционных материалов (повышение энергосбережения на 35-40%).

Дополнительной мерой по повышению энергетической эффективности жилого многоэтажного дома может стать проведение жильцами энергосберегающих процедур в квартирах, например:

  • установка термостатов;
  • монтаж теплоотражающих экранов;
  • монтаж приборов учета тепловой энергии;
  • установка алюминиевых радиаторов;
  • монтаж системы индивидуального теплоснабжения;
  • сокращение расходов на вентилирование помещений.

Как улучшить энергетическую эффективность частного дома?

Повысить класс энергетической эффективности частного дома можно, используя различные методики. Комплексный подход к решению этой проблемы позволит получить превосходные результаты. Размеры статьи расходов на отопление жилого дома, прежде всего, определяются особенностями системы теплоснабжения. Индивидуальное строительство жилья практически не предусматривает подключение частных домов к централизованным системам теплоснабжения, поэтому вопросы отопления в этом случае решаются с помощью индивидуальной котельной. Сократить расходы поможет установка современного котельного оборудования, которое отличается высоким КПД и экономичной работой.

В большинстве случаев для теплоснабжения частного дома используются газовые котлы, однако такой вид топлива не всегда целесообразен, особенно для местности не прошедшей газификацию. При выборе отопительного котла важно учитывать особенности региона, доступность топлива и эксплуатационных расходов. Не менее важным с экономической точки зрения для будущей системы отопления станет наличие дополнительного оборудования и опций для котла. Сэкономить топливо поможет установка терморегулятора, а также ряда других приборов и датчиков.

Для циркуляции теплоносителя в автономных системах теплоснабжения преимущественно используется насосное оборудование. Несомненно, оно должно быть качественным и надежным. Однако следует помнить, что на работу оборудования для принудительной циркуляции теплоносителя в системе будет приходиться порядка 30-40% общих затрат электроэнергии. При выборе насосного оборудования следует отдавать предпочтение моделям, имеющим класс энергетической эффективности «А».

Эффективность использования терморегуляторов заслуживает отдельного внимания. Принцип работы прибора заключается в следующем: с помощью специального датчика он определяет внутреннюю температуру помещения и в зависимости от полученного показателя отключает или включает насос. Температурный режим и порог срабатывания устанавливается жильцами дома самостоятельно. Главным преимуществом использования терморегулятора является отключение циркуляционного оборудования и нагревателя. Таким образом, жильцы получают существенную экономию и комфортный микроклимат.

Увеличить фактические показатели удельной тепловой характеристики дома помогут также установка современных пластиковых окон с энергосберегающими стеклопакетами, термоизоляция стен, защита помещений от сквозняков и т.д. Следует отметить, что эти меры помогут увеличить не просто цифры, но и повысить комфорт в доме, а также сократить эксплуатационные расходы.

Для оценки теплотехнических показателей принятого конструктивно-планировочного решения расчет потерь теплоты ограждениями здания заканчивают определениемудельной тепловой характеристики здания

q уд = Q с о / (V н (t в 1 – t н Б)) (3.15)

где Q с о - максимальный тепловой поток на отопление здания, подсчитанный по (3.2), с учетом потерь на инфильтрацию, Вт; V н - строительный объем здания по наружному обмеру, м 3 ; t в 1 - средняя температура воздуха в отапливаемых помещениях.

Величина q уд , Вт/(м 3 · о С) равна теплопотерям 1 м 3 здания в ваттах при разности температур внутреннего и наружного воздуха в 1 °С.

Рассчитанную q уд сравнивают с показателями для аналогичных зданий (прил. 2). Она не должна быть выше справочных q уд , иначе возрастают первоначальные затраты и эксплуатационные расходы на отопление.

Удельную тепловую характеристику здания любого назначения, можно определить по формуле Н. С. Ермолаева

q уд = P/S + 1/H(0,9 k пт = 0,6 k пл) (3.16)

где Р - периметр здания, м; S - площадь здания,м 2 ; Н - высота здания, м; φ о - коэффициент остекления (отношение площади остекления к площади вертикальных наружных ограждений); k ст , k ок, k пт , k пл - коэффициенты теплопередачи стен, окон, перекрытия верхнего этажа, пола нижнего этажа.



Для лестничных клеток q уд обычно принимают с коэффициентом 1,6.

Для гражданских зданий q уд ориентировочно определяют

q уд =1,163 ((1+2d)F+S)/V н, (3.17)

где d - степень остекления наружных стен здания в долях единицы; F - площадь наружных стен,м 2 ;S - площадь здания в плане, м 2 ; V н - строительный объем здания по наружному обмеру, м 3 .

Для зданий массовой жилой застройки ориентировочно определяют

q уд =1,163(0,37+1/Н), (3.18)

где Н - высота здания, м.

Энергосберегающие мероприятия (табл. 3.3) должны быть обеспечены работами по утеплению зданий при капитальных и текущих ремонтах.

Таблица 3.3. Укрупненные показатели максимального теплового потока на отопление жилых зданий на 1 м 2 общей площади q o , Вт

Этажность жилой постройки Характеристика здания Расчетная температура наружного воздуха для проектирования отопления t н Б, о С
-5 -10 -15 -20 -25 -30 -35 -40
Для постройки до 1985 года
1-2 Без учета внедрения энергосберегающих мероприятий
3-4
5 и более
1-2 С учетом внедрения энергосберегающих мероприятий
3-4
5 и более
Для постройки после 1985 года
1-2 По новым типовым проектам
3-4
5 и более

Использование удельной тепловой характеристики.

На практике необходима ориентировочная тепловая мощность системы отопления для определения тепловой мощности источника теплоты (котельной, ТЭЦ), заказа оборудования и материалов, определения годового расхода топлива, расчета стоимости системы отопления.

Ориентировочная тепловая мощность системы отопления Q c.o , Вт

Q c.o = q уд Vн (t в 1 – t н Б)а, (3.19)

где q уд - справочная удельная тепловая характеристика здания, Вт/(м 3 · о С), прил. 2; а - коэффициент местных климатических условий, прил. 2 (для жилых и общественных зданий).

Ориентировочные теплопотери помещений определяют по (3.19). При этом q уд принимается с поправочным коэффициентом, учитывающим планировочное расположение и этаж (табл. 3.4.)

Таблица 3.4. Поправочные коэффициенты к q уд

Влияние объемно-планировочных и конструктивных решений здания на микроклимат и тепловой баланс помещений, а также тепловую мощность системы отопления.

Из (3.15)-(3.18) видно, что на q уд влияют объем здания, степень остекления, этажность, площади наружных ограждений и их теплозащита. q уд зависит так же от формы здания и района строительства.

Здания малого объема, узкие, сложной конфигурации, с увеличенным периметром обладают повышенной тепловой характеристикой. Уменьшенные тепловые потери имеют здания с формой кубу. Наименьшие теплопотериу шарообразных сооружений того же объема (минимальная наружная площадь). Район строительства определяет теплозащитные свойства ограждений.

Архитектурная композиция здания должна иметь наивыгоднейшую форму в теплотехническом отношении, минимальную площадь наружных ограждений, правильную степень остекления (термическое сопротивление наружных стен в 3 раза больше остекленных проемов).

Следует отметить, что q уд можно снизить использованием высокоэффективных и дешевых утеплителей для наружных ограждений.

При отсутствии данных о типе застройки и наружном объеме зданий максимальные теплозатраты на отопление и вентиляцию определяют:

Тепловой поток, Вт, на отопление жилых и общественных зданий

Q′ о мах = q о F (1 + k 1) (3.20)

Тепловой поток, Вт, на вентиляцию общественных зданий

Q′ v мах = q о k 1 k 2 F (3.21)

где q о - укрупненный показатель максимального теплового потока на отопление жилых зданий на 1 м 2 общей площади (табл. 3.3); F - общая площадь жилых зданий, м 2 ; k 1 и k 2 - коэффициенты теплового потока на отопление и вентиляцию общественных зданий (k 1 = 0,25; k 2 = 0,4 (до 1985 г.), k 2 = 0,6 (после 1985 г.)).

Фактическая (установочная) тепловая мощность систем отопления с учетом бесполезных потерь теплоты (теплопередача через стенки теплопроводов, проложенных в неотапливаемых помещениях, размещение отопительных приборов и труб у наружных ограждений)

Q′ с. о = (1…1,15)Q с. о (3.22)

Теплозатраты на вентиляцию жилых зданий, без приточной вентиляций, не превышают 5...10% теплозатрат на отопление и учитываются в значении удельной тепловой характеристики здания q уд .

Контрольные вопросы. 1. Какими исходными данными необходимо располагать для определения теплопотерь помещением? 2. По какой формуле рассчитываются теплопотери помещениями? 3. В чем особенность расчета теплопотерь через полы и подземные части стен? 4. Что понимают под добавочными теплопотерями и как они учитываются? 5. Что такое инфильтрация воздуха? 6. Какие могут быть теплопоступления в помещения и как они учитываются в тепловом балансе помещения? 7. Запишите выражение для определения тепловой мощности системы отопления. 8. В чем смысл удельной тепловой характеристики здания и как она определяется? 9. Для чего используется удельная тепловая характеристика здания? 10. Как влияют объемно-планировочные решения зданий на микроклимат и тепловой баланс помещений?11. Как определяется установочная мощность системы отопления здания?

Показателем расхода тепловой энергии на отопление и вентиляцию жилого или общественного здания на стадии разработки проектной документации, является удельная характеристика расхода тепловой энергии на отопление и вентиляцию здания численно равная расходу тепловой энергии на 1 м 3 отапливаемого объема здания в единицу времени при перепаде температуры в 1°С, , Вт/(м 3 · 0 С). Расчетное значение удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания,
, Вт/(м 3 · 0 С), определяется по методике с учетом климатических условий района строительства, выбранных объемно-планировочных решений, ориентации здания, теплозащитных свойств ограждающих конструкций, принятой системы вентиляции здания, а также применения энергосберегающих технологий. Расчетное значение удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания должно быть меньше или равно нормируемого значения, согласно ,
, Вт/(м 3 · 0 С):


(7.1)

где
- нормируемая удельная характеристика расхода тепловой энергии на отопление и вентиляцию зданий, Вт/(м 3 · 0 С), определяемая для различных типов жилых и общественных зданий по таблице 7.1 или 7.2.

Таблица 7.1


, Вт/(м 3 · 0 С)

Площадь здания, м 2

С числом этажей

1000 и более

Примечания:

При промежуточных значениях отапливаемой площади здания в интервале 50-1000м 2 значения
должны определяться линейной интерполяцией.

Таблица 7.2

Нормируемая (базовая) удельная характеристика расхода

тепловой энергии на отопление и вентиляцию

малоэтажных жилых одноквартирных зданий,
, Вт/(м 3 · 0 С)

Тип здания

Этажность здания

1 Жилые многоквар­тирные,

гостиницы,

общежития

2 Общественные, кроме перечислен­ных в строках 3-6

3 Поликлиники и лечебные учреждения, дома- интернаты

4 Дошкольные учреждения, хосписы

5 Сервисного обслу­живания, культурно-досуговой деятель­ности, технопарки, склады

6 Административ­ного назначения (офисы)

Примечания:

Для регионов, имеющих значение ГСОП=8000 0 С·сут и более, нормируемые
следует снизить на 5%.

Для оценки достигнутой в проекте здания или в эксплуатируемом здании потребности энергии на отопление и вентиляцию, установлены следующие классы энергосбережения (таблица 7.3) в % отклонения расчетной удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания от нормируемой (базовой) величины.

Проектирование зданий с классом энергосбережения «D, Е» не допускается. Классы «А, В, С» устанавливают для вновь возводимых и реконструируемых зданий на стадии разработки проектной документации. Впоследствии, при эксплуатации класс энергосбережения здания должен быть уточнен в ходе энергетического обследования. С целью увеличения доли зданий с классами «А, В» субъекты Российской Федерации должны применять меры по экономическому стимулированию, как к участникам строительного процесса, так и к эксплуатирующим организациям.

Таблица 7.3

Классы энергосбережения жилых и общественных зданий

Обозначение

Наименование

Величина отклонения расчетного (фактического) значения удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания от нормируемого, %

При проектировании и эксплуатации новых и реконструируемых зданий

Очень высокий

Экономическое

стимулирование

От - 50 до - 60 включительно

От - 40 до - 50 включительно

От - 30 до - 40 включительно

Экономическое

стимулирование

От - 15 до - 30 включительно

Нормальный

От - 5 до - 15 включительно

Мероприятия не

разрабатываются

От + 5 до - 5 включительно

От + 15 до + 5 включительно

Пониженный

От + 15,1 до + 50 включительно

Реконструкция при соответствующем экономическом обосновании

Реконструкция при соответствующем экономическом обосновании, или снос

Расчетную удельную характеристику расхода тепловой энергии на отопление и вентиляцию здания,
, Вт/(м 3 · 0 С), следует определять по формуле

k об - удельная теплозащитная характеристика здания, Вт/(м 3 · 0 С), определяется следующим образом

, (7.3)

где - фактическое общее сопротивление теп­лопередачедля всех слоев ограждения (м 2 С)/Вт;

- площадь соответствующего фрагмента теплозащитной оболочки здания, м 2 ;

V от - отапливаемый объем здания, равный объему, ограниченному внутренними поверхностями наружных ограждений зданий, м 3 ;

- коэффициент, учитывающий отличие внутренней или наружной температуры у конструкции от принятых в расчете ГСОП, =1.

k вент - удельная вентиляционная характеристика здания, Вт/(м 3 ·С);

k быт - удельная характеристика бытовых тепловыделений здания, Вт/(м 3 ·С);

k рад - удельная характеристика теплопоступлений в здание от солнечной радиации, Вт/(м 3 · 0 С);

ξ - коэффициент, учитывающий снижение теплопотребления жилых зданий, ξ =0,1;

β - коэффициент, учитывающий дополнительное теплопотребление системы отопления, β h = 1,05;

ν - коэффициент снижения теплопоступлений за счет тепловой инерции ограждающих конструкций; рекомендуемые значения определяются по формуле ν = 0,7+0,000025*(ГСОП-1000);

Удельную вентиляционную характеристику здания, k вент, Вт/(м 3 · 0 С), следует определять по формуле

где с - удельная теплоемкость воздуха, равная 1 кДж/(кг·°С);

β v - коэффициент снижения объема воздуха в здании, β v = 0,85;

- средняя плотность приточного воздуха за отопительный период, кг/м 3

=353/, (7.5)

t от - средняя температура отопительного периода, С, по 6, табл. 3.1, (см. прил. 6).

n в - средняя кратность воздухообмена общественного здания за отопительный период, ч -1 , для общественных зданий, согласно , принимается усредненная величина n в =2;

k э ф - коэффициент эффективности рекуператора, k э ф =0,6.

Удельную характеристику бытовых тепловыделений здания, k быт, Вт/(м 3 ·С), следует определять по формуле

, (7.6)

где q быт - величина бытовых тепловыделений на 1 м 2 площади жилых помещений (А ж) или расчетной площади общественного здания (А р),Вт/м 2 , принимаемая для:

а) жилых зданий с расчетной заселенностью квартир менее 20 м 2 общей площади на человека q быт = 17 Вт/м 2 ;

б) жилых зданий с расчетной заселенностью квартир 45 м 2 общей площади и более на человека q быт = 10 Вт/м 2 ;

в) других жилых зданий - в зависимости от расчетной заселенности квартир по интерполяции величины q быт между 17 и 10 Вт/м 2 ;

г) для общественных и административных зданий бытовые тепловыделения учитываются по расчетному числу людей (90 Вт/чел), находящихся в здании, освещения (по установочной мощности) и оргтехники (10 Вт/м 2) с учетом рабочих часов в неделю;

t в, t от - то же, что и в формулах (2.1, 2.2);

А ж - для жилых зданий - площадь жилых помещений (А ж), к которым относятся спальни, детские, гостиные, кабинеты, библиотеки, столовые, кухни-столовые; для общественных и административных зданий - расчетная площадь (А р), определяемая согласно СП 117.13330 как сумма площадей всех помещений, за исключением коридоров, тамбуров, переходов, лестничных клеток, лифтовых шахт, внутренних открытых лестниц и пандусов, а также помещений, предназначенных для размещения инженерного оборудования и сетей, м 2 .

Удельную характеристику теплопоступлений в здание от солнечной радиации, k р ад, Вт/(м 3 ·°С), следует определять по формуле

, (7.7)

где
- теплопоступления через окна и фонари от солнечной радиации в течение отопительного периода, МДж/год, для четырех фасадов зданий, ориентированных по четырем направлениям, определяемые по формуле

- коэффициенты относительного проникания солнечной радиации для светопропускающих заполнений соответственно окон и зенитных фонарей, принимаемые по паспортным данным соответствующих светопропускающих изделий; при отсутствии данных следует принимать следует принимать по таблице (2.8); мансардные окна с углом наклона заполнений к горизонту 45° и более следует считать как вертикальные окна, с углом наклона менее 45° - как зенитные фонари;

- коэффициенты, учитывающие затенение светового проема соответственно окон и зенитных фонарей непрозрачными элементами заполнения, принимаемые по проектным данным; при отсутствии данных следует принимать по таблице (2.8).

- площадь светопроемов фасадов здания (глухая часть балконных дверей исключается), соответственно ориентированных по четырем направлениям, м 2 ;

- площадь светопроемов зенитных фонарей здания, м;

- средняя за отопительный период величина суммарной солнечной радиации (прямая плюс рассеянная) на вертикальные поверхности при действительных условиях облачности, соответственно ориентированная по четырем фасадам здания, МДж/м 2 , определяется по прил. 8;

- средняя за отопительный период величина суммарной солнечной радиации (прямая плюс рассеянная) на горизонтальную поверхность при действительных условиях облачности, МДж/м 2 , определяется по прил. 8.

V от - то же, что и в формуле (7.3).

ГСОП – то же, что и в формуле (2.2).

Расчет удельной характеристики расхода тепловой энергии

на отопление и вентиляцию здания

Исходные данные

Расчет удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания проведем на примере двухэтажного индивидуального жилого дома общей площадью 248,5 м 2 .Значения величин, необходимых для расчета: t в = 20 С; t оп = -4,1С;
= 3,28(м 2 С)/Вт;
=4,73 (м 2 С)/Вт;
=4,84 (м 2 С)/Вт; =0,74 (м 2 С)/Вт;
=0,55(м 2 С)/Вт;
м 2 ;
м 2 ;
м 2 ;
м 2 ;
м 2 ;
м 2 ;
м 3 ;
Вт/м 2 ;
0,7;
0;
0,5;
0;
7,425 м 2 ;
4,8 м 2 ;
6,6 м 2 ;
12,375 м 2 ;
м 2 ;
695 МДж/(м 2 ·год);
1032 МДж/(м 2 ·год);
1032 МДж/(м 2 ·год); =1671 МДж/(м 2 ·год);
= =1331 МДж/(м 2 ·год).

Порядок расчета

1. Вычисляют удельную теплозащитную характеристику здания, Вт/(м 3 · 0 С), по формуле (7.3) определяется следующим образом

Вт/(м 3 · 0 С),

2. По формуле (2.2) рассчитывают градусо-сутки отопительного периода

D = (20 + 4,1)200 = 4820 Ссут.

3. Находят коэффициент снижения теплопоступлений за счет тепловой инерции ограждающих конструкций; рекомендуемые значения определяются по формуле

ν = 0,7+0,000025*(4820-1000)=0,7955.

4. Находят среднюю плотность приточного воздуха за отопительный период, кг/м 3 , по формуле (7.5)

=353/=1,313 кг/м 3 .

5. Вычисляюм удельную вентиляционную характеристику здания по формуле (7.4), Вт/(м 3 · 0 С)

Вт/(м 3 · 0 С)

6. Определяю удельную характеристику бытовых тепловыделений здания, Вт/(м 3 ·С), по формуле (7.6)

Вт/(м 3 ·С),

7. По формуле (7.8) вычисляют теплопоступления через окна и фонари от солнечной радиации в течение отопительного периода, МДж/год, для четырех фасадов зданий, ориентированных по четырем направлениям

8. По формуле (7.7) определяют удельную характеристику теплопоступлений в здание от солнечной радиации, Вт/(м 3 ·°С)

Вт/(м 3 ·°С),

9. Определяют расчетную удельную характеристику расхода тепловой энергии на отопление и вентиляцию здания, Вт/(м 3 · 0 С), по формуле (7.2)

Вт/(м 3 · 0 С)

10. Сравнивают полученное значение расчетной удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания с нормируемой (базовой),
, Вт/(м 3 · 0 С), по таблицам 7.1 и 7.2.

0,4 Вт/(м 3 · 0 С)
=0,435 Вт/(м 3 · 0 С)


Расчетное значение удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания должно быть меньше нормируемого значения.

Для оценки достигнутой в проекте здания или в эксплуатируемом здании потребности энергии на отопление и вентиляцию, определяют класс энергосбережения проектируемого жилого здания по процентному отклонению расчетной удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания от нормируемой (базовой) величины.

Вывод: проектируемое здание относится к «С+ Нормальному» классу энергосбережения, который устанавливают для вновь возводимых и реконструируемых зданий на стадии разработки проектной документации. Разработка дополнительных мероприятий по повышению класса энергосбережения здания не требуется. Впоследствии, при эксплуатации класс энергосбережения здания должен быть уточнен в ходе энергетического обследования.

Контрольные вопросы к разделу 7:

1. Какая величина являет основным показателем расхода тепловой энергии на отопление и вентиляцию жилого или общественного здания на стадии разработки проектной документации? От чего она зависит?

2. Какие классы энергосбережения жилых и общественных зданий существуют?

3. Какие классы энергосбережения устанавливают для вновь возводимых и реконструируемых зданий на стадии разработки проектной документации?

4. Проектирование зданий с каким классом энергосбережения не допускается?

ЗАКЛЮЧЕНИЕ

Проблемы экономии энергоресурсов являются особо важными в теку­щий период развития нашей страны. Стоимость топлива и теп­ло­вой энер­гии растёт, и эта тенденция прогнозируется на будущее; вместе с тем не­прерывно и быстро возрастает объем потребления энер­гии. Энергоёмкость национального дохода в нашей стране в не­сколько раз выше, чем в разви­тых странах.

В связи с этим очевидна важность выявления резервов снижения энер­­­гозатрат. Одним из направлений экономии энергоресурсов яв­ля­ет­ся реали­зация энергосберегающих мероприятий при работе систем теп­ло­­снабже­ния, отопления, вентиляции и кондицио­ниро­вания воз­духа (ТГВ). Одним из решений этой проблемы яв­ля­ется снижение теп­­лопо­терь зданий через ограждающие конструкции, т.е. снижение теп­ловых нагрузок на системы ТГВ.

Значение решения данной задачи особенно велико в городском ин­же­нерном хозяйстве, где только на теплоснабжение жилых и об­щественных зданий расходуется около 35% всего добываемого твер­д­ого и газообраз­ного топлива.

В последние годы в городах резко обозначилась несбаланси­ро­ван­ность развития подотраслей городского строительства: техни­чес­кое отставание инженерной инфраструктуры, неравномерность развития от­дельных систем и их элемен­тов, ведомственный подход к исполь­зо­ванию природных и вырабатывае­мых ресурсов, что при­во­дит к не­ра­циональному их использованию и ино­гда к необхо­димости при­вле­чения соответствующих ресурсов из других ре­гионов.

Потребность городов в топливно-энергетических ресурсах и пре­до­­с­тавлении инженерных услуг растет, что напрямую влияет на увеличение забо­ле­вае­мости населения, приводит к уничтожению лесного пояса городов.

Применение современных теплоизоляционных материалов с вы­со­ким значением сопротивления теплопередаче приведет к значи­тель­но­му снижению энергозатрат, результатом будет существенный экономи­чес­кий эффект при эксплуатации систем ТГВ через умень­ше­ние затрат на топливо и соответственно улучшение экологической ситуации ре­гио­на, что снизит затраты на медицинское обслуживание населения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

    Богословский, В.Н. Строительная теплофизика (теплофизи­чес­кие основы отопления, вентиляции и кондиционирования возду­ха) [Текст] / В.Н. Богословский. – Изд. 3-е. – СПб.: АВОК «Северо-Запад», 2006.

    Тихомиров, К.В. Теплотехника, тепло­газо­снаб­жение и вен­ти­ля­ция [Текст] / К.В. Тихомиров, Е.С. Сергиенко. – М.: ООО «БАСТЕТ», 2009.

    Фокин, К.Ф. Строительная теплотехника ограждающих час­тей зданий [Текст] / К.Ф. Фокин; под ред. Ю.А. Табунщикова, В.Г. Гагарина. – М.: АВОК-ПРЕСС, 2006.

    Еремкин, А.И. Тепловой режим зданий [Текст]: учеб. пособие / А.И. Еремкин, Т.И. Королева. – Ростов-н/Д.: Феникс, 2008.

    СП 60.13330.2012 Отопление, вентиляция и кондициони­рова­ние воздуха. Актуализированная редакция СНиП 41-01-2003 [Текст]. – М.: Минрегион России, 2012.

    СП 131.13330.2012 Строительная климатология. Актуализированная версия СНиП 23-01-99 [Текст]. – М.: Минрегион России, 2012.

    СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 [Текст]. – М.: Минрегион России, 2012.

    СП 54.13330.2011 Здания жилые многоквартирные. Актуализированная редакция СНиП 31-01-2003 [Текст]. – М.: Минрегион России, 2012.

    Кувшинов, Ю.Я. Теоретические основы обеспечения мик­рокли­мата помещения [Текст] / Ю.Я. Кувшинов. – М.: Изд-во АСВ, 2007.

    СП 118.13330.2012 Общественные здания и сооружения. Актуализированная редакция СНиП 31-05-2003 [Текст]. – Минрегион России, 2012.

    Куприянов, В.Н. Строительная климатология и физика среды [Текст] / В.Н. Куприянов. – Казань, КГАСУ, 2007.

    Монастырев, П.В. Технология устройства дополнительной теплозащиты стен жилых зданий [Текст] / П.В. Монастырев. – М.: Изд-во АСВ, 2002.

    Бодров В.И., Бодров М.В. и др. Микроклимат зданий и сооружений [Текст] / В.И. Бодров [и др.]. – Нижний Новгород, Издательство «Арабеск», 2001.

    ГОСТ 30494-96. Здания жилые и общественные. Параметры микроклимата в помещениях [Текст]. – М.: Госстрой России, 1999.

    ГОСТ 21.602-2003. Правила выполнения рабочей докумен­тации отопления, вентиляции и кондиционирования [Текст]. – М.: Госстрой России, 2003.

    СНиП 2.01.01-82. Строительная климатология и геофизика [Текст]. – М.: Госстрой СССР, 1982.

    СНиП 2.04.05-91*. Отопление, вентиляция и кондициони­рова­ние [Текст]. – М.: Госстрой СССР, 1991.

    СП 23-101-2004. Проектирование тепловой защиты зданий [Текст]. – М.:ООО «МЦК»,2007.

    ТСН 23-332-2002. Пензенской области. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2002.

21. ТСН 23-319-2000. Краснодарского края. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2000.

22. ТСН 23-310-2000. Белгородской области. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2000.

23. ТСН 23-327-2001. Брянской области. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2001.

24. ТСН 23-340-2003. Санкт-Петербург. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2003.

25. ТСН 23-349-2003. Самарская область. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2003.

26. ТСН 23-339-2002. Ростовская область. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2002.

27. ТСН 23-336-2002. Кемеровская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

28. ТСН 23-320-2000. Челябинская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

29. ТСН 23-301-2002. Свердловская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

30. ТСН 23-307-00. Ивановская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

31. ТСН 23-312-2000. Владимирская область. Тепловая защита жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2000.

32. ТСН 23-306-99. Сахалинская область. Теплозащита и энергопотребление жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,1999.

33. ТСН 23-316-2000. Томская область. Тепловая защита жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2000.

34. ТСН 23-317-2000. Новосибирская область. Энергосбережение в жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

35. ТСН 23-318-2000. Республика Башкортостан. Тепловая защита зданий. [Текст]. – М.: ГосстройРоссии,2000.

36. ТСН 23-321-2000. Астраханская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2000.

37. ТСН 23-322-2001. Костромская область. Энергоэффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2001.

38. ТСН 23-324-2001. Республика Коми. Энергосберегающая теплозащита жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2001.

39. ТСН 23-329-2002. Орловская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

40. ТСН 23-333-2002. Ненецкий автономный округ. Энергопотребление и теплозащита жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

41. ТСН 23-338-2002. Омская область. Энергосбережение в гражданских зданиях. [Текст]. – М.: ГосстройРоссии,2002.

42. ТСН 23-341-2002. Рязанская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

43. ТСН 23-343-2002. Республика Саха. Теплозащита и энергопотребление жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

44. ТСН 23-345-2003. Удмуртская Республика. Энергосбережение в зданиях. [Текст]. – М.: ГосстройРоссии,2003.

45. ТСН 23-348-2003. Псковская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2003.

46. ТСН 23-305-99. Саратовская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,1999.

47. ТСН 23-355-2004. Кировская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2004.

48. Малявина Е.Г., А.Н. Борщев. Статья. Расчет солнечной радиации в зимнее время [Текст]. «ЭСКО». Электронный журнал энергосервисной компании «Экологические системы» №11, ноябрь 2006.

49. ТСН 23-313-2000. Тюменская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2000.

50. ТСН 23-314-2000. Калининградская область. Нормативы по энергосберегающей теплозащите жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2000.

51. ТСН 23-350-2004. Вологодская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2004.

52. ТСН 23-358-2004. Оренбургская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2004.

53. ТСН 23-331-2002. Читинская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

Для теплотехнической оценки конструктивно-планировочных решений и для ориентировочного расчета теплопотерь зданий пользуются показателем - удельная тепловая характеристика здания q.

Величина q, Вт/(м 3 *К) [ккал/(ч*м 3 *°С)], определяет средние теплопотери 1 м 3 здания, отнесенные к расчетной разности температур, равной 1°:

q=Q зд /(V(t п -t н)).

где Q зд - расчетные теплопотери всеми помещениями здания;

V - объем отапливаемой части здания до внешнему обмеру;

t п -t н - расчетная разность температур для основных помещений здания.

Величину q определяют в виде произведения:

где q 0 - удельная тепловая характеристика, соответствующая разности температур Δt 0 =18-(-30)=48°;

β t - температурный коэффициент, учитывающий отклонение фактической расчетной разности температур от Δt 0 .

Удельная тепловая характеристика q 0 может быть определена по формуле:

q0=(1/(R 0 *V))*.

Эту формулу можно преобразовать в более простое выражение, пользуясь приведенными в СНиП данными и приняв, например, за основу характеристики для жилых зданий:

q 0 =((1+2d)*Fс+F п)/V.

где R 0 - сопротивление теплопередаче наружной стены;

η ок - коэффициент, учитывающий увеличение теплопотерь через окна по сравнению с наружными стенами;

d - доля площади наружных стен, занятая окнами;

ηпт, ηпл -коэффициенты, учитывающие уменьшение теплопотерь через потолок и пол по сравнению с наружными стенами;

F c - площадь наружных стен;

F п - площадь здания в плане;

V - объем здания.

Зависимость удельной тепловой характерношки q 0 от изменения конструктивно-планировочного решения здания, объема здания V и относительного к R 0 тр сопротивления теплопередаче наружных стен β, высота здания h, степени остекления наружных стен d, коэффициента теплопередачи окон k он и ширины здания b.

Температурный коэффициент β t равен:

βt=0,54+22/(t п -t н).

Формула соответствует значениям коэффициента β t , которые обычно приводятся в справочной литературе.

Характеристикой q удобно пользоваться для теплотехнической оценки возможных конструктивно-планировочных решений здания.

Если в формулу подставить значение Q зд, то ее можно привести к виду:

q=(∑k*F*(t п -t н))/(V(t п -t н))≈(∑k*F)/V.

Величина тепловой характеристики, зависит от объема здания и, кроме того, от назначения, этажности и формы здания, площади и теплозащиты наружных ограждений, степени остекления здания и района строительства. Влияние отдельных факторов на величину q очевидно из рассмотрения формулы. На рисунке показана зависимость qо от различных характеристик здания. Реперной точке на чертеже, через которую проходят все кривые, соответствуют значения: q о =О,415 (0,356) для здания V=20*103 м 3 , шириной b=11 м, d=0,25 R o =0,86(1,0), k ок =3,48 (3,0); длиной l=30 м. Каждая кривая соответствует изменению одной из характеристик (дополнительные шкалы по оси абсцисс) при прочих равных условиях. Вторая шкала на оси ординат показывает эту зависимость в процентах. Из графика видно, что заметное влияние на qo оказывает степень остекленности d и ширина здания Ь.

График отражает влияние теплозащиты наружных ограждений на общие теплопотери здания. По зависимости qo от β {R o =β*R о.тр) можно сделать вывод, что при увеличении теплоизоляции стен тепловая характеристика уменьшается незначительно, тогда как при ее снижении qo начинает быстро возрастать. При дополнительной теплозащите оконных проемов (шкала k ок) заметно уменьшается qo, что подтверждает целесообразность увеличения сопротивления теплопередаче окон.

Величины q для зданий различных назначений и объемов приводятся в справочных пособиях. Для гражданских зданий эти значения изменяются в следующих пределах:

Потребность в тепле на отопление здания может заметно отличаться от величины теплопотерь, поэтому можно вместо q пользоваться удельной тепловой характеристикой отопления здания qот, при вычислении которой по верхней формуле числитель подставляют не теплопотери, а установочную тепловую мощность системы отопления Q от.уст.

Q от.уст =1,150*Q от.

где Q от - определяется по формуле:

Q от =ΔQ=Q orp +Q вент +Q тexн.

где Q orp - потери тепла через наружные ограждения;

Q вент - расход тепла на нагревание воздуха, поступающего в помещение;

Q тexн - технологические и бытовые тепловыделения.

Значения qот могут быть использованы для расчета потребности в тепле на отопление здания по укрупненным измерителям по следующей формуле:

Q= q от *V*(tп-t н).

Расчет тепловых нагрузок на системы отопления по укрупненным измерителям используют для ориентировочных подсчетов при определении потребности в тепле района, города, при проектировании центрального теплоснабжения и пр.

В последние годы значительно повысился интерес населения к расчёту удельной тепловой характеристики зданий. Этот технический показатель указывается в энергетическом паспорте многоквартирного дома. Он необходим при осуществлении проектно-строительных работ. Потребителей же интересует другая сторона этих расчётов - расходы за теплоснабжение.

Термины, применяемые в расчётах

Удельная отопительная характеристика здания - показатель максимального теплового потока, который нужен для обогрева конкретного здания. При этом перепад между температурой внутри здания и снаружи определяют в 1 градус.

Можно сказать, что эта характеристика наглядно показывает энергоэффективность здания.


Существует различная нормативная документация, где указываются средние значения. Степень отклонения от них и даёт представление о том, насколько эффективна удельная отопительная характеристика сооружения. Принципы расчёта берутся по СНиП «Тепловая защита зданий».

Какими бывают расчёты

Удельную отопительную характеристику определяют разными методами:

  • исходя из расчётно-нормативных параметров (с помощью формул и таблиц);
  • по фактическим данным;
  • индивидуально разработанные методики саморегулирующихся организаций, где во внимание принимаются так же и год возведения здания, и проектные особенности.

Вычисляя фактические показатели, обращают внимание на тепловую потерю в трубопроводах, которые проходят по неотапливаемым площадям, потери на вентиляцию (кондиционирование).

При этом, при определении удельной отопительной характеристики здания, СНиП «Вентиляция отопление и кондиционирование станет настольной книгой. Тепловизионное обследование поможет наиболее правильно выяснить показатели энергоэффективности.

Формулы расчёта

Количество теплоты, теряемой 1 м. куб. здания, с учётом температурной разницы в 1 градус (Q) можно получить по следующей формуле:


Этот расчёт не является идеальным, несмотря на то, что в нём учитывается площадь здания и размеры наружных стен, оконных проёмов и пола.

Есть другая формула, по которой можно выполнить расчёт фактической характеристики, где за основу вычислений берут годовой расход топлива (Q), среднюю температурный режим внутри здания(tint) и на улице (text) и отопительный период (z):


Несовершенство этого вычисления в том, что не в нём не отражена разница температур в помещениях здания. Наиболее удобной считается система расчёта, предложенная профессором Н. С. Ермолаевым:


Преимущество использования этой системы расчёта в том, что в ней учитываются проектировочные характеристики здания. Используется коэффициент, который показывает соотношение размера остекленных окон по отношению к площади стен. В формуле Ермолаева применяются коэффициенты таких показателей, как теплопередача окон, стен, потолков и полов.

Что означает класс энергоэффективности?

Цифры, полученные по удельной тепло характеристике, используются для того, чтобы определить энергоэффективность здания. По законодательству, начиная с 2011 года, все многоквартирные дома должны иметь класс энергоэффективности.


Для того, чтобы определить энергетическую эффективность, отталкиваются от следующих данных:

  • Разница между расчётно-нормативными и фактическими показателями. Фактические иногда определяют способом тепловизионного обследования. В нормативных показателях отражаются расходы на отопление, вентиляцию и климатические параметры региона.
  • Учитывают тип здания и стройматериалы, из которого оно возведено.

Класс энергоэффективности записывают в энергетический паспорт. У разных классов имеются свои показатели расхода энергоресурсов в течение года.

Как можно улучшить энергоэффективность сооружения

Если в процессе расчётов выясняется низкая энергоэффективность сооружения, то есть несколько путей для того, чтобы исправить ситуацию:

  1. Улучшения показателей теплосопротивления конструкций добиваются с помощью облицовки наружных стен, утепления тех этажей и перекрытий над подвальными помещениями теплоизолирующими материалами. Это могут быть сэндвич панели, полипропиленовые щиты, обычное оштукатуривание поверхностей. Эти меры повышают энергосбережение на 30-40 процентов.
  2. Иногда приходится прибегать к крайним мерам и приводить в соответствие с нормативами площади остеклённых конструктивных элементов здания. То есть закладывать лишние окна.
  3. Дополнительный эффект даёт установка окон с теплосберегающими стеклопакетами.
  4. Остекление террас, балконов и лоджий даёт прирост энергосбережения на 10-12 процентов.
  5. Производят регулировку подачи тепла в здание с помощью современных систем контроля. Так, установка одного терморегулятора обеспечит экономию топлива на 25 процентов.
  6. Если здание старое, меняют полностью морально устаревшую отопительную систему на современную (установка алюминиевых радиаторов с высоким КПД, пластиковых труб, в которых теплоноситель циркулирует свободно.)
  7. Иногда достаточно произвести тщательную промывку «закоксованных» трубопроводов и отопительного оборудования, чтобы улучшить циркуляцию теплоносителя.
  8. Есть резервы и в системах вентиляции, которые можно заменить на современные с микро проветриванием, устанавливаемым в окнах. Сокращение теплопотерь на некачественном вентилировании значительно улучшает энергоэффективность дома.
  9. Во многих случаях большой эффект дает монтаж теплоотражающих экранов.

В многоквартирных домах добиться повышения энергоэффективности гораздо сложнее, чем в частных. Требуются дополнительные затраты и не всегда они дают ожидаемый эффект.

Заключение

Результат может дать только комплексный подход с участием самих жильцов дома, которые более всех заинтересованы в тепло сбережении. Стимулирует к экономии энергоресурсов установка тепловых счётчиков.

В настоящее время рынок насыщен оборудованием, которое позволяет сэкономить энергоресурсы. Главное - иметь желание и произвести правильные расчёты, удельной отопительной характеристики здания, по таблицам, формулам или тепловизионного обследования. Если это не получается сделать самостоятельно, можно обратиться к специалистам.

Loading...Loading...