Что такое синтез растений. Значение фотосинтеза. Значение фотосинтеза в природе. Результат фотосинтеза

В природе под воздействием солнечного света протекает жизненно важный процесс, без которого не может обойтись ни одно живое существо на планете Земля. В результате реакции в воздух выделяется кислород, которым мы дышим. Этот процесс получила название фотосинтеза. Что такое фотосинтез с научной точки зрения, и что происходит в хлоропластах клеток растений рассмотрим ниже.

Фотосинтез в биологии – это преобразование органических веществ и кислорода из неорганических соединений под воздействием солнечной энергии. Он характерен для всех фотоавтотрофов, которые способны сами вырабатывать органические соединения.

К таким организмам относятся растения, зеленые, пурпурные бактерии, цианобактерии (сине-зеленые водоросли).

Растения — фотоавтотрофы впитывают из грунта воду, а из воздуха – углекислый газ. Под воздействием энергии Солнца образуется глюкоза, которая впоследствии превращается на полисахарид – крахмал, необходимый растительным организмам для питания, образования энергии. В окружающую среду выделяется кислород – важное вещество, используемое всеми живыми организмами для дыхания.

Как происходит фотосинтез. Химическую реакцию можно изобразить с помощью следующего уравнения:

6СО2 + 6Н2О + Е = С6Н12О6 + 6О2

Фотосинтетические реакции происходят в растениях на клеточном уровне, а именно – в хлоропластах, содержащих основной пигмент хлорофилл. Это соединение не только придает растениям зеленую окраску, но и принимает активное участие в самом процессе.

Чтобы лучше разобраться в процессе, нужно ознакомиться со строением зеленых органелл — хлоропластов.

Строение хлоропластов

Хлоропласты – это органоиды клетки, которые содержатся только в организмах растений, цианобактерий. Каждый хлоропласт покрыт двойной мембраной: внешней и внутренней. Внутреннюю часть хлоропласта заполняет строма – основное вещество, по консистенции напоминающее цитоплазму клетки.

Строение хролопласта

Строма хлоропласта состоит из:

  • тилакоидов – структур, напоминающих плоские мешочки, содержащие пигмент хлорофилл;
  • гран – группы тилакоидов;
  • ламел – канальцев, которые соединяют между собой граны тилакоидов.

Каждая грана имеет вид стопки с монетами, где каждая монетка – это тилакоид, а ламела – полка, на которой выложены граны. Помимо этого хлоропласты имеют собственную генетическую информацию, представленную двуспиральными нитями ДНК, а также рибосомы, которые принимают участие при синтезе белка, капли масла, зерна крахмала.

Полезное видео: фотосинтез

Основные фазы

Фотосинтез имеет две чередующиеся фазы: световую и темновую. Каждая имеет свои особенности протекания и продукты, образующиеся при определенных реакциях. Две фотосистемы, образованные из вспомогательных светособирающих пигментов хлорофилла и каротиноида, передают энергию главному пигменту. В результате происходит преобразование световой энергии в химическую – АТФ (аденозинтрифосфорную кислоту). Что же происходит в процессах фотосинтеза.

Световая

Световая фаза происходит при попадании фотонов света на растение. В хлоропласте она протекает на мембранах тилакоидов.

Основные процессы:

  1. Пигменты фотосистемы І начинают «впитывать» фотоны солнечной энергии, которые передаются на реакционный центр.
  2. Под действием фотонов света происходит «возбуждение» электронов в молекуле пигмента (хлорофилла).
  3. «Возбужденный» электрон с помощью транспортных белков переносится на наружную мембрану тилакоида.
  4. Этот же электрон взаимодействует со сложным соединением НАДФ (никотинамидадениндинуклеотидфосфат), восстанавливая его до НАДФ*Н2 (это соединение участвует при темновой фазе).

Подобные процессы происходят и в фотосистеме ІІ. «Возбужденные» электроны покидают реакционный центр и переносятся на внешнюю мембрану тилакоидов, где связываются с акцептором электронов, возвращаются на фотосистему І и восстанавливают ее.

Световая фаза фотосинтеза

А как же восстанавливается фотосистема ІІ? Это происходит за счет фотолиза воды – реакции расщепления Н2О. Вначале молекула воды отдает электроны реакционному центру фотосистемы ІІ, благодаря чему происходит его восстановление. После этого происходит полное расщепление воды на водород и кислород. Последний через устьица эпидермиса листка проникает в окружающую среду.

Изобразить фотолиз воды можно с помощью уравнения:

2Н2О = 4Н + 4е + О2

Помимо этого, при световой фазе происходит синтез молекул АТФ – химической энергии, которая идет на образование глюкозы. В оболочке тилакоидов содержится ферментативная система, принимающая участие в образовании АТФ. Этот процесс происходит в результате того, что ион водорода переносится через канал специального фермента из внутренней оболочки на внешнюю. После чего высвобождается энергия.

Важно знать! При световой фазе фотосинтеза образуется кислород, а также энергия АТФ, которая используется для синтеза моносахаридов в темновой фазе.

Темновая

Реакции темновой фазы протекают круглосуточно, даже без наличия солнечного света. Фотосинтетические реакции происходят в строме (внутренней среде) хлоропласта. Более детально данный предмет изучал Мелвин Кальвин, в честь которого реакции темновой фазы носят название цикл Кальвина, или С3 — путь.

Этот цикл протекает в 3 этапа:

  1. Карбоксилирование.
  2. Восстановление.
  3. Регенерация акцепторов.

При карбоксилировании вещество под названием рибулозобисфосфат соединяется с частичками углекислого газа. Для этого используется специальный фермент – карбоксилаза. Образуется неустойчивое шестиуглеродное соединение, которое практически сразу же расщепляется на 2 молекулы ФГК (фосфоглицериновой кислоты).

Для восстановления ФГК используется энергия АТФ и НАДФ*Н2, образованных при световой фазе. При последовательных реакциях образуется триуглеродный сахар с фосфатной группой.

Во время регенерации акцепторов часть молекул ФГК используется для восстановления молекул рибулозобисфосфата, который является акцептором СО2. Далее при последовательных реакциях образуется моносахарид – глюкоза. Для всех этих процессов используется энергия АТФ, образованная в световой фазе, а также НАДФ*Н2.

Процессы преобразования 6 молекул углекислоты в 1 молекулу глюкозы требуют расщепления 18 молекул АТФ и 12 молекул НАДФ*Н2. Изобразить эти процессы можно с помощью следующего уравнения:

6СО2 + 24Н = С6Н12О6 + 6Н2О

Впоследствии из образованной глюкозы синтезируются более сложные углеводы – полисахариды: крахмал, целлюлоза.

Обратите внимание! При фотосинтезе темновой фазы образуется глюкоза – органическое вещество, необходимое для питания растения, образования энергии.

Нижеприведенная таблица фотосинтеза, поможет лучше усвоить основную суть этого процесса.

Сравнительная таблица фаз фотосинтеза

Хотя цикл Кальвина является наиболее характерным для темновой фазы фотосинтеза, однако для некоторых тропических растений характерен цикл Хэтча-Слэка (С4-путь), который имеет свои особенности протекания. Во время карбоксилирования в цикле Хэтча-Слэка образуется не фосфоглицериновая кислота, а другие, такие как: щавелевоуксусная, яблочная, аспарагиновая. Также при этих реакциях углекислый газ накапливается в клетках растений, а не выводится при газообмене, как у большинства.

Впоследствии этот газ участвует при фотосинтетических реакциях и образовании глюкозы. Также стоит отметить, что С4-путь фотосинтеза требует больших затрат энергии, чем цикл Кальвина. Основные реакции, продукты образования в цикле Хэтча-Слэка не отличаются от цикла Кальвина.

Благодаря реакциям цикла Хэтча-Слэка у растений практически не происходит фотодыхание, так как устьица эпидермиса находятся в закрытом состоянии. Это позволяет им приспособится к специфическим условиям обитания:

  • сильной жаре;
  • сухому климату;
  • повышенной засоленности мест обитания;
  • недостатку СО2.

Сравнение световой и темновой фаз

Значение в природе

Благодаря фотосинтезу происходит образование кислорода – жизненно важного вещества для процессов дыхания и накопления внутри клеток энергии, которая дает возможность живым организмам расти, развиваться, размножаться, принимает непосредственное участие в работе всех физиологических систем организма человека, животных.

Важно! Из кислорода в атмосфере образуется озоновый шар, который защищает все организмы от пагубного влияния опасного ультрафиолетового облучения.

Полезное видео: подготовка к ЕГЭ по Биологии — фотосинтез

Вывод

Благодаря умению синтезировать кислород и энергию растения формируют первое звено во всех пищевых цепях, являясь продуцентами. Потребляя зеленые растения, все гетеротрофы (животные, люди) вместе с пищей получают жизненно важные ресурсы. Благодаря процессу, протекающему в зеленых растениях и цианобактериях, поддерживается постоянный газовый состав атмосферы и жизнь на земле.

Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Задачи: Сформировать знания о реакциях пластического и энергетического обменов и их взаимосвязи; вспомнить особенности строения хлоропластов. Дать характеристику световой и темновой фазы фотосинтеза. Показать значение фотосинтеза как процесса, обеспечивающего синтез органических веществ, поглощение углекислого газа и выделение кислорода в атмосферу.

Тип урока: лекция.

Оборудование:

  1. Средства наглядности: таблицы по общей биологии;
  2. ТСО: компьютер; мультимедиапроектор.

План лекции:

  1. История изучения процесса.
  2. Эксперименты по фотосинтезу.
  3. Фотосинтез, как анаболический процесс.
  4. Хлорофилл и его свойства.
  5. Фотосистемы.
  6. Световая фаза фотосинтеза.
  7. Темновая фаза фотосинтеза.
  8. Лимитирующие факторы фотосинтеза.

Ход лекции

История изучения фотосинтеза

1630 год начало изучения фотосинтеза. Ван Гельмонт доказал, что растения образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей и ивой, и отдельно само дерево, он показал, что через 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Он решил, что пищу дерево получает из воды. В настоящее время мы знаем, что используется углекислый газ.

В 1804 году Соссюр установил, что в процессе фотосинтеза велико значение воды.

В 1887 году открыты хемосинтезирующие бактерии.

В 1905 году Блэкман установил, что фотосинтез состоит из двух фаз: быстрой – световой и ряда последовательных медленных реакций темновой фазы.

Эксперименты по фотосинтезу

1 опыт доказывает значение солнечного света (рис. 1.) 2 опыт доказывает значение углекислого газа для фотосинтеза (рис. 2.)

3 опыт доказывает значение фотосинтеза (рис.3.)

Фотосинтез, как анаболический процесс

  1. Ежегодно в результате фотосинтеза образуется 150 млрд. тонн органического вещества и 200 млрд. тонн свободного кислорода.
  2. Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез. Поддерживает современный состав атмосферы, необходимый для существования современных форм жизни.
  3. Фотосинтез препятствует увеличению концентрации углекислого газа, предотвращая перегрев Земли вследствие парникового эффекта.
  4. Фотосинтез – основа всех цепей питания на Земле.
  5. Запасенная в продуктах энергия – основной источник энергии для человечества.

Сущность фотосинтеза заключается в превращении световой энергии солнечного луча в химическую энергию в виде АТФ и НАДФ·Н 2 .

Суммарное уравнение фотосинтеза:

6СО 2 + 6Н 2 О С 6 Н 12 О 6 + 6О 2

Существует два главных типа фотосинтеза:

Хлорофилл и его свойства

Виды хлорофилла

Хлорофилл имеет модификации а, в, с, d. Отличаются они структурным строением и спектром поглощения света. Например: хлорофилл в содержит на один атом кислорода больше и на два атома водорода меньше, чем хлорофилл а.

Все растения и оксифотобактерии имеют как основной пигмент желто-зеленый хлорофилл а, а как дополнительный хлорофилл в.

Другие пигменты растений

Некоторые другие пигменты способны поглощать солнечную энергию и передавать ее в хлорофилл, вовлекая ее тем самым в фотосинтез.

У большинства растений есть темно оранжевый пигмент – каротин , который в животном организме превращается в витамин А и желтый пигмент – ксантофилл .

Фикоцианин и фикоэритрин – содержат красные и сине-зеленые водоросли. У красных водорослей эти пигменты принимают более активное участие в процессе фотосинтеза, чем хлорофилл.

Хлорофилл минимально поглощает свет в сине-зеленой части спектра. Хлорофилл а, в- в фиолетовой области спектра, где длина волны 440 нм. Уникальная функция хлорофилла состоит в том, что он интенсивно поглощает солнечную энергию и передает ее другим молекулам.

Пигменты поглощают определенную длину волны, не поглощенные участки солнечного спектра отражаются, что обеспечивает окраску пигмента. Зеленый свет не поглощается, поэтому хлорофилл зеленый.

Пигменты – это химические соединения, которые поглощают видимый свет, что приводит электроны в возбужденное состояние. Чем меньше длина волны, тем больше энергия света и больше его способность переводить электроны в возбужденное состояние. Это состояние неустойчиво и вскоре вся молекула возвращается в свое обычное низкоэнергетическое состояние теряя при этом энергию возбуждения. Эта энергия может быть использована на флуоресценцию.

Фотосистемы

Пигменты растений участвующие в фотосинтезе «упакованы» в тилакоиды хлоропластов в виде функциональных фотосинтетических единиц – фотосинтетических систем: фотосистемы I и фотосистемы II.

Каждая система состоит из набора вспомогательных пигментов (от 250 до 400 молекул), передающих энергию на одну молекулу главного пигмента и она называется реакционным центром . В нем энергия Солнца используется для фотохимических реакций.

Световая фаза идет обязательно с участием света, темновая фаза и на свету и в темноте. Световой процесс происходит в тилакоидах хлоропластов, темновой – в строме, т.е. эти процессы пространственно разобщены.

Световая фаза фотосинтеза

В 1958 году Арнон и его сотрудники изучили световую фазу фотосинтеза. Они установили, что источником энергии при фотосинтезе является свет, а так как на свету в хлорофилле происходит синтез из АДФ+Ф.к. → АТФ, то этот процесс называется фосфорилированием. Оно сопряжено с переносом электронов в мембранах.

Роль световых реакций: 1. Синтез АТФ – фосфорилирование. 2. Синтез НАДФ.Н 2 .

Путь переноса электронов называется Z-схемой.

Z-схема. Нециклическое и циклическое фотофосфорилирование (рис. 6.)

В ходе циклического транспорта электронов не происходит образования НАДФ.Н 2 и фоторазложения Н 2 О, следовательно и выделение О 2 . Этот путь используется тогда, когда в клетке избыток НАДФ.Н 2 , но требуется дополнительная АТФ.

Все эти процессы относятся к световой фазе фотосинтеза. В дальнейшем энергия АТФ и НАДФ.Н 2 используется для синтеза глюкозы. Для этого процесса свет не нужен. Это реакции темновой фазы фотосинтеза.

Темновая фаза фотосинтеза или цикл Кальвина

Синтез глюкозы происходит в ходе циклического процесса, который получил название по имени ученого Мельвина Кальвина, открывшего его, и награжденного Нобелевской премией.

Рис. 8. Цикл Кальвина

Каждая реакция цикла Кальвина осуществляется своим ферментом. Для образования глюкозы используются: СО 2 , протоны и электроны от НАДФ.Н 2 , энергия АТФ и НАДФ.Н 2 . Происходит процесс в строме хлоропласта. Исходным и конечным соединением цикла Кальвина, к которому с помощью фермента рибулозодифосфаткарбоксилазы присоединяется СО2, является пятиуглеродный сахар – рибулозобифосфат , содержащий две фосфатные группы. В результате образуется шестиуглеродное соединение, сразу же распадающееся на две трехуглеродные молекулы фосфоглицериновой кислоты , которые затем восстанавливаются до фосфоглицеринового альдегида . При этом, часть образовавшегося фосфоглицеринового альдегида используется для регенерации рибулозобифосфата, и, таким образом, цикл возобновляется снова (5С 3 → 3С 5), а часть используется для синтеза глюкозы и других органических соединений (2С 3 → С 6 → С 6 Н 12 О 6).

Для образования одной молекулы глюкозы необходимо 6 оборотов цикла и требуется 12НАДФ.Н 2 и 18 АТФ. Из суммарного уравнения реакции получается:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

Из приведенного уравнения видно, что атомы С и О вошли в глюкозу из СО 2 , а атомы водорода из Н 2 О. Глюкоза в дальнейшем может быть использована как на синтез сложных углеводов (целлюлозы, крахмала), так и на образование белков и липидов.

(С 4 – фотосинтез. В 1965 году было доказано, что у сахарного тростника – первыми продуктами фотосинтеза, являются кислоты, содержащие четыре атома углерода (яблочная, щавелевоуксусная, аспарагиновая). К С 4 растениям принадлежат кукуруза, сорго, просо).

Лимитирующие факторы фотосинтеза

Скорость фотосинтеза – наиболее важный фактор влияющий на урожайность с/х культур. Так, для темновых фаз фотосинтеза нужны НАДФ.Н 2 и АТФ, и поэтому скорость темновых реакций зависит от световых реакций. При слабой освещенности скорость образования органических веществ будет мала. Поэтому свет – лимитирующий фактор.

Из всех факторов одновременно влияющих на процесс фотосинтеза лимитирующим будет тот, который ближе к минимальному уровню. Это установил Блэкман в 1905 году . Разные факторы могут быть лимитными, но один из них главный.

Космическая роль растений (описана К. А. Тимирязевым ) заключается в том, что растения – единственные организмы, усваивающие солнечную энергию и аккумулирующие ее в виде потенциальной химической энергии органических соединений . Выделяющийся О 2 поддерживает жизнедеятельность всех аэробных организмов. Из кислорода образуется озон, который защищает все живое от ультрафиолетовых лучей. Растения использовали из атмосферы громадное количество СО 2 , избыток которого создавал «парниковый эффект», и температура планеты понизилась до нынешних значений.

Бесхлорофилльный фотосинтез

Пространственная локализация

Фотосинтез растений осуществляется в хлоропластах : обособленных двухмембранных органеллах клетки. Хлоропласты могут быть в клетках плодов , стеблей , однако основным органом фотосинтеза, анатомически приспособленным к его ведению, является лист . В листе наиболее богата хлоропластами ткань палисадной паренхимы. У некоторых суккулентов с вырожденными листьями (например, кактусы) основная фотосинтетическая активность связана со стеблем.

Свет для фотосинтеза захватывается более полно благодаря плоской форме листа, обеспечивающей большое отношение поверхности к объёму. Вода доставляется из корня по развитой сети сосудов (жилок листа). Углекислый газ поступает отчасти посредством диффузии через кутикулу и эпидермис , однако большая его часть диффундирует в лист через устьица и по листу по межклеточному пространству. Растения, осуществляющие CAM фотосинтез, сформировали особые механизмы для активной ассимиляции углекислого газа.

Внутреннее пространство хлоропласта заполнено бесцветным содержимым (стромой) и пронизано мембранами (ламеллами), которые соединяясь друг с другом образуют тилакоиды , которые в свою очередь группируются в стопки, называемые граны . Внутритилакоидное пространство отделено и не сообщается с остальной стромой, предполагается также что внутреннее пространство всех тилакоидов сообщается между собой. Световые стадии фотосинтеза приурочены к мембранам, автотрофная фиксация CO 2 происходит в строме.

В хлоропластах имеются свои ДНК , РНК , рибосомы (70s типа), идёт синтез белка (хотя этот процесс и контролируется из ядра). Они не синтезируются вновь, а образуются путём деления предшествующих. Всё это позволило считать их потомками свободных цианобактерий, вошедших в состав эукариотической клетки в процессе симбиогенеза .

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.

Циклический и псевдоциклический транспорт электрона

Помимо полного нециклического пути электрона, описанного выше, обнаружены циклический и псевдоциклический.

Суть циклического пути заключается в том, что ферредоксин вместо НАДФ восстанавливает пластохинон, который переносит его назад на b 6 f комплекс. В результате образуется больший протонный градиент и больше АТФ, но не возникает НАДФН.

При псевдоциклическом пути ферредоксин восстанавливает кислород, который в дальнейшем превращается в воду и может быть использован в фотосистеме II. При этом также не образуется НАДФН.

Темновая стадия

В темновой стадии с участием АТФ и НАДФН происходит восстановление CO 2 до глюкозы (C 6 H 12 O 6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

С 3 -фотосинтез, цикл Кальвина

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосфата, для чего необходимы 3АТФ.

Наконец, две ФГА необходимы для синтеза глюкозы . Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO 2 , 12 НАДФН и 18 АТФ.

С 4 -фотосинтез

Основные статьи: Цикл Хетча-Слэка-Карпилова , С4-фотосинтез

При низкой концентрации растворённого в строме CO 2 рибулозобифосфаткарбоксилаза катализирует реакцию окисления рибулозо-1,5-бифосфата и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания .

Для увеличения концентрации CO 2 растения С 4 типа изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты, которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата , возвращаемого в клетки мезофилла.

С 4 фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфата из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO 2 в лист, а также при рудеральной жизненной стратегии.

САМ фотосинтез

Позже было установлено, что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В Роберт Майер на основании закона сохранения энергии постулировал, что растения преобразуют энергию солнечного света в энергию химических связей. В В. Пфеффер назвал этот процесс фотосинтезом.

Хлорофиллы были впервые выделены в П. Ж. Пельтье и Ж. Кавенту. Разделить пигменты и изучить их по отдельности удалось М. С. Цвету с помощью созданного им метода хроматографии . Спектры поглощения хлорофилла были изучены К. А. Тимирязевым , он же, развивая положения Майера, показал, что именно поглощенные лучи позволяют повысить энергию системы, создав вместо слабых связей С-О и О-Н высокоэнергетические С-С (до этого считалось что в фотосинтезе используются жёлтые лучи, не поглощаемые пигментами листа). Сделано это было благодаря созданному им методу учёта фотосинтеза по поглощённому CO 2: в ходе экспериментов по освещению растения светом разных длин волн (разного цвета) оказалось, что интенсивность фотосинтеза совпадает со спектром поглощения хлорофилла.

Окислительно-восстановительную сущность фотосинтеза (как оксигенного, так и аноксигенного) постулировал Корнелис ван Ниль . Это означало, что кислород в фотосинтезе образуется полностью из воды, что экспериментально подтвердил в А. П. Виноградов в опытах с изотопной меткой. В г. Роберт Хилл установил, что процесс окисления воды (и выделения кислорода), а также ассимиляции CO 2 можно разобщить. В - Д. Арнон установил механизм световых стадий фотосинтеза, а сущность процесса ассимиляции CO 2 была раскрыта Мельвином Кальвином с использованием изотопов углерода в конце 1940-х , за эту работу в ему была присуждена Нобелевская премия .

Прочие факты

См. также

Литература

  • Холл Д., Рао К. Фотосинтез: Пер. с англ. - М.: Мир, 1983.
  • Физиология растений / под ред. проф. Ермакова И. П. - М.: Академия, 2007
  • Молекулярная биология клетки / Альбертис Б., Брей Д. и др. В 3 тт. - М.: Мир, 1994
  • Рубин А. Б. Биофизика. В 2 тт. - М.: Изд. Московского университета и Наука, 2004.
  • Чернавская Н. М.,

Растения получают все необходимое для роста и развития из окружающей среды. Этим они отличаются от других живых организмов. Для того, чтобы они хорошо развивались, нужны плодородная почва, естественный или искусственный полив и хорошая освещенность. В темноте ничего расти не будет.

Почва является источником воды и питательных органических соединений, микроэлементов. Но деревья, цветы, травы нуждаются также в солнечной энергии. Именно под воздействием солнечных лучей происходят определенные реакции, в результате которых углекислый газ, поглощаемый из воздуха, превращается в кислород. Такой процесс называется фотосинтезом. Химическая реакция, протекающая под воздействием солнечного света, приводит также к образованию глюкозы и воды. Эти вещества жизненно необходимы для того, чтобы растение развивалось.

На языке химиков реакция выглядит так: 6CO2 + 12H2O + свет = С6Н12О6 + 6O2 + 6Н2О. Упрощенный вид уравнения: углекислый газ + вода + свет = глюкоза + кислород + вода.

Дословно «фотосинтез» переводится как «вместе со светом». Это слово состоит из двух простых слов «фото» и «синтез». Солнце является очень мощным источником энергии. Люди используют его для выработки электричества, утепления домов, нагревания воды. Растениям тоже нужна энергия солнца для поддержания жизни. Глюкоза, образующаяся в процессе фотосинтеза - это простой сахар, являющийся одним из самых важных питательных веществ. Растения используют его для роста и развития, а избыток откладывается в листьях, семенах, плодах. Не все количество глюкозы остается в зеленых частях растений и плодах в неизменном виде. Простые сахара имеют свойство превращаться в более сложные, к числу которых можно отнести крахмал. Такие запасы растения расходуют в периоды нехватки питательных веществ. Именно ими обусловлена питательная ценность трав, плодов, цветов, листьев для животных и людей, употребляющих растительную пищу.

Как растения поглощают свет

Процесс фотосинтеза достаточно сложный, но его можно описать кратко, чтобы он стал понятным даже для детей школьного возраста. Один из самых распространенных вопросов касается механизма поглощения света. Каким образом световая энергия попадает в растения? Процесс фотосинтеза протекает в листьях. В листьях всех растений есть зеленые клетки - хлоропласты. Они содержат вещество под названием хлорофилл. Хлорофилл - пигмент, который придает листьям зеленый цвет и отвечает за поглощение световой энергии. Многие люди не задумывались о том, почему листья большинства растений широкие и плоские. Оказывается, природой предусмотрено это не случайно. Широкая поверхность позволяет поглотить большее количество солнечных лучей. По этой же причине солнечные батареи делают широкими и плоскими.

Верхняя часть листьев защищена восковым слоем (кутикулой) от потери воды и неблагоприятного воздействия погоды, вредителей. Его называют палисадным. Если внимательно посмотреть на лист, можно увидеть, что его верхняя сторона более яркая и гладкая. Насыщенный цвет получается за счет того, что в этой части хлоропластов больше. Избыток света может снизить способность растения производить кислород и глюкозу. Под воздействием яркого солнца хлорофилл повреждается и это замедляет фотосинтез. Замедление происходит и с приходом осени, когда света становится меньше, а листья начинают желтеть по причине разрушения в них хлоропластов.

Нельзя недооценивать роль воды в протекании фотосинтеза и в поддержании жизни растений. Вода нужна для:

  • обеспечения растений растворенными в ней минералами;
  • поддержания тонуса;
  • охлаждения;
  • возможности протекания химических и физических реакций.

Воду деревья, кустарники, цветы поглощают из почвы корнями, а далее влага поднимается по стеблю, переходит в листья по прожилкам, которые видны даже невооруженным глазом.

Углекислый газ проникает через маленькие отверстия в нижней части листа - устьица. В нижней части листа клетки расположены таким образом, чтобы углекислый газ мог проникать более глубоко. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист. Как и все живые организмы, растения наделены способностью дышать. При этом, в отличие от животных и людей, они поглощают углекислый газ и выделяют кислород, а не наоборот. Там, где много растений, воздух очень чистый, свежий. Именно поэтому так важно заботиться о деревьях, кустарниках, разбивать скверы и парки в крупных городах.

Световая и темновая фазы фотосинтеза

Процесс фотосинтеза сложный и состоит из двух фаз - световой и темновой. Световая фаза возможна только в присутствии солнечных лучей. Под воздействием света молекулы хлорофилла ионизируются, в результате чего образуется энергия, которая служит катализатором химической реакции. Порядок событий, происходящих в этой фазе, выглядит так:

  • на молекулу хлорофилла попадает свет, который поглощается зеленым пигментом и переводит его в возбужденное состояние;
  • происходит расщепление воды;
  • синтезируется АТФ, которая является аккумулятором энергии.

Темновая фаза фотосинтеза протекает без участия световой энергии. На данном этапе образуется глюкоза и кислород. При этом важно понимать, что образование глюкозы и кислорода происходит круглосуточно, а не только в ночное время. Темновой фаза называется потому, что для ее протекания присутствие света больше не нужно. Катализатором выступает АТФ, которая была синтезирована ранее.

Значение фотосинтеза в природе

Фотосинтез - один из самых значимых природных процессов. Он необходим не только для поддержания жизни растений, но и для всего живого на планете. Фотосинтез нужен для:

  • обеспечения животных и людей питанием;
  • удаления углекислого газа и насыщения воздуха кислородом;
  • поддержания круговорота питательных веществ.

Все растения зависимы от скорости протекания фотосинтеза. Солнечную энергию можно рассматривать в качестве фактора, который провоцирует или сдерживает рост. Например, в южных районах и областях солнца много и растения могут вырастать достаточно высокими. Если рассматривать то, как процесс протекает в водных экосистемах, на поверхности морей, океанов нет недостатка в солнечных лучах и в этих слоях наблюдается обильный рост водорослей. В более глубоких слоях воды существует дефицит солнечной энергии, что сказывается на темпах роста водной флоры.

Процесс фотосинтеза способствует формированию озонового слоя в атмосфере. Это очень важно, так как он помогает защитить все живое на планете от губительного воздействия ультрафиолетовых лучей.

Вы когда-нибудь задумывались, сколько на планете живых организмов?! И ведь всем им нужно вдыхать кислород, чтобы выработать энергию и выдохнуть углекислый газ. Именно - основная причина такого явления, как духота в помещении. Она имеет место тогда, когда в нем находится много людей, а комната продолжительное время не проветривается. Кроме этого, ядовитыми веществами наполняют воздух производственные объекты, частный автомобильный и общественный транспорт.

С учетом вышесказанного возникает вполне логичный вопрос: как же мы тогда еще не задохнулись, если все живое является источником ядовитого углекислого газа? Спасителем всех живых существ в данной ситуации выступает фотосинтез. Что такое представляет собой этот процесс и в чем его необходимость?

Его результат - регулировка баланса углекислого газа и насыщение воздуха кислородом. Известен такой процесс только представителям мира флоры, то есть растениям, поскольку происходит только в их клетках.

Сам по себе фотосинтез — это чрезвычайно сложная процедура, зависящая от определенных условий и происходящий в несколько этапов.

Определение понятия

Согласно научному определению, в преобразуются в органические на клеточном уровне у автотрофных организмов за счет воздействия света солнца.

Если сказать более понятным языком, фотосинтез представляет собой процесс, при котором происходит следующее:

  1. Растение насыщается влагой. Источником влаги может быть вода из грунта либо влажный тропический воздух.
  2. Происходит реакция хлорофилла (специального вещества, которое содержится в растении) на воздействие солнечной энергии.
  3. Образование необходимой представителям флоры пищи, которую самостоятельно добыть они не в состоянии гетеротрофным способом, а сами являются ее производителем. Иначе говоря, растения питаются тем, что сами производят. Это и есть результат фотосинтеза.

Этап первый

Практически каждое растение содержит зеленое вещество, благодаря которому оно может поглощать свет. Это вещество является не чем иным, как хлорофиллом. Его местонахождение - хлоропласты. А вот хлоропласты располагаются в стеблевой части растения и его плодах. Но особенно распространен в природе фотосинтез листа. Поскольку последний довольно прост по своей структуре и имеет относительно большую поверхность, а значит, объемы энергии, необходимой для протекания процесса-спасителя будут гораздо больше.

Когда свет поглощен хлорофиллом, последний пребывает в состоянии возбуждения и свои энергетические посылы передает другим органическим молекулам растения. Наибольшее количество такой энергии достается участникам процесса фотосинтеза.

Этап второй

Образование фотосинтеза на втором этапе не требует обязательного участия света. Он состоит в формировании химических связей с использованием ядовитого углекислого газа, образующегося из воздушных масс и воды. Также происходит синтез множества веществ, которые обеспечивают жизнедеятельность представителей флоры. Таковыми являются крахмал, глюкоза.

У растений такие органические элементы выступают источником питания для отдельных частей растения, одновременно обеспечивая нормальное протекание процессов жизнедеятельности. Такие вещества получают и представители фауны, которые употребляют растения в пищу. Человеческий же организм насыщается этими веществами через пищу, которая входит в ежедневный рацион.

Что? Где? Когда?

Чтобы органические вещества превратились в органические, нужно обеспечить соответствующие условия фотосинтеза. Для рассматриваемого процесса необходим в первую очередь свет. Речь идет и об искусственном, и о солнечном свете. На природе обычно деятельность растений характеризуется интенсивностью весной и летом, то есть тогда, когда существует необходимость в поступлении большого количества солнечной энергии. Чего не скажешь об осенней поре, когда света все меньше, день все короче. В результате листва желтеет, а потом и вовсе опадает. Но как только заблестят первые весенние лучики солнца, взойдет зеленая травка, тут же возобновят свою деятельность хлорофиллы, и начнется активная выработка кислорода и других питательных веществ, которые носят жизненно важный характер.

Условия фотосинтеза включают не только наличие освещенности. Влаги тоже должно быть достаточно. Ведь растение сперва поглощает влагу, а потом начинается реакция с участием солнечной энергии. Результатом такого процесса и являются продукты питания растений.

Только при наличии зеленого вещества происходит фотосинтез. мы уже рассказывали выше. Они выступают неким проводником между светом или солнечной энергией и самим растением, обеспечивая надлежащее протекание их жизни и деятельности. Зеленые вещества обладают способностью поглощения множества солнечных лучей.

Немалую роль играет и кислород. Чтобы процесс фотосинтеза прошел успешно, растениям нужно его много, поскольку в его составе содержится всего 0,03% углекислой кислоты. Значит, из 20 000 м 3 воздуха можно получить 6 м 3 кислоты. Именно последнее вещество - основной исходный материал для глюкозы, которая, в свою очередь, является веществом, необходимым для жизнедеятельности.

Существует две стадии фотосинтеза. Первая называется световая, вторая - темновая.

В чем механизм протекания световой стадии

Световая стадия фотосинтеза имеет еще одно название - фотохимическая. Основными участниками на этом этапе являются:

  • энергия солнца;
  • разнообразные пигменты.

С первой составляющей все понятно, это солнечный свет. А вот что представляют собой пигменты, знает не каждый. Они бывают зелеными, желтыми, красными или синими. К зеленым относятся хлорофиллы групп «А» и «Б», к желтым и красным/синим - фикобилины соответственно. Фотохимическую активность среди участников этой стадии процесса проявляют только хлорофиллы «А». Остальным принадлежит дополняющая роль, суть которой - сбор квантов света и их транспортировка к фотохимическому центру.

Поскольку хлорофилл наделен способностью эффективного поглощения солнечной энергии с определенной длиной волны, были идентифицированы следующие фотохимические системы:

Фотохимический центр 1 (зеленые вещества группы «А») - в состав включен пигмент 700, поглощающий световые лучи, длина которых приблизительно 700 нм. Этому пигменту принадлежит основополагающая роль в создании продуктов световой стадии фотосинтеза.

Фотохимический центр 2 (зеленые вещества группы «Б») - в состав включен пигмент 680, поглощающий световые лучи, длина которых 680 нм. Ему принадлежит роль второго плана, заключающаяся в функции восполнении электронов, утраченных фотохимическим центром 1. Достигается благодаря гидролизу жидкости.

На 350- 400 молекул пигментов, которые концентрируют в себе потоки света в фотосистеме 1 и 2 приходится только одна молекула пигмента, являющегося активным фотохимически — хлорофилла группы «А».

Что происходит?

1. Световая энергия, поглощаемая растением, оказывает воздействие на содержащийся в нем пигмент 700, который переходит из обычного состояния в состояние возбуждения. Пигмент теряет электрон, в результате чего образуется так называемая электронная дыра. Далее молекула пигмента, которая утратила электрон, может выступать в качестве его акцептора, то есть стороной, принимающей электрон, и возвращать свою форму.

2. Процесс разложения жидкости в фотохимическом центре светопоглощающего пигмента 680 фотосистемы 2. При разложении воды образуются электроны, которые изначально акцептируются таким веществом, как цитохром С550, и обозначаются буквой Q. Затем от цитохрома электроны попадают в цепь переносчиков и транспортируются в фотохимический центр 1 для восполнения электронной дыры, которая стала результатом проникновения квантов света и восстановительного процесса пигмента 700.

Бывают случаи, когда такая молекула получает обратно электрон, идентичный прежнему. Это приведет к выделению энергии света в виде тепла. Но практически всегда электрон, имеющий отрицательный заряд, соединяется со специальными железосерными белками и переносится по одной из цепей к пигменту 700 либо попадает в другую цепь переносчиков и воссоединяется с постоянным акцептором.

При первом варианте имеет место циклическая транспортировка электрона замкнутого типа, при втором - нециклическая.

Оба процесса попадают на первой стадии фотосинтеза под катализацию одной и той же цепью переносчиков электронов. Но стоит отметить, что при фотофосфорилировании циклического типа начальной и одновременно конечной точкой транспортировки является хролофилла, в то время когда нециклическая транспортировка подразумевает переход зеленого вещества группы «Б» к хлорофиллу «А».

Особенности циклической транспортировки

Фосфорилирование циклическое называется еще фотосинтетическим. В результате такого процесса образуются молекулы АТФ. В основе такой транспортировки лежит возвращение через несколько последовательных этапов электронов в возбужденном состоянии на пигмент 700, в результате чего высвобождается энергия, принимающая участие в работе фосфорилирующей ферментной системы с целью дальнейшей аккумуляции в фосфатных связях АТФ. То есть энергия не рассеивается.

Фосфорилирование циклическое представляет собой первичную реакцию фотосинтеза, в основе которой технология образования химической энергии на мембранных поверхностях тилактоидов хлоропластов благодаря использованию энергии солнечных лучей.

Без фотосинтетического фосфорилирования реакции ассимиляции в невозможны.

Нюансы транспортировки нециклического типа

Процесс заключается в восстановлении НАДФ+ и образовании НАДФ*Н. Механизм основан на передаче электрона ферредоксину, его восстановительной реакцией и последующим переходом к НАДФ+ с дальнейшим восстановлением до НАДФ*Н.

В итоге электроны, которые потеряли пигмент 700, восполняются благодаря электронам воды, которая разлагается под световыми лучами в фотосистеме 2.

Нециклический путь электронов, протекание которого также подразумевает световой фотосинтез, осуществляется посредством взаимодействия обеих фотосистем между собой, связывает их электронно-транспортные цепи. Световая энергия направляет поток электронов обратно. При транспортировке от фотохимического центра 1 к центру 2 электроны теряют часть своей энергии в связи с аккумуляцией в качестве протонного потенциала на мембранной поверхности тилактоидов.

В темновой фазе фотосинтеза процесс создания потенциала протонного типа в транспортировочной цепи электрона и его эксплуатация для образования АТФ в хлоропластах практически полностью идентичен с таким же процессом в митохондриях. Но особенности все же присутствуют. Тилактоидами в данной ситуации выступают митохондрии вывернутые на изнаночную сторону. Это и является главной причиной того, что электроны и протоны движутся через мембрану в противоположном направлении относительно течения переноса в мембране митохондриальной. Электроны транспортируются к наружной стороне, а протоны накапливаются во внутренней части матрикса тилактоидного. Последний принимает только положительный заряд, а наружная мембрана тилактоида - отрицательный. Из этого следует, что путь градиента протонного типа противоположен его пути в митохондриях.

Следующей особенностью можно назвать большой уровень рН в потенциале протонов.

Третьей особенностью является наличие в тилактоидной цепи только двух участков сопряжения и как следствие соотношение молекулы АТФ к протонам равняется 1:3.

Вывод

На первой стадии фотосинтез является взаимодействием световой энергии (искусственной и неискусственной) с растением. Реагируют на лучи зеленые вещества - хлорофиллы, большая часть которых содержится в листьях.

Образование АТФ и НАДФ*Н - результат такой реакции. Эти продукты необходимы для протекания темновых реакций. Следовательно, световая стадия - обязательный процесс, без которого не состоится вторая стадия - темновая.

Темновая стадия: суть и особенности

Темновой фотосинтез и его реакции представляют собой процедуру углекислоты в вещества органического происхождения с получением углеводов. Осуществление таких реакций происходит в строме хлоропласта и активное участие в них принимают продукты первой стадии фотосинтеза - световой.

В основе механизма темновой стадии фотосинтеза положен процесс ассимиляции (еще называется фотохимическим карбоксилированием, циклом Кальвина), который характеризуется цикличностью. Состоит из трех фаз:

  1. Карбоксилирование - присоединение СО 2 .
  2. Восстановительная фаза.
  3. Фаза регенерации рибулозодифосфата.

Рибулофосфат - сахар с пятью атомами углерода - поддается процедуре фосфорилирования за счет АТФ, в результате чего образуется рибулозодифосфат, который далее подвергается карбоксилированию благодаря соединению с СО 2 продуктом с шестью углеродами, которые мгновенно разлагаются при взаимодействии с молекулой воды, создавая две молекулярные частицы кислоты фосфоглицериновой. Потом эта кислота проходит курс полного восстановления при осуществлении ферментативной реакции, для которой обязательно присутствие АТФ и НАДФ с образованием сахара с тремя углеродами - трехуглеродного сахара, триоза или альдегида фосфоглицеринового. Когда два таких триоза конденсируются, получается молекула гексозы, которая может стать составной частью молекулы крахмала и отлаживаться про запас.

Эта фаза завершается тем, что во время процесса фотосинтеза происходит поглощение одной молекулы СО 2 и использование трех молекул АТФ и четырех атомов Н. Гексозофосфат поддается реакциям пентозофосфатного цикла, в результате чего происходит регенерация рибулозофосфата, который может вновь воссоединиться с другой молекулой углеродной кислоты.

Реакции карбоксилирования, восстановления, регенерации нельзя назвать специфическими исключительно для клетки, в которой протекает фотосинтез. Что такое «однородное» протекание процессов, тоже не скажешь, поскольку отличие все же существует - при восстановительном процессе используется НАДФ*Н, а не НАД*Н.

Присоединение СО 2 рибулозодифосфатом подвергается катализации, которую обеспечивает рибулозодифосфаткарбоксилаза. Продуктом реакции является 3-фосфоглицерат, восстанавливающийся за счет НАДФ*Н2 и АТФ до глицеральдегид-3-фосфата. Процесс восстановления катализируется глицеральдегидом-3-фосфат-дегидрогеназом. Последний легко превращается в дигидроксиацетонфосфат. Происходит образование фруктозобисфосфата. Часть его молекул принимает участие в регенерирующем процессе рибулозодифосфата, замыкая цикл, а вторая часть эксплуатируется для создания запасов углеводов в клетках фотосинтеза, то есть имеет место фотосинтез углеводов.

Энергия света необходима для фосфорилирования и синтеза веществ органического происхождения, а энергия окисления органических веществ необходима для окислительного фосфорилирования. Именно поэтому растительность обеспечивает жизнь животным и иным организмам, которые относятся к гетеротрофным.

Фотосинтез в клетке растений происходит именно таким образом. Его продуктом являются углеводы, необходимые для создания углеродных скелетов множества веществ представителей мира флоры, которые имеют органическое происхождение.

Вещества азоторганического типа усваиваются в фотосинтезирующих организмах за счет восстановления нитратов неорганических, а сера - за счет восстановления сульфатов до сульфгидрильных групп аминокислот. Обеспечивает образование белков, нуклеиновых кислот, липидов, углеводов, кофакторов именно фотосинтез. Что такое «ассорти» веществ жизненно важно для растений, уже подчеркивалось, а вот о продуктах вторичного синтеза, которые являются ценными лекарственными веществами (флавоноиды, алкалоиды, терпены, полифенолы, стероиды, оргкислоты и другие), не было сказано ни слова. Следовательно, без преувеличения можно сказать, что фотосинтез - залог жизни растений, животных и людей.

Loading...Loading...