Устройство для ударно-импульсной очистки поверхностей котлов. Опыт внедрения газо-импульсной очистки на энерготехнологических котлах и котлах промышленной и коммунальной энергетики

Как уже отмечалось неоднократно, работа котла на твердом топливе сопровождается такими нежелательными явлениями, как шлакованием и загрязнением поверхностей нагрева. При высоких температурах частицы золы могут переходить в расплавленное или размягченное состояние. Часть частиц соударяется с трубами экранов или поверхностей нагрева и может налипать на них, накапливаясь в большом количестве.

Шлакование - это процесс интенсивного налипания на поверхности труб и обмуровки частиц золы, находящихся в расплавленном или размягченном состоянии. Образующиеся значительные наросты время от времени отслаиваются от труб и выпадают в нижнюю часть топки. При падении шлаковых наростов возможна деформация или даже разрушение трубной системы и обмуровки топки, а также шлакоудаляющих устройств. Прн высоких температурах упавшие глыбы шлака могут расплавиться и многотонными монолитами заполнить нижнюю часть топки. Подобное зашлаковывание топки требует останова котла и проведения расшлаковочных работ.

Шлакованию подвержены также трубы поверхностей нагрева, расположенные на выходе из топки. В этом случае рост шлаковых отложений приводит к забиванию проходов между трубами и к частичному или полному перекрытию сечения для прохода газов. Частичное перекрытие приводит к возрастанию сопротивления поверхностей нагрева и увеличению мощности дымососов. Если мощности дымососов недостаточно для вывода продуктов сгорания из зашлакованного котла, то необходимо снизить его нагрузку.

Расшлаковывание топки и очистка поверхностей нагрева - длительный и трудоемкий процесс, требующий привлечения значительных людских и материальных ресурсов. На трубах поверхностей нагрева могут оседать также частицы в твердом состоянии, загрязняя их наружную поверхность как с лобовой, так и с тыльной сторон. Эти загрязнения могут образовывать рыхлые или трудноудалимые отложения. Отложения на трубах уменьшают коэффициент теплопередачи (отложения имеют низкую теплопроводность и являются своего рода тепловой изоляцией) и эффективность отдачи теплоты. В результате этого температура уходящих газов возрастает.

Подобно шлакованию, загрязнения поверхностей нагрева котла приводят к увеличению сопротивления его газового тракта и ограничению тяги. При проектировании котельной установки предусматриваются специальные устройства и мероприятия по контролю за состоянием поверхностей нагрева и очистки их от шлака и загрязнений. На остановленных котлах используют преимущественно механические способы очистки с применением различных скребков и водяную обмывку. Регулярно используемый в эксплуатации способ - очистка поверхностей нагрева при помощи паровой или пневматической обдувки, водяной (термоциклической) обмывки, дробе- и виброочистки, а также импульсную очистки.

Обдувка труб 2 топочных экранов или поверхностей нагрева происходит в результате динамического и термического воздействия на слой шлака или загрязнения струи пара или воздуха, вытекающего из сопл 3, расположенных на вращающихся насадках (рис. 92). По отношению к оси насадки сопла расположены под углом 90°, обеспечивающим движение струй вдоль поверхности обдуваемых труб экранов или поверхностей нагрева. При обдувке насадки перемещают вглубь газохода по оси отверстия, выполненного в обмуровке 1, обдувая все змеевики. Для обдувки используется пар давлением 1,3-4 МПа с температурой 450 ’С или сжатый воздух.

В зависимости от назначения и зоны установки применяют обдувочные аппараты невыдвижного (ОН), маловыдвижного (ОМ) и глубоковыдвижного типа (ОГ). Аппараты невыдвижного типа (рис. 93, а) устанавливают в зоне относительно невысокой температуры газов (до 700 °С). Труба I насадки с соплами 2 свободно подвешивается с помощью хомутов 3 к трубам 4 обдуваемой поверхности. При обдувке труба 1 начинает вращаться и одновременно в нее подается пар или сжатый воздух. Корпус аппарата с помощью фланцевых соединений 6 крепится неподвижно к раме 5 каркаса котла. Длина насадки и расстояние между соплами зависят от соответствующих размеров обдуваемой поверхности нагрева.

Очистка поверхностей нагрева с помощью обдвочных аппаратов маловыдвижного типа (рис. 93, б) применяется преимущественно для наружной очистки экранов топки (ОМ-0,35). Обдувку проводят в следующем порядке. Насадка 1 с соплами 2 через резьбовое соединение шпинделя получает от электродвигателя вращательное и поступательное движение. Преобразование вращательного движения в поступательное достигается с помощью направляющей планки с храповым механизмом (закрыт кожухом 7). При полном вводе насадки в топку (ход 350 мм) приводом 8 открывается клапан 9 и обдувочный агент поступает в насадок и сопла. Для обеспечения эффективной обдувки аппараты устанавливают таким образом, чтобы в рабочем положении сопла отстояли от труб на 50-90 мм. По окончании обдувки клапан 9 закрывается лпч |,и насадка выводится из топки.

Количество обдувочных аппаратов, устанавливаемых в топке, выбирают из условия, что радиус действия одиночной обдувочной струи составляет около 3 м. Для очистки фестонов, ширмовых и конвективных пароперегревателей, расположенных в зоне температур газов 700-1000 °С, применяют глубоковыдвижные обдувочные аппараты (рис. 93, в). По принципу действия аппарата они подобны только что рассмотренному типу. Отличие состоит лишь в длине трубы - насадки 1 и ее хода, а также в применении раздельного привода для вращательного и поступательного движения.

При включении аппарата обдувочная труба 1 с соплами 2 приводится в поступательное движение, обеспечиваемое электродвигателем через редуктор 10 и цепную передачу 11. Вращательное движение труба получает от электродвигателя с редуктором 10. При подходе сопл к первым трубам открывается клапан 9 и выходящий из сопл пар начинает обдувать трубы поверхности нагрева. Обдувочный аппарат с помощью специальных передвижных опор 12 крепится к несущей балке (опирается или подвешивается). Совмещением на одной несущей балке двух обдувочных аппаратов (подвесного и опорного) с поступательным движением в противоположных направлениях обеспечивается возможность обдувки сразу двух котлов, т. е. получается аппарат двустороннего действия (типа ОГД).

Очистка поверхностей нагрева при помощи водяной обмывки используется при очистке экранов котлов, работающих на сильношлакующих топливах (сланцы, фрезерный торф, канско-ачинские и другие угли). Разрушение отложений в этом случае достигается в основном под действием внутренних напряжений, возникающих в слое отложений, при периодическом их охлаждении водяными струями, истекающими из сопловых насадков 2 головки 1 (рис. 94, а). Наибольшая интенсивность охлаждения наружного слоя отложений имеет место в первые 0,1 с воздействия водяной струи. Исходя из этого выбирается частота вращения сопловой головки. За цикл обдувки сопловая головка совершает 4-7 оборотов. Сопла располагают обычно в два ряда, на противоположных образующих сопловой головки. Этим обеспечивается равномерное охлаждающее действие струй (различного диаметра) на всей орошаемой водой площади очищаемых прилегающих экранов и необходимое чередование процессов охлаждения и нагрева при вращении головки, в результате чего повышается эффективность очистки.

Обмывку противолежащей и боковых стен производят аппаратом (рис. 94, б), содержащим установленное в шаровом шарнире 3 сопло, в которое подается вода из рукава 4. Сопло совершает подъемно-спускное и горизонтальное движение с помощью привода 5, соединенного с электродвигателем, размещенным на опорной плите 6. Водяная обмывка более эффективна по сравнению с паровой и пневматической обдувками, ее использование не приводит к сильному золовому износу очищаемых труб, так как скорости истечения воды из сопл невысоки. В то же время следует иметь в виду, что при водяной обмывке необходима система защиты, прерывающая подачу воды в аппарат, так как при длительном охлаждении отдельных труб экранов водой вследствие снижения их тепловосприятия может произойти нарушение циркуляции. При водяной обмывке повышается вероятность разрыва экранных труб, испытывающих циклические тепловые нагрузки.

Очистка поверхностей нагрева вибрационным способом применяют преимущественно для очистки ширмовых и конвективных перегревателей. Удаление отложений происходит под действием поперечных или продольных колебаний очищаемых труб, вызываемых специально устанавливаемыми вибраторами электрического (например, С-788) или пневматического типа (ВПН-69).

На рис. 95, а показана схема устройства виброочистки ширмового перегревателя с поперечными колебаниями труб. Возбуждаемые вибратором 3 колебания передаются виброштангами 2, соединенными непосредственно с вибратором 3 (рис. 95, а) или через опорную раму 4 (рис. 95, б) и от них змеевикам труб I. Виброштангу1, как правило, приваривают к крайней трубе с помощью полуцилиндрических накладок. Аналогичным образом остальные трубы соединяют между собой и с крайней трубой. Виброочистку с продольным колебанием труб чаще используют для вертикальных змеевиковых поверхностей нагрева, подвешенных (на пружинных подвесках) к каркасу котла (рис. 95, б).

Электрические вибраторы не позволяют повысить частоту колебаний выше 50 Гц, что оказывается недостаточным для разрушения связанных прочных отложений, образующихся на трубах при сжигании канско-ачинских углей, сланцев, фрезерного торфа и др. В этом случае целесообразнее пневматические генераторы колебаний, например ВПН-69. Они обеспечивают частоту колебаний до 1500 Гц и более широкий диапазон ее изменения. Применение мембранных змеевиковых поверхностей значительно упрощает использование вибрационного способа очистки.

Дробевая очистка поверхностей нагрева используется при сжигании мазута и топлив с большим содержанием в золе соединений щелочных (К, Na) и щелочно-земельных (Са, Mg) металлов. На трубах появляются прочносвязанные плотные отложения, удаление которых описанными выше способами невозможно. В случае дробевой очистки на очищаемую поверхность с некоторой высоты падают стальные шарики (дробь) небольшого размера. При падении и соударении с поверхностью дробь разрушает отложения на трубах как с лобовой стороны, так и с тыльной (при отскоке от нижележащих труб) и вместе с небольшой частью золы выпадает в нижней части конвективной шахты. Золу отделяют от дроби в специальных сепараторах, дробь накапливается в бункерах как под очищаемым газоходом, так и над ним.

Основные элементы дробеочистки с нижним расположением бункеров показаны на рис. 96. При включении установки дробь из бункера 1 питателем 2 подается во входное устройство дробепровода 4 (или в инжектор в установках под давлением). Наиболее распространенным способом подъема дроби является пневмотранспорт. Транспортируемая воздухом дробь отделяется в дробеуловителях 5, из которых с помощью тарельчатых питателей 6 распределяется по отдельным разбрасывающим устройствам 7. Дробевые установки с пневмотранспортом дроби работают под разрежением или под давлением. В первом случае воздуходувная машина или эжектор соединены всасывающим патрубком с линией сброса, а во втором воздух из воздуходувки нагнетается через инжектор 3 в линию 4 подъема дроби.

Из трубопровода 1 на полусферические разбрасыватели 2 (рис. 97, а) с определенной высоты падает дробь. Она отскакивает под различными углами и распределяется по очищаемой поверхности. Расположение подводящих трубопроводов и отражателей в зоне высоких температур требуют применения водяного охлаждения. Наряду с полусферическими отражателями применяют пневматические разбрасыватели (рис. 97, б). Их устанавливают на стенах газохода. Дробь из трубы 1 разбрасывается сжатым воздухом или паром, поступающим по подводящему каналу 4 в разгонный участок 3 разбрасывающего устройства. Для увеличения площади обработки изменяют давление воздуха (пара). Одним разбрасывателем могут быть обработаны 13-16 м 2 площади при.ширине 3 м. Следует отметить, что удар дроби с поверхностью труб при пневматическом разбрасывании сильнее, чем при использовании полусферических отражателей. В случае интенсивного загрязнения поверхностей нагрева можно комбинировать различные способы очистки.

В процессе эксплуатации котла для очистки экранных поверхностей нагрева применяют паровую и пароводяную об­дувку, а также вибрационную очистку, а для конвективных поверхностей нагрева - паро­вую и пароводяную обдувку, вибрационную, дробевую и акустическую очистку или самооб­дувку.

Наибольшее распространение имеют паровая обдувка и дробевая очистка. Для ширм и вертикальных пароперегревателей наиболее эффективной является вибрацион­ная очистка. Радикальным является приме­нение самообдувающихся поверхностей на­грева с малым диаметром и шагом труб, при которых поверхности нагрева непрерывно поддерживаются чистыми.

Паровая обдувка. Очистка по­верхностей нагрева от загрязнений может быть осуществлена за счет динамического воздействия струй воды, пара, пароводяной смеси или воздуха. Действенность струй определяется их дальнобойностью.

Наибольшей дальнобойностью и термическим эффектом, способствующим растрескиванию шлака, обладает струя воды. Однако обдувка водой может вызвать переохлаждение труб экранов и повреждение их металла. Воздушная струя имеет резкое снижение скорости, создает небольшой динамический напор и эффективна только при давлении не менее 4 МПа.

Применение воздушной обдувки затруднено необходимостью установки компрессоров высокой производительности и давления.

Наиболее распространена обдувка с применением насыщенного и перегретого пара. Струя пара имеет небольшую дальнобойность, но при давлении более 3 МПа ее действие до­статочно эффективно. При давлении пара 4 МПа перед обдувочным аппаратом динамический напор струи на расстоянии примерно 3 м от сопла состав­ляет более 2000 Па.

Для удаления отложений с поверхности нагрева динамический напор струи должен составлять примерно 200-250 Па для рыхлых золовых отложений, 400-500 Па для уплот­ненных золовых отложений, 2000 Па для оплавленных шлаковых отложений.

Обдувочные аппараты. Конструктивная схема обдувочного аппарата приведена на рис. 101.

Рис. 101. Обдувочный аппарат:

1, 5 – электродвигатели; 2 – обдувочная труба; 3, 6 – редуктора;

4 – каретка; 7 – монорельс; 8 – звездочка; 9 – бесконечная цепь;

10 – запорный клапан; 11 – тяга с клином; 12 – рычаг;

13 – неподвижный паропровод; 14 – стержень

Обдувочный аппарат включает в себя:

· электродвигатель 1, укрепленный на каретке 4;

· редуктор 3, предназначенный для вращения обдувочной трубы 2;

· электродвигатель 5 и редуктор 6, укрепленные на монорельсе 7, предназначенные для поступательного движения обдувочной трубы 2;

· механизм поступательного перемещения обдувочной трубы, состоящий из каретки 4, которая перемещается по полкам монорельса 7, звездочек 8 и бесконечной цепи 9;


· запорный клапан 10, автоматически открывающий пар в обдувочную трубу после ее выхода на позицию обдувки; механизм, управляющий запорным клапаном 10 и состоящий из тяги с клином 11 и рычага 12.

Обдувочная труба соединена при помощи сальника с неподвижным паропроводом 13, подводящим к ней пар от запорного клапана. Двутавровый монорельс 7 несет на себе все указанные механизмы, а сам крепится к каркасу котла. При получении импульса от предыдущего обдувочного аппарата, закончившего свою работу, пускатель включает электродвигатели 1 и 5. При этом включается сигнальная лампа, расположенная на щите программного управления обдувкой. Каретка 4, перемещаясь по монорельсу, вводит обдувочную трубу 2 в газоход. Когда обдувочная труба выходит на позицию обдувки, стержень 14, воздействуя на рычаг, увлекает при помощи тяги клин 11, который через толкатель отжимает запорный паровой клапан, открывающий доступ пара в обдувочную трубу. Пар из обдувочной трубы выходит через сопла, обдувая поверхность нагрева.

При поступательно-вращательном движении трубы 2 обдувка производится по винтовой линии. После полного ввода обдувочной трубы внутрь газохода штифт, установленный на приводной цепи 9, воздействуя на концевые выключатели электродвигателя 5, переключает прибор на обратный ход. При этом обдувка поверхности нагрева производится так же, как и при движении обдувочной трубы внутрь газохода.

До того как сопловая головка будет выведена из газохода, стержень 14, воздействуя через рычаг 12 на клин 11, выведет его в исходное положение, и запорный паровой клапан под действием пружины закроется, прекратив доступ пара в обдувочную трубу.

С возвратом обдувочной трубы в исходное положение штифт, установленный на приводной цепи 9, воздействуя на концевые выключатели, отключает электродвигатели 1 и 5, и следующий по схеме прибор получает импульс на включение.

Зона действия обдувочного аппарата до 2,5 м, а глубина захода в топку до 8 м. На стенах топки обдувочные аппараты размещаются так, чтобы зона их действия охватывала всю поверхность экранов.

Обдувочные аппараты для конвективных поверхностей нагрева имеют многосопловую трубу, не выдвигаются из газохода и только вращаются. Число сопл, расположенных с двух сторон обдувочной трубы, соответствует числу труб в ряду обдуваемой поверхности нагрева.

Для регенеративных воздухоподогрева­телей применяются обдувочные аппараты с качающейся трубой. Пар или вода подводит­ся к обдувочной трубе, и вытекающая из сопла струя очищает пластины воздухоподо­гревателя. Обдувочная труба поворачивается на определенный угол так, что струя попадает во все ячейки вращающегося ротора воздухо­подогревателя. Для очистки регенеративного воздухоподогревателя парогенераторов, ра­ботающих на твердом топливе, в качестве обдувочного агента применяется пар, а паро­генераторов, работающих на мазуте - щелоч­ная вода. Вода хорошо промывает и нейтра­лизует сернокислотные соединения, имею­щиеся в отложениях.

Пароводяная обдувка. Рабо­чим агентом обдувочного аппарата служит вода парогенератора или питательная вода.

Аппарат представляет собою сопла, установленные между трубами экранов. Вода в сопла подается под давлением, и в результате падения давления при прохождении через сопла из нее образуется пароводяная струя, направленная на противоположно расположенные участки экранов, фестонов, ширм. Высокая плотность пароводяной смеси и наличие недоиспарившейся в струе воды оказывают эффективное разрушающее действие на отложения шлака, который удаляется в нижнюю часть топки.

Вибрационная очистка. Вибрационная очистка основана на том, что пpи колебании труб с большой частотой нарушается сцепление отложений с металлом поверхности нагрева. Наиболее эффективна вибрационная очистка свободно подвешенных вертикальных труб, ширм и пароперегрева­телей. Для вибрационной очистки преимуще­ственно применяют электромагнитные вибра­торы (рис. 102).

Трубы пароперегревателей и ширм прикрепляются к тяге, которая выходит за пределы обмуровки и соединяется с вибра­тором. Тяга охлаждается водой, и место ее прохода через обмуровку уплотнено. Электро­магнитный вибратор состоит из корпуса с яко­рем и каркаса с сердечником, закрепленных пружинами. Вибрация очищаемых труб осуществляется за счет ударов по тяге с частотой 3000 ударов в минуту, амплитуда колебаний 0,3-0,4 мм.

Дробеочистка. Дробеочистка при­меняется для очистки конвективных поверх­ностей нагрева при наличии на них уплотнен­ных и связанных отложений. Очистка проис­ходит в результате использования кинетиче­ской энергии падающих на очищаемые поверх­ности чугунных дробинок диаметром 3-5 мм. В верхней части конвективной шахты парогенератора помещаются разбра­сыватели, которые равномерно распределяют дробь по сечению газохода. При падении дробь сбивает

Рис. 102. Вибрационное устройство для очи­стки вертикальных труб:

а - вид сбоку; б - сопряжение виброштанги с обогреваемыми

трубами, вид сверху; 1 - виб­ратор; 2 - плита; 3 - трос;

4 - противовес; 5 - виброштанга; 6 - уплотнение прохода

штан­ги через обмуровку; 7 - труба

осевшую на трубах золу, а за­тем вместе с ней собирается в бункерах, расположенных под шахтой. Из бункеров дробь вместе с золой попадает в сборный бункер, из которого питатель подает их в трубопровод, где масса золы с дробью подхватывается воздухом и выносится в дробеуловитель, из которого дробь по рукавам вновь подается в разбрасыватели, а воздух вместе с части­цами золы направляется в циклон, где про­исходит их разделение. Из циклона воздух сбрасывается в газоход перед дымососом, а зола, осевшая в циклоне, удаляется в систе­му золоудаления котельной установ­ки.

Транспорт дроби осуществляется по вса­сывающей или нагнетательной схеме. При всасываемой схеме разрежение в системе создается паровым эжектором или вакуум-насосом. При нагне­тательной схеме транспортирующий воздух подается в инжектор от компрессора. Для транспорта дроби необходима скорость воз­духа 40 – 50 м/с.

В последнее время дробеочистка практически не используется. Это связано с деформацией поверхностей нагрева и относительно низкой эффективностью.

В процессе эксплуатации котла для очистки экранных поверхностей нагрева применяется паровая и пароводяная их обдувка, а также вибрационную очистка наружных поверхностей нагрева от загрязнений. Для конвективных поверхностей нагрева используют паровую и пароводяную обдувку, вибрационную, дробевую и акустическую очистку или самообдувку. Наибольшее распространение имеют паровая обдувка и дробевая очистка. Для ширм и вертикальных пароперегревателей наиболее эффективной является вибрационная очистка. Радикальным является применение самообдувающихся поверхностей нагрева с малым диаметром и шагом труб, при которых поверхности нагрева непрерывно поддерживаются чистыми. Эффективность очистки поверхностей нагрева с помощью указанных устройств определяется коэффициентом изменения аэродинамического сопротивления газового тракта котла е = ∆р к /∆т и изменения его тепловой мощности ϕ = ∆Q/∆т, где ∆р к -увеличение сопротивления газового тракта котла, Па; ∆Q - уменьшение тепловой мощности котла, кВт; ∆т - период между очистками, ч. Увеличение коэффициентов е и ϕ указывает на необходимость уменьшения периода времени между очистками.

Паровая обдувка. Очистка наружных поверхностей нагрева от загрязнений может производиться за счет динамического воздействия струй воды, пара, пароводяной смеси или воздуха. Действенность струй определяется их дальнобойностью. Зависимость относительной скорости струи при данном давлении от относительного ее расстояния применительно к воздуху, пару, пароводяной смеси выражается формулой

где w 1 и w 2 - скорости на расстоянии I от сопла и на выходе из него; d 2 -выходной диаметр сопла.

Наибольшей дальнобойностью и термическим эффектом, способствующим растрескиванию шлака, обладает струя воды. Однако обдувка водой может вызвать переохлаждение труб экранов и повреждение их металла. Воздушная струя имеет резкое снижение скорости, создает небольшой динамический напор и эффективна только при давлении не менее 4 МПа. Применение воздушной обдувки затруднено необходимостью установки компрессоров высокой производительности и давления. Наиболее распространена обдувка с применением насыщенного и перегретого пара. Струя пара имеет небольшую дальнобойность, но при давлении более 3 МПа ее действие достаточно эффективно. Давление у обдуваемой поверхности, Па, определяется по формуле

где w 1 , v 1 - осевая скорость и удельный объем обдувочной среды на расстоянии l от сопла. При давлении пара 4 МПа перед обдувочным аппаратом давление струи на расстоянии примерно 3 м от сопла составляет более 2000 Па.

Для удаления отложений с поверхности нагрева давление струи должно составлять примерно 200-250 Па для рыхлых золовых отложений; 400-500 Па для уплотненных золовых отложений; 2000 Па для оплавленных шлаковых отложений. Расход обдувочного агенту для перегретого и насыщенного пара, кг/с,

где с=519 для перегретого пара, с=493 для насыщенного пара; µ = 0,95; d K -диаметр сопла в критическом сечении, м; р 1 - начальное давление, МПа; v" - начальный удельный объем пара, м 3 /кг.

Аппарат для паровой обдувки топочных экранов показан на рис. 25.6. В качестве обдувающего агента в этом устройстве и аппаратах аналогичной конструкции можно использовать пар при давлении до 4 МПа и температуре до 400 °С. Аппарат состоит из обдувочной трубы для подвода пара и механизма привода. Вначале обдувочной трубе сообщается поступательное движение. Когда сопловая головка вдвигается в топку , труба начинает вращаться. В это время открывается автоматически паровой клапан и пар поступает к двум диаметрально расположенным соплам. После окончания обдувки электродвигатель переключается на обратный ход и сопловая головка возвращается в исходное положение, что предохраняет ее от чрезмерного нагрева. Зона действия обдувочного аппарата до 2,5, а глубина захода в топку до 8 м. На стенках топки обдувочные аппараты размещаются так, чтобы зона их действия охватывала всю поверхность экранов.

Обдувочные аппараты для конвективных поверхностей нагрева имеют многосопловую трубу, не выдвигаются из газохода и только вращаются. Число сопл, расположенных с двух сторон обдувочной трубы, соответствует числу труб в ряду обдуваемой поверхности нагрева. Для регенеративных воздухоподогревателей применяются обдувочные аппараты с качающейся трубой. Пар или вода подводится к обдувочной трубе, и вытекающая из сопла струя очищает пластины воздухоподогревателя. Обдувочная труба поворачивается на определенный угол так, что струя попадает во все ячейки вращающегося ротора воздухоподогревателя. Для очистки регенеративного воздухоподогревателя котлов, работающих на твердом топливе, в качестве обдувочного агента применяется пар, а котлов, работающих на мазуте - щелочная вода. Вода хорошо промывает и нейтрализует сернокислотные соединения, имеющиеся в отложениях.

Пароводяная обдувка. Рабочим агентом обдувочного аппарата служит вода котла или питательная вода. Аппарат представляет собой сопла, установленные между трубами экранов. Вода в сопла подается под давлением, и в результате падения давления при прохождении через сопла из нее образуется пароводяная струя, направленная на противоположно расположенные участки экранов, фестонов, ширм. Большая плотность пароводяной смеси и наличие недоиспарившейся в струе воды оказывают эффективное разрушающее действие на отложения шлака, который удаляется в нижнюю часть топки.

Вибрационная очистка. Вибрационная очистка наружных поверхностей нагрева от загрязнений основана на том, что при колебании труб с большой частотой нарушается сцепление отложений с металлом поверхности нагрева. Наиболее эффективна вибрационная очистка наружных поверхностей нагрева от загрязнений свободно подвешенных вертикальных труб - ширм и пароперегревателей. Для вибрационной очистки преимущественно применяют электромагнитные вибраторы (рис. 25.7).

Трубы пароперегревателей и ширм прикрепляют к тяге, которая выходит за пределы обмуровки и соединяется с вибратором. Тяга охлаждается водой, и место ее прохода через обмуровку уплотнено. Электромагнитный вибратор состоит из корпуса с якорем и каркаса с сердечником, закрепленных пружинами. Вибрация очищаемых труб осуществляется за счет ударов по тяге с частотой 3000 ударов в минуту, амплитуда колебаний 0,3-0,4 мм. Дробеочистка. Дробеочистка применяется для очистки конвективных поверхностей нагрева при наличии на них уплотненных и связанных отложений. Очистка наружных поверхностей нагрева от загрязнений происходит в результате использования кинетической энергии падающих на очищаемые поверхности чугунных дробинок диаметром 3-5 мм. Схема устройства для дробеочистки показана на рис. 25.8. В верхней части конвективной шахты котла помещаются разбрасыватели, которые равномерно распределяют дробь по сечению газохода. При падении дробь сбивает осевшую на трубах золу, а затем вместе с ней собирается в бункерах, расположенных под шахтой. Из бункеров дробь вместе с золой попадает в сборный бункер, из которого питатель подает их в трубопровод, где масса золы с дробью подхватывается воздухом и выносится в дробеуловитель, из которого дробь по рукавам вновь подается в разбрасыватели, а воздух вместе с частицами золы направляется в циклон , где происходит их разделение. Из циклона воздух сбрасывается в газоход перед дымососом , а зола, осевшая в циклоне, удаляется в систему золоудаления котельной установки .

Транспорт дроби осуществляется по всасывающей (рис. 25.8, а) или нагнетательной (рис. 25.8, б) схеме. При всасывающей схеме разрежение в системе создается паровым эжектором или вакуум-насосом. При нагнетательной схеме транспортирующий воздух подается в инжектор от компрессора. Для транспорта дроби необходима скорость воздуха 40-50 м/с.

Расход дроби через систему, кг/с, определяется по формуле

где g др = 100/200 кг/м 2 - удельный расход дроби на 1 м 2 сечения газохода; F г -площадь сечения газохода шахты в плане, м 2 ; n - количество пневмолиний; принимается, что одна пневмолиния обслуживает два разбрасывателя, каждый из которых обслуживает сечение по газоходу, равное 2,5X2,5 м; т - продолжительность периода очистки, с. Обычно т = 20/60 С.

Импульсная очистка наружных поверхностей нагрева от загрязнений основана на ударном воздействии волны газов. Импульсная очистка наружных поверхностей нагрева от загрязнений производится в камере, внутренняя полость которой сообщается с газоходами котла, в которых расположены конвективные поверхности нагрева. В камеру горения периодически подается смесь горючих газов с окислителем, которая воспламеняется искрой. При взрыве смеси в камере повышается давление и при образовании волн газов производится очистка наружных поверхностей нагрева от загрязнений.

А. П. Погребняк, заведующий лабораторией,
к.т.н. С.И. Воеводин, ведущий научный сотрудник,
В.Л. Кокорев, главный конструктор проекта,
А.Л. Кокорев, ведущий инженер,
ОАО «НПО ЦКТИ», г. Санкт-Петербург

В нынешних экономических условиях, когда большинство предприятий решают вопросы максимального повышения эффективности своего оборудования, в т.ч. и принадлежащих им котельных, с целью снижения себестоимости производимой продукции в условиях постоянно растущих цен на энергоносители, особое внимание уделяется нетрадиционным техническим решениям, позволяющим экономить топливо, повышать эффективность и долговечность работы оборудования.

Одним из основных направлений экономии различных видов жидкого и твердого топлива (мазут, дизтопливо, уголь, торф, сланец, древесные отходы и др.) является повышение эффективности работы паровых и водогрейных котлов, технологических агрегатов, сжигающих эти виды топлива, за счет предотвращения загрязнения их поверхностей нагрева золовыми отложениями.

Длительный опыт эксплуатации паровых и водогрейных котлов, котлов-утилизаторов и других технологических агрегатов, оборудованных традиционными средствами очистки поверхностей нагрева, показали их недостаточную эффективность и надежность, что в значительной мере снижает экономичность работы (уменьшение КПД на 2-3%) и требует больших трудозатрат на производство ручной очистки. Кроме того, эти способы очистки обладают рядом других существенных недостатков, а именно:

Паровая обдувка, наряду со значительными энерго- и трудозатратами, способствует коррозионному и эрозионному износу поверхностей нагрева, особенно при сжигании высокосернистого топлива, что сокращает срок их службы в 1,5-2 раза; наличие влаги способствует затвердеванию отложений на трубах за счет сульфати-зации, следствием чего являются частые остановки котлоагрегатов для ручной очистки;

Дробеочистка является сложным и энергозатратным способом очистки, требующим значительных трудозатрат в процессе его применения и при ремонте используемого оборудования, и не обеспечивающим при этом эффективной и надежной очистки из-за больших потерь дроби, а также застревания дроби в трубной системе устройства очистки и в поверхностях нагрева;

Виброочистка и ударная очистка вызывают механические повреждения очищаемых поверхностей нагрева.

Этих недостатков лишены разработанные в ОАО «НПО ЦКТИ» на основе собственных исследований, системы газоимпульсной очистки (ГИО) с малогабаритными импульсными камерами, которые предназначены для очистки от отложений конвективных поверхностей нагрева промышленных котлоагрегатов (ДКВР, ДЕ, КВ-ГМ, ПТВМ, ГМ, БКЗ и др.), а также котлов коммунальной энергетики малой мощности (от 0,5 МВт и выше). Разработанные системы ГИО обладают различной степенью автоматизации, вплоть до полностью автоматизированных.

Принцип работы системы ГИО заключается в воздействии на отложения, образующиеся на поверхностях нагрева направленных ударных и акустических волн, генерируемых за счет взрывного горения ограниченного объема газовоздушной смеси (0,01-0,1 м3), осуществляемого в импульсной камере, размещаемой вне газохода котла. За счет истечения из импульсной камеры со сверхзвуковой скоростью продуктов сгорания происходит комплексное волновое и термогазодинамическое воздействие на наружные отложения, теплообменные и ограждающие поверхности.

В качестве рабочих компонентов в системе используются: природный газ, топливный или баллонный газ (пропан) и воздух от собственного вентилятора.

Основными конструктивными элементами системы ГИО являются: импульсные камеры, сопловые блоки, коллекторы, технологический блок, блок зажигания и управления (БЗУ), комплекс управления системой (автоматизированный вариант).

Импульсная камера (фото 1) предназначена для организации процесса взрывного горения и представляет собой цилиндрическую емкость диаметром 159-325 мм (в зависимости от характеристик очищаемой поверхности и вида топлива) и высотой не более 1 м. Импульсная камера соединяется с газоходом котла при помощи соплового блока, который предназначен для ввода продуктов взрыва газовоздушной смеси в газоход котла и направления создаваемых ударных волн на поверхность нагрева.

Технологический блок ГИО имеет габариты 250x1300 мм (фото 2) и устанавливается непосредственно около котла и выполняет все технологические функции в соответствии с алгоритмом работы системы очистки. Технологический блок включает в себя вентилятор, узел подготовки и зажигания смеси, газовую линию с арматурой и манометром.

Управление элементами технологического блока осуществляется при помощи БЗУ (фото 3), который соединен кабелем с электросетью и имеет разъемы для соединения с запальником, вентилятором и электромагнитным клапаном. БЗУ задает количество импульсов и интервал между ними.

В автоматизированном варианте ГИО комплекс управления состоит из блока управления и одного или нескольких исполнительных блоков, которые выполняют функции БЗУ. При этом запуск системы в работу осуществляется «от кнопки», а остановка и приведение в исходное состояние всех элементов системы происходит автоматически.

Периодичность очистки - от нескольких раз в сутки для котлов, работающих на твердом топливе (уголь, сланец, торф и т.п.), до одного раза в неделю при работе на природном газе. Продолжительность цикла очистки - 10-15 мин, расход газа (пропана) на цикл очистки - 0,5-2,5 кг.

Работа ГИО не оказывает вредных воздействий на обслуживающий персонал и конструктивные элементы котла.

Генерируемые импульсными камерами ударные волны распространяются во все точки газохода котла, что обеспечивает равномерную очистку поверхностей нагрева. ГИО может использоваться для очистки поверхностей нагрева, работающих в среде как нейтральных, так и агрессивных газов (SO2, HF и др.).

Система ГИО надежна в работе и проста в управлении и обслуживании, в промежутках между ревизиями котлов не требует профилактических ремонтов. Ее можно устанавливать не только на сооружаемых котлах, но и на котлах, находящихся в эксплуатации. Время простоя котла для монтажа ГИО составляет 5-10 сут. и зависит от количества монтируемых импульсных камер.

Применение ГИО кроме экономии электроэнергии за счет улучшения аэродинамики газохода и сокращения затрат за счет исключения ручной очистки, позволяет значительно повысить эффективность работы конвективных поверхностей нагрева котлов (см. таблицу). КПД паровых и водогрейных котлов, работающих на жидком и твердом топливе, за счет применения ГИО повышается на 1,5-2%, что позволяет достичь значения близкого к расчетному.

Применение ГИО на котлах различных типов дает экономический эффект, позволяющий окупать затраты на внедрение только за счет экономии топлива, в срок от полугода до года.

В настоящее время разработана и внедряется также малогабаритная передвижная система ГИО для малых котлов предприятий коммунальной энергетики.

[email protected]

| скачать бесплатно Опыт внедрения газо-импульсной очистки на энерготехнологических котлах и котлах промышленной и коммунальной энергетики , Погребняк А. П., Воеводин С.И., Кокорев В.Л., Кокорев А.Л. ,

Классификация наружных отложений

В составе золы имеются в небольшом количестве легкоплавкие соединения с температурой плавления 700 – 850 о С. Это в основном хлориды и сульфаты щелочных металлов . В зоне высоких температур ядра факела они переходят в парообразное состояние и затем конденсируются на поверхности труб, так как температура чистой стенки всегда менее 700 о С.

Среднеплавкие компоненты золы с температурой плавления 900 – 1100 о С могут образовать первичный липкий слой на экранных трубах и ширмах, если в результате не налаженного топочного режима факел будет касаться стен топки, и вблизи экранных труб будет находиться высокотемпературная газовая среда.

Тугоплавкими компонентами золы являются, как правило, чистые окислы . Температура их плавления (1600 – 2800 о С) превышает максимальную температуру ядра факела, поэтому они проходят зону горения без изменения своего состояния, оставаясь твердыми. Ввиду малых размеров частиц эти компоненты в основном уносятся потоком газов и составляют летучую золу.

В зоне высоких температур газов (выше 700 – 800 о С) на поверхности чистой трубы вначале происходит конденсация из газового потока легкоплавких соединений и образуется первичный липкий слой на трубах. На него одновременно налипают твердые частицы золы. Затем он отвердевает и становиться плотным первоначальным слоем отложений, крепко сцепленным с поверхностью трубы. Температура наружной поверхности слоя повышается и конденсация прекращается.

Далее на шероховатую поверхность этого слоя набрасываются мелкие и твердые частицы тугоплавкой золы, образуя внешний сыпучий слой отложений. Таким образом, в этой области температур газов на поверхности труб чаще всего присутствуют два слоя отложений: плотный и сыпучий .

Сыпучие отложения распространены в зоне относительно низких температур газового потока (менее 600 – 700 о С), характерных для поверхности конвективной шахты.

Сыпучие отложения преимущественно образуются на тыльной стороне трубы по отношению к направлению газового потока, в образующейся сзади трубы вихревой зоне (рисунок 3.32). На лобовой стороне сыпучие отложения образуются лишь при малых скоростях потока (менее 5 – 6 м/с) или при наличии в потоке очень тонкой летучей золы.

Частицы золы, участвующие в образовании сыпучих отложений разделяют на три группы.

К первой группе относят самые мелкие фракции, так называемые безынерционные частицы, которые настолько малы, что двигаются по линиям тока газов, и поэтому вероятность их осаждения на трубах мала. Предельный размер частиц, относящихся к этой группе, составляет около 10 мкм.



Ко второй группе относятся крупные фракции размером свыше 30 мкм. Эти частицы обладают достаточно большой кинетической энергией и при контакте с сыпучими отложениями разрушают их.

Третью группу составляют фракции золы размером от 10 до 30 мкм. При обтекании газовым потоком трубы эти частицы преимущественно оседают на ее поверхности и образуют слой отложений. В результате размер слоя сыпучих отложений определяется динамическим равновесием процессов постоянного оседания средних фракций золы и разрушения осевшего слоя более крупными частицами.

Рисунок 3.32 – Загрязнение труб сыпучими отложениями при разных направлениях и скоростях движения газов

Одним из методов очистки поверхностей нагрева является использование динамического воздействия на слой отложений струи пара, воды или воздуха. Действенность струй определяется их дальнобойностью, в пределах которой струя сохраняет достаточный динамический напор для разрушения отложений. Наибольшей дальнобойностью и термическим эффектом воздействия на плотные отложения обладает водяная струя.

Аппараты этого типа находят применение для очистки экранов топочных камер. Однако обдувка водой требует строго расчета, чтобы исключить резкое переохлаждение металла после удаления отложений.

Для очистки радиационных поверхностей нагрева и конвективных перегревателей широкое распространение получили многосопловые выдвижные аппараты, работающие на насыщенном или перегретом паре с давлением около 4 МПа.

Для очистки ширм и коридорных трубных пакетов в области горизонтального газохода применяют вибро-очистку. Ее действие основано на том, что при колебании труб с большой частотой нарушается сцепление отложений с металлом. В этих целях используют вибраторы с водоохлажденными штангами, передающими воздействие на очищаемую поверхность.

Наиболее эффективным способом очистки конвективных поверхностей в опускной шахте парового котла от сыпучей золы является дробеочистка . В этом случае используют кинетическую энергию падающих чугунных дробинок диаметром 3 – 5 мм. Дробь подается вверх воздушным потоком и распределяется по всему сечению шахты. Расход дроби на очистку определяют исходя из оптимальной интенсивности «орошения» дробью – 150 – 200 кг/м 2 сечения конвективной шахты. Время очистки составляет обычно 20 – 60 с.

Обязательным условием успешного использования дробевой очистки является регулярность ее применения сразу после пуска котла в эксплуатацию при еще практически чистых поверхностях нагрева.

В последнее время находит распространение метод термоволновой очистки поверхностей нагрева конвективной шахты при помощи акустических низкочастотных волн, генерируемых в специальной импульсной камере взрывного горения.

Очистку вынесенных за пределы котла регенеративных воздухоподогревателей (РВП) осуществляют путем обдувки теплообменной набивки РВП перегретым паром (на 170 – 200 о С выше температуры насыщения), реже применяют обмывку водой (липкие отложения она удаляет, но увеличивает коррозию), а также применяют метод ударной волновой очистки и термический способ очистки . Последний основан на периодическом повышении температуры набивки до 250 – 300 о С за счет отключения подачи воздуха в аппарат РВП. При этом высушиваются липкие отложения и испаряется сконденсировавшаяся серная кислота.

Loading...Loading...