Параметры электрической дуги. Электрическая дуга, несчастный случай


Дуговая сварка, будь то ручная или механизированная, осуществляется благодаря электрической дуге, которая, по сути, является электроразрядом. Сварочная электрическая дуга характеризуется выделением большого количества тепла и света. Отметим, что температура дуги может достигать до 6 000 градусов по Цельсию.

Стоит обратить внимание на то, что выделяемые дугой свет и тепло может нанести вред здоровью человека. Поэтому все сварочные работы методом дуговой сварки осуществляются исключительно в спецодежде и в маске или очках, защищающих глаза сварщика.

Сварочная электрическая дуга не всегда одинакова, существуют несколько ее видов, которые зависят от среды, где проводятся сварочные работы, от металлоизделия и прочих факторов.

Виды сварочной электрической дуги.

Если говорить о зависимости среды и дуги, то можно выделить такие виды электрического разряда:

  • Открытая электродуга. Сваривание металлоизделия производится на открытом воздухе, без использования специальных газов для защиты. Дуга горит в среде, которую образуют окружающий воздух и пары, появляющиеся в ходе сваривания металлоизделия, плавления электрода либо проволоки, их покрытий.
  • Закрытая электродуга. Этот вид дуги образовывается при сварке под флюсом. Защищает дугу при сваривании газовая смесь, которая образовывается в результате смешивания паров от свариваемого металлоизделия, плавящегося электрода и, собственно, флюса.
  • Дуга в среде защитных газов. В данном случае речь идет о сварке в среде, так называемых, защитных газов: инертных либо активных, (используются как чистые газы, так и их смеси). В результате сваривания образовывается газовая среда, состоящая из защитного газа, паров металла и электрода.

Электропитание для сварочной электродуги.

Сварочная дуга образовывается когда подается электрический ток. Отметим, что питаться дуга может как от источников с переменным током, так и с постоянным током. Разные источники питания дают разные виды дуг.

При использовании постоянного тока можно получить дугу двух видов: сварщики используют как дугу прямой полярности, так и обратной. Разница этих двух видов заключается в подключении питания. Так, при прямой полярности подается минус непосредственно на электрод, а плюс на металлоизделие, которое будет свариваться. При обратной полярности подключение происходит наоборот: плюс подается на электрод, тогда как минус на свариваемое металлоизделие.

Отметим также, что свариваемое металлоизделие иногда не включается в электрическую цепь. В таких случаях говорят о том, что используется дуга косвенного действия, то есть ток подается только на электрод. Если же к источнику питания подключают и электрод, и металлоизделие, то в этом случае говорят о дуге прямого действия. Стоит заметить, что чаще всего применяется именно эта электродуга, Дугу косвенного действия сварщики используют крайне редко.

Значения плотности тока для сварочной дуги.

При сваривании металлоизделий электрической дугой большую роль играет и показатель плотности тока. В режиме обычной ручной дуговой сварки плотность тока стандартная, а именно 10-20 А/мм 2 . Это же значение сварщики выставляют и при сваривании в среде определенных газов. Большая плотность тока, а именно 80-120 А/мм 2 , а также выше, используется при полуавтоматической или других видах сварки, осуществляемой под защитой газов или флюса.

Плотность тока влияет на напряжение дуги. Эту зависимость принято называть статической характеристикой дуги (она изображается графически). Отметим, что если плотность тока небольшая, то эта характеристика бывает падающей: то есть происходит падение напряжения, когда ток, наоборот, увеличивается. Такое явление обуславливается тем, что при увеличении значения тока проводимость электричества возрастает, так же как и площадь сечения столба дуги, тогда как плотность тока уменьшается.

Когда используется обычная для ручной сварки плотность тока, то напряжение теряет зависимость от величины тока. При этом площадь столба растет пропорционально току. Отметим также, что электропроводность практически не изменяется, также постоянной остается и плотность тока в столбе.

Как возникает сварочная дуга?

Сварочная дуга возникает только при условии, когда газовый столб, расположенный между металлоизделием и электродом достаточно ионизирован (то есть имеет нужное количество электронов и ионов). Для достижения нормального уровня ионизации молекулам газа передается электроэнергия. В результате этого процесса начинают выделяться электроны. По сути, среда дуги - это газовый проводник тока, он имеет кругло-цилиндрическую форму.

Отметим, что собственно электрическая дуга состоит из 3 составляющих:

  • анодной части;
  • столба электродуги;
  • катодной части.

На показатель устойчивости электродуги в процессе сваривания влияют многие факторы, среди них напряжение холостого хода, род электрического тока, его величина, полярность и прочее. В процессе сварки за всеми этими показателями надо тщательно следить и правильно выставлять режим сварки при разных способах и для разных металлоизделий.

При размыкании электрической цепи возникает электрический разряд в виде электрической дуги. Для появления электрической дуги достаточно, чтобы напряжение на контактах было выше 10 В при токе в цепи порядка 0,1А и более. При значительных напряжениях и токах температура внутри дуги может достигать 3 - 15 тыс. °С, в результате чего плавятся контакты и токоведущие части.

При напряжениях 110 кВ и выше длина дуги может достигать нескольких метров. Поэтому электрическая дуга, особенно в мощных силовых цепях, на напряжение выше 1 кВ представляет собой большую опасность, хотя серьезные последствия могут быть и в установках на напряжение ниже 1 кВ. Вследствие этого электрическую дугу необходимо максимально ограничить и быстро погасить в цепях на напряжение как выше, так и ниже 1 кВ.

Процесс образования электрической дуги может быть упрощенно представлен следующим образом. При расхождении контактов вначале уменьшается контактное давление и соответственно контактная поверхность, увеличиваются (плотность тока и температура - начинаются местные (на отдельных участках площади контактов) перегревы, которые в дальнейшем способствуют термоэлектронной эмиссии, когда под воздействием высокой температуры увеличивается скорость движения электронов и они вырываются с поверхности электрода.

В момент расхождения контактов, то есть разрыва цепи, на контактном промежутке быстро восстанавливается напряжение. Поскольку при этом расстояние между контактами мало, возникает высокой напряженности, под воздействием которого с поверхности электрода вырываются электроны. Они разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать хотя бы один электрон с оболочки нейтрального атома, то происходит процесс ионизации.

Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги, то есть ионизированного канала, в котором горит дуга и обеспечивается непрерывное движение частиц. При этом отрицательно заряженные частицы, в первую очередь электроны, движутся в одном направлении (к аноду), а атомы и молекулы газов, лишенные одного или нескольких электронов, - положительно заряженные частицы - в противоположном направлении (к катоду). Проводимость плазмы близка к проводимости металлов.

В стволе дуги проходит большой ток и создается высокая температура. Такая температура ствола дуги приводит к термоионизации - процессу образования ионов вследствие соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения (молекулы и атомы среды, где горит дуга, распадаются на электроны и положительно заряженные ионы). Интенсивная термоионизация поддерживает высокую проводимость плазмы. Поэтому падение напряжения по длине дуги невелико.

В электрической дуге непрерывно протекают два процесса: кроме ионизации, также деионизация атомов и молекул. Последняя происходит в основном путем диффузии, то есть переноса заряженных частиц в окружающую среду, и рекомбинации электронов и положительно заряженных ионов, которые воссоединяются в нейтральные частицы с отдачей энергии, затраченной на их распад. При этом происходит теплоотвод в окружающую среду.

Таким образом, можно различить три стадии рассматриваемого процесса: зажигание дуги, когда вследствие ударной ионизации и эмиссии электронов с катода начинается дуговой разряд и интенсивность ионизации выше, чем деионизации, устойчивое горение дуги, поддерживаемое термоионизацией в стволе дуги, когда интенсивность ионизации и деионизации одинакова, погасание дуги, когда интенсивность деионизации выше, чем ионизации.

Способы гашения дуги в коммутационных электрических аппаратах

Для того чтобы отключить элементы электрической цепи и исключить при этом повреждение коммутационного аппарата, необходимо не только разомкнуть его контакты, но и погасить появляющуюся между ними дугу. Процессы гашения дуги, так же как и горения, при переменном и постоянном токе различны. Это определяется тем, что в первом случае ток в дуге каждый полупериод проходит через нуль. В эти моменты выделение энергии в дуге прекращается и дуга каждый раз самопроизвольно гаснет, а затем снова загорается.

Практически ток в дуге становится близким нулю несколько раньше перехода через нуль, так как при снижении тока энергия, подводимая к дуге, уменьшается, соответственно снижается температура дуги и прекращается термоионизация. При этом в дуговом промежутке интенсивно идет процесс деионизации. Если в данный момент разомкнуть и быстро развести контакты, то последующий электрический пробой может не произойти и цепь будет отключена без возникновения дуги. Однако практически это сделать крайне сложно, и поэтому принимают специальные меры ускоренного гашения дуги, обеспечивающие охлаждение дугового пространства и уменьшение числа заряженных частиц.

В результате деионизации постепенно увеличивается электрическая прочность промежутка и одновременно растет восстанавливающееся напряжение на нем. От соотношения этих величин и зависит, загорится ли на очередную половину периода дуга или нет. Если электрическая прочность промежутка возрастает быстрее и оказывается больше восстанавливающего напряжения, дуга больше не загорится, в противном же случае будет обеспечено устойчивое горение дуги. Первое условие и определяет задачу гашения дуги.

В коммутационных аппаратах используют различные способы гашения дуги.

Удлинение дуги

При расхождении контактов в процессе отключения электрической цепи возникшая дуга растягивается. При этом улучшаются условия охлаждения дуги, так как увеличивается ее поверхность и для горения требуется большее напряжение.

Деление длинной дуги на ряд коротких дуг

Если дугу, образовавшуюся при размыкании контактов, разделить на К коротких дуг, например затянув ее в металлическую решетку, то она погаснет. Дуга обычно затягивается в металлическую решетку под воздействием электромагнитного поля, наводимого в пластинах решетки вихревыми токами. Этот способ гашения дуги широко используется в коммутационных аппаратах на напряжение ниже 1 кВ, в частности в автоматических воздушных выключателях.

Охлаждение дуги в узких щелях

Гашение дуги в малом объеме облегчается. Поэтому в широко используют дугогасительные камеры с продольными щелями (ось такой щели совпадает по направлению с осью ствола дуги). Такая щель обычно образуется в камерах из изоляционных дугостойких материалов. Благодаря соприкосновению дуги с холодными поверхностями происходят ее интенсивное охлаждение, диффузия заряженных частиц в окружающую среду и соответственно быстрая деионизация.

Кроме щелей с плоскопараллельными стенками, применяют также щели с ребрами, выступами, расширениями (карманами). Все это приводит к деформации ствола дуги и способствует увеличению площади соприкосновения ее с холодными стенками камеры.

Втягивание дуги в узкие щели обычно происходит под действием магнитного поля, взаимодействующего с дугой, которая может рассматриваться как проводник с током.

Внешнее для перемещения дуги наиболее часто обеспечивают за счет катушки, включаемой последовательно с контактами, между которыми возникает дуга. Гашение дуги в узких щелях используют в аппаратах на все напряжения.

Гашение дуги высоким давлением

При неизменной температуре степень ионизации газа падает с ростом давления, при этом возрастает теплопроводность газа. При прочих равных условиях это приводит к усиленному охлаждению дуги. Гашение дуги при помощи высокого давления, создаваемого самой же дугой в плотно закрытых камерах, широко используется в плавких предохранителях и ряде других аппаратов.

Гашение дуги в масле

Если помещены в масло, то возникающая при их размыкании дуга приводит к интенсивному испарению масла. В результате вокруг дуги образуется газовый пузырь (оболочка), состоящий в основном из водорода (70...80 %), а также паров масла. Выделяемые газы с большой скоростью проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, обеспечивают интенсивное охлаждение и соответственно деионизацию дугового промежутка. Кроме того, деионизирующую способность газов повышает создаваемое при быстром разложении масла давление внутри пузыря.

Интенсивность процесса гашения дуги в масле тем выше, чем ближе соприкасается дуга с маслом и быстрее движется масло по отношению к дуге. Учитывая это, дуговой разрыв ограничивают замкнутым изоляционным устройством - дугогасительной камерой . В этих камерах создается более тесное соприкосновение масла с дугой, а при помощи изоляционных пластин и выхлопных отверстий образуются рабочие каналы, по которым происходит движение масла и газов, обеспечивая интенсивное обдувание (дутье) дуги.

Дугогасительные камеры по принципу действия разделяют на три основные группы: с автодутьем, когда высокие давление и скорость движения газа в зоне дуги создаются за счет выделяющейся в дуге энергии, с принудительным масляным дутьем при помощи специальных нагнетающих гидравлических механизмов, с магнитным гашением в масле, когда дуга под действием магнитного поля перемещается в узкие щели.

Наиболее эффективны и просты дугогасительные камеры с автодутьем . В зависимости от расположения каналов и выхлопных отверстий различают камеры, в которых обеспечивается интенсивное обдувание потоками газопаровой смеси и масла вдоль дуги (продольное дутье) или поперек дуги (поперечное дутье). Рассмотренные способы гашения дуги широко используются в выключателях на напряжение выше 1 кВ.

Другие способы гашения дуги в аппаратах на напряжение выше 1 кВ

Кроме указанных выше способов гашения дуги, используют также: сжатый воздух, потоком которого вдоль или поперек обдувается дуга, обеспечивая ее интенсивное охлаждение (вместо воздуха применяются и другие газы, часто получаемые из твердых газогенерирующих материалов - фибры, винипласта и т. п. - за счет их разложения самой горящей дугой), обладающий более высокой электрической прочностью, чем воздух и водород, в результате чего дуга, горящая в этом газе, даже при атмосферном давлении достаточно быстро гасится, высокоразреженный газ (вакуум), при размыкании контактов в котором дуга не загорается вновь (гаснет) после первого прохождения тока через нуль.

Принцип электродуговой сварки основан на использовании температуры электрического разряда, возникающего между сварочным электродом и металлической заготовкой.

Дуговой разряд образуется вследствие электрического пробоя воздушного промежутка. При возникновении этого явления происходит ионизация молекул газа, повышение его температуры и электропроводности, переход в состояние плазмы.

Горение сварочной дуги сопровождается выделением большого количества световой и особенно тепловой энергии, вследствие чего резко повышается температура, и происходит локальное плавление металла заготовки. Это и есть сварка.

В процессе работы, для того, чтобы возбудить дуговой разряд, производится кратковременное касание заготовки электродом, то есть, создание короткого замыкания с последующим разрывом металлического контакта и установлением требуемого воздушного зазора. Таким способом выбирается оптимальная длина сварочной дуги.

При очень коротком разряде электрод может прилипать к заготовке, плавление происходит чересчур интенсивно, что может привести к образованию наплывов. Длинная дуга отличается неустойчивостью горения и недостаточно высокой температурой в зоне сварки.

Неустойчивость и видимое искривление формы сварочной дуги часто можно наблюдать при работе промышленных сварочных агрегатов с достаточно массивными деталями. Это явление называется магнитным дутьем.

Суть его заключается в том, что сварочный ток дуги создает некоторое магнитное поле, которое взаимодействует с магнитным полем, создаваемым током, протекающим через массивную заготовку.

То есть, отклонение дуги вызывается магнитными силами. Дутьем процесс назван потому, что дуга отклоняется, как будто под воздействием ветра.

Радикальных способов борьбы с этим явлением нет. Для уменьшения влияния магнитного дутья применяют сварку укороченной дугой, а также располагают электрод под определенным углом.

Среда горения

Существует несколько различных сварочных технологий, использующих электродуговые разряды, отличающиеся свойствами и параметрами. Электрическая сварочная дуга имеет следующие разновидности:

  • открытая. Горение разряда происходит непосредственно в атмосфере;
  • закрытая. Образующаяся при горении высокая температура вызывает обильное выделение газов от сгорающего флюса. Флюс содержится в обмазке сварочных электродов;
  • в среде защитных газов. В этом варианте, в зону сварки подается газ, чаще всего, это гелий, аргон или углекислый газ.

Защита зоны сварки необходима для предотвращения активного окисления плавящегося металла под воздействием кислорода воздуха.

Слой окисла препятствует образованию сплошного сварного шва, металл в месте соединения приобретает пористость, в результате чего снижается прочность и герметичность стыка.

В какой-то мере дуга сама способна создавать микроклимат в зоне горения за счет образования области повышенного давления, препятствующего притоку атмосферного воздуха.

Применение флюса позволяет более активно выдавливать воздух из зоны сварки. Использование среды защитных газов, подаваемых под давлением, решает эту задачу практически полностью.

Продолжительность разряда

Кроме критериев защищенности, дуговой разряд классифицируется по продолжительности. Существуют процессы, в которых горение дуги происходит в импульсном режиме.

В таких устройствах сварка осуществляется короткими вспышками. За время вспышки, температура успевает возрасти до величины, достаточной для локального расплавления небольшой зоны, в которой образуется точечное соединение.

Большинство же применяемых сварочных технологий использует относительно продолжительное по времени горение дуги. В течение сварочного процесса происходит постоянное перемещение электрода вдоль соединяемых кромок.

Область повышенной температуры, создающая , перемещается вслед за электродом. После перемещения сварочного электрода, следовательно, и дугового разряда, температура пройденного участка снижается, происходит кристаллизация сварочной ванны и образование прочного сварного шва.

Структура дугового разряда

Область дугового разряда условно принято делить на три участка. Участки, непосредственно прилегающие к полюсам (аноду и катоду), называют соответственно, анодным и катодным.

Центральную часть дугового разряда, расположенную между анодной и катодной областями, называют столбом дуги. Температура в зоне сварочной дуги может достигать нескольких тысяч градусов (до 7000 °C).

Хотя тепло не полностью передается металлу, его вполне хватает для расплавления. Так, температура плавления стали для сравнения составляет 1300-1500 °C.

Для обеспечения устойчивого горения дугового разряда необходимы следующие условия: наличие тока порядка 10 Ампер (это минимальное значение, максимум может достигать 1000 Ампер), при поддержании напряжения дуги от 15 до 40 Вольт .

Падение этого напряжения происходит в дуговом разряде. Распределение напряжения по зонам дуги происходит неравномерно. Падение большей части приложенного напряжения происходит в анодной и катодной зонах.

Экспериментальным путем установлено, что при , наибольшее падение напряжения наблюдается в катодной зоне. В этой же части дуги наблюдается наиболее высокий градиент температуры.

Поэтому, при выборе полярности сварочного процесса, катод соединяют с электродом, когда хотят добиться наибольшего его плавления, повысив его температуру. Наоборот, для более глубокого провара заготовки, катод присоединяют к ней. В столбе дуги падает наименьшая часть напряжения.

При производстве сварочных работ неплавящимся электродом, катодное падение напряжения меньше анодного, то есть, зона повышенной температуры смещена к аноду.

Поэтому, при этой технологии, заготовка подключается к аноду, чем обеспечивается хороший ее прогрев и защита неплавящегося электрода от излишней температуры.

Температурные зоны

Следует заметить, что при любом виде сварки, как плавящимся, так и неплавящимся электродом, столб дуги (его центр) имеет самую высокую температуру – порядка 5000-7000 °C, а иногда и выше.

Зоны наиболее низкой температуры располагаются в одной из активных областей, катодной или анодной. В этих зонах может выделяться 60-70% тепла дуги.

Кроме интенсивного повышения температуры заготовки и сварочного электрода, разряд излучает инфракрасные и ультрафиолетовые волны, способные оказывать вредное влияние на организм сварщика. Это обусловливает необходимость применения защитных мер.

Что касается сварки переменным током, понятие полярности там не существует, так как положение анода и катода изменяется с промышленной частотой 50 колебаний в секунду.

Дуга в этом процессе обладает меньшей устойчивостью по сравнению с постоянным током, ее температура скачет. К преимуществам сварочных процессов на переменном токе, можно отнести только более простое и дешевое оборудование, да еще практически полное отсутствие такого явления, как магнитное дутье, о котором сказано выше.

Вольт-амперная характеристика

На графике представлены кривые зависимости напряжения источника питания от величины сварочного тока, называемые вольт–амперными характеристиками сварочного процесса.

Кривые красного цвета отображают изменение напряжения между электродом и заготовкой в фазах возбуждения сварочной дуги и устойчивого ее горения. Начальные точки кривых соответствуют напряжению холостого хода источника питания.

В момент возбуждения сварщиком дугового разряда, напряжение резко снижается вплоть до того периода, когда параметры дуги стабилизируются, устанавливается значение тока сварки, зависящее от диаметра применяемого электрода, мощности источника питания и установленной длины дуги.

С наступлением этого периода, напряжение и температура дуги стабилизируются, и весь процесс приобретает устойчивый характер.

Материал из Википедии - свободной энциклопедии

Электри́ческая дуга́ (во́льтова дуга́ , дугово́й разря́д ) - физическое явление, один из видов электрического разряда в газе.

Строение дуги

Электрическая дуга состоит из катодной и анодной областей, столба дуги, переходных областей. Толщина анодной области составляет 0,001 мм, катодной области - около 0,0001 мм.

Температура в анодной области при сварке плавящимся электродом составляет около 2500 … 4000°С, температура в столбе дуги - от 7 000 до 18 000°С, в области катода - 9000 - 12000°С.

Столб дуги электрически нейтрален. В любом его сечении находятся одинаковое количество заряженных частиц противоположных знаков. Падение напряжения в столбе дуги пропорционально его длине .

Сварочные дуги классифицируют по:

  • Материалам электрода - с плавящимся и неплавящимся электродом;
  • Степени сжатия столба - свободную и сжатую дугу;
  • По используемому току - дуга постоянного и дуга переменного тока;
  • По полярности постоянного электрического тока - прямой полярности ("-" на электроде, "+" - на изделии) и обратной полярности;
  • При использовании переменного тока - дуги однофазная и трехфазная.

Саморегулирование дуги

При возникновении внешнего возмещения - изменения напряжения сети, скорости подачи проволоки и др. возникает нарушение в установившемся равновесии между скоростью подачи и скоростью плавления. При увеличении длины дуги в цепи уменьшаются сварочный ток и скорость плавления электродной проволоки, а скорость подачи, оставаясь постоянной, становится больше скорости плавления, что приводит к восстановлению длины дуги. При уменьшении длины дуги скорость плавления проволоки становится больше скорости подачи, это приводит к восстановлению нормальной длины дуги .

На эффективность процесса саморегулирования дуги значительно влияет форма вольт-амперной характеристики источника питания. Большое быстродействие колебания длины дуги отрабатывается автоматически при жестких ВАХ цепи.

Борьба с электрической дугой

В ряде устройств явление электрической дуги является вредным. Это в первую очередь контактные коммутационные устройства, используемые в электроснабжении и электроприводе: высоковольтные выключатели , автоматические выключатели , контакторы , секционные изоляторы на контактной сети электрифицированных железных дорог и городского электротранспорта. При отключении нагрузок вышеуказанными аппаратами между размыкающимися контактами возникает дуга.

Механизм возникновения дуги в данном случае следующий:

  • Уменьшение контактного давления - количество контактных точек уменьшается, растёт сопротивление в контактном узле;
  • Начало расхождения контактов - образование «мостиков» из расплавленного металла контактов (в местах последних контактных точек);
  • Разрыв и испарение «мостиков» из расплавленного металла;
  • Образование электрической дуги в парах металла (что способствует большей ионизации контактного промежутка и трудности при гашении дуги);
  • Устойчивое горение дуги с быстрым выгоранием контактов.

Для минимального повреждения контактов необходимо погасить дугу в минимальное время, прилагая все усилия по недопущению нахождения дуги на одном месте (при движении дуги теплота, выделяющаяся в ней будет равномерно распределяться по телу контакта).

Для выполнения вышеуказанных требований применяются следующие методы борьбы с дугой:

  • охлаждение дуги потоком охлаждающей среды - жидкости (масляный выключатель); газа - (воздушный выключатель , автогазовый выключатель , масляный выключатель , элегазовый выключатель), причём поток охлаждающей среды может проходить как вдоль ствола дуги (продольное гашение), так и поперёк (поперечное гашение); иногда применяется продольно-поперечное гашение;
  • использование дугогасящей способности вакуума - известно, что при уменьшении давления газов, окружающих коммутируемые контакты до определённого значения, приводит к эффективному гашению дуги (в связи с отсутствием носителей для образования дуги) вакуумный выключатель .
  • использование более дугостойкого материала контактов;
  • применение материала контактов с более высоким потенциалом ионизации;
  • применение дугогасительных решёток (автоматический выключатель , электромагнитный выключатель). Принцип применения дугогашения на решётках основан на применении эффекта околокатодного падения в дуге (большая часть падения напряжения в дуге - это падение напряжения на катоде; дугогасительная решётка - фактически ряд последовательных контактов для попавшей туда дуги).
  • использование дугогасительных камер - попадая в камеру из дугостойкого материала, например слюдопласта, с узкими, иногда зигзагообразными каналами, дуга растягивается, сжимается и интенсивно охлаждается от соприкосновения со стенками камеры.
  • использование «магнитного дутья» - поскольку дуга сильно ионизирована, то её в первом приближении можно полагать как гибкий проводник с током; создавая специальными электромагнитами (включённых последовательно с дугой) магнитное поле можно создавать движение дуги для равномерного распределения тепла по контакту, так и для загона её в дугогасительную камеру или решётку. В некоторых конструкциях выключателей создаётся радиальное магнитное поле, придающее дуге вращательный момент.
  • шунтирование контактов в момент размыкания силовым полупроводниковым ключом тиристором или симистором, включеным параллельно контактам, после размыкания контактов полупроводниковый ключ отключается в момент перехода напряжения через ноль (гибридный контактор, тирикон).

См. также

Напишите отзыв о статье "Электрическая дуга"

Литература

  • Дуга электрическая - статья из .
  • Искровой разряд - статья из Большой советской энциклопедии .
  • Райзер Ю. П. Физика газового разряда. - 2-е изд. - М .: Наука, 1992. - 536 с. - ISBN 5-02014615-3 .
  • Родштейн Л. А. Электрические аппараты, Л 1981 г.
  • Clerici, Matteo; Hu, Yi; Lassonde, Philippe; Milián, Carles; Couairon, Arnaud; Christodoulides, Demetrios N.; Chen, Zhigang; Razzari, Luca; Vidal, François (2015-06-01). "Laser-assisted guiding of electric discharges around objects". Science Advances 1 (5): e1400111. Bibcode:2015SciA....1E0111C. doi:10.1126/sciadv.1400111. ISSN 2375-2548.

Ссылки

Примечания

Отрывок, характеризующий Электрическая дуга

– On fera du chemin cette fois ci. Oh! quand il s"en mele lui meme ca chauffe… Nom de Dieu… Le voila!.. Vive l"Empereur! Les voila donc les Steppes de l"Asie! Vilain pays tout de meme. Au revoir, Beauche; je te reserve le plus beau palais de Moscou. Au revoir! Bonne chance… L"as tu vu, l"Empereur? Vive l"Empereur!.. preur! Si on me fait gouverneur aux Indes, Gerard, je te fais ministre du Cachemire, c"est arrete. Vive l"Empereur! Vive! vive! vive! Les gredins de Cosaques, comme ils filent. Vive l"Empereur! Le voila! Le vois tu? Je l"ai vu deux fois comme jete vois. Le petit caporal… Je l"ai vu donner la croix a l"un des vieux… Vive l"Empereur!.. [Теперь походим! О! как он сам возьмется, дело закипит. Ей богу… Вот он… Ура, император! Так вот они, азиатские степи… Однако скверная страна. До свиданья, Боше. Я тебе оставлю лучший дворец в Москве. До свиданья, желаю успеха. Видел императора? Ура! Ежели меня сделают губернатором в Индии, я тебя сделаю министром Кашмира… Ура! Император вот он! Видишь его? Я его два раза как тебя видел. Маленький капрал… Я видел, как он навесил крест одному из стариков… Ура, император!] – говорили голоса старых и молодых людей, самых разнообразных характеров и положений в обществе. На всех лицах этих людей было одно общее выражение радости о начале давно ожидаемого похода и восторга и преданности к человеку в сером сюртуке, стоявшему на горе.
13 го июня Наполеону подали небольшую чистокровную арабскую лошадь, и он сел и поехал галопом к одному из мостов через Неман, непрестанно оглушаемый восторженными криками, которые он, очевидно, переносил только потому, что нельзя было запретить им криками этими выражать свою любовь к нему; но крики эти, сопутствующие ему везде, тяготили его и отвлекали его от военной заботы, охватившей его с того времени, как он присоединился к войску. Он проехал по одному из качавшихся на лодках мостов на ту сторону, круто повернул влево и галопом поехал по направлению к Ковно, предшествуемый замиравшими от счастия, восторженными гвардейскими конными егерями, расчищая дорогу по войскам, скакавшим впереди его. Подъехав к широкой реке Вилии, он остановился подле польского уланского полка, стоявшего на берегу.
– Виват! – также восторженно кричали поляки, расстроивая фронт и давя друг друга, для того чтобы увидать его. Наполеон осмотрел реку, слез с лошади и сел на бревно, лежавшее на берегу. По бессловесному знаку ему подали трубу, он положил ее на спину подбежавшего счастливого пажа и стал смотреть на ту сторону. Потом он углубился в рассматриванье листа карты, разложенного между бревнами. Не поднимая головы, он сказал что то, и двое его адъютантов поскакали к польским уланам.
– Что? Что он сказал? – слышалось в рядах польских улан, когда один адъютант подскакал к ним.
Было приказано, отыскав брод, перейти на ту сторону. Польский уланский полковник, красивый старый человек, раскрасневшись и путаясь в словах от волнения, спросил у адъютанта, позволено ли ему будет переплыть с своими уланами реку, не отыскивая брода. Он с очевидным страхом за отказ, как мальчик, который просит позволения сесть на лошадь, просил, чтобы ему позволили переплыть реку в глазах императора. Адъютант сказал, что, вероятно, император не будет недоволен этим излишним усердием.
Как только адъютант сказал это, старый усатый офицер с счастливым лицом и блестящими глазами, подняв кверху саблю, прокричал: «Виват! – и, скомандовав уланам следовать за собой, дал шпоры лошади и подскакал к реке. Он злобно толкнул замявшуюся под собой лошадь и бухнулся в воду, направляясь вглубь к быстрине течения. Сотни уланов поскакали за ним. Было холодно и жутко на середине и на быстрине теченья. Уланы цеплялись друг за друга, сваливались с лошадей, лошади некоторые тонули, тонули и люди, остальные старались плыть кто на седле, кто держась за гриву. Они старались плыть вперед на ту сторону и, несмотря на то, что за полверсты была переправа, гордились тем, что они плывут и тонут в этой реке под взглядами человека, сидевшего на бревне и даже не смотревшего на то, что они делали. Когда вернувшийся адъютант, выбрав удобную минуту, позволил себе обратить внимание императора на преданность поляков к его особе, маленький человек в сером сюртуке встал и, подозвав к себе Бертье, стал ходить с ним взад и вперед по берегу, отдавая ему приказания и изредка недовольно взглядывая на тонувших улан, развлекавших его внимание.
Для него было не ново убеждение в том, что присутствие его на всех концах мира, от Африки до степей Московии, одинаково поражает и повергает людей в безумие самозабвения. Он велел подать себе лошадь и поехал в свою стоянку.
Человек сорок улан потонуло в реке, несмотря на высланные на помощь лодки. Большинство прибилось назад к этому берегу. Полковник и несколько человек переплыли реку и с трудом вылезли на тот берег. Но как только они вылезли в обшлепнувшемся на них, стекающем ручьями мокром платье, они закричали: «Виват!», восторженно глядя на то место, где стоял Наполеон, но где его уже не было, и в ту минуту считали себя счастливыми.
Ввечеру Наполеон между двумя распоряжениями – одно о том, чтобы как можно скорее доставить заготовленные фальшивые русские ассигнации для ввоза в Россию, и другое о том, чтобы расстрелять саксонца, в перехваченном письме которого найдены сведения о распоряжениях по французской армии, – сделал третье распоряжение – о причислении бросившегося без нужды в реку польского полковника к когорте чести (Legion d"honneur), которой Наполеон был главою.
Qnos vult perdere – dementat. [Кого хочет погубить – лишит разума (лат.) ]

Русский император между тем более месяца уже жил в Вильне, делая смотры и маневры. Ничто не было готово для войны, которой все ожидали и для приготовления к которой император приехал из Петербурга. Общего плана действий не было. Колебания о том, какой план из всех тех, которые предлагались, должен быть принят, только еще более усилились после месячного пребывания императора в главной квартире. В трех армиях был в каждой отдельный главнокомандующий, но общего начальника над всеми армиями не было, и император не принимал на себя этого звания.
Чем дольше жил император в Вильне, тем менее и менее готовились к войне, уставши ожидать ее. Все стремления людей, окружавших государя, казалось, были направлены только на то, чтобы заставлять государя, приятно проводя время, забыть о предстоящей войне.
После многих балов и праздников у польских магнатов, у придворных и у самого государя, в июне месяце одному из польских генерал адъютантов государя пришла мысль дать обед и бал государю от лица его генерал адъютантов. Мысль эта радостно была принята всеми. Государь изъявил согласие. Генерал адъютанты собрали по подписке деньги. Особа, которая наиболее могла быть приятна государю, была приглашена быть хозяйкой бала. Граф Бенигсен, помещик Виленской губернии, предложил свой загородный дом для этого праздника, и 13 июня был назначен обед, бал, катанье на лодках и фейерверк в Закрете, загородном доме графа Бенигсена.
В тот самый день, в который Наполеоном был отдан приказ о переходе через Неман и передовые войска его, оттеснив казаков, перешли через русскую границу, Александр проводил вечер на даче Бенигсена – на бале, даваемом генерал адъютантами.
Был веселый, блестящий праздник; знатоки дела говорили, что редко собиралось в одном месте столько красавиц. Графиня Безухова в числе других русских дам, приехавших за государем из Петербурга в Вильну, была на этом бале, затемняя своей тяжелой, так называемой русской красотой утонченных польских дам. Она была замечена, и государь удостоил ее танца.
Борис Друбецкой, en garcon (холостяком), как он говорил, оставив свою жену в Москве, был также на этом бале и, хотя не генерал адъютант, был участником на большую сумму в подписке для бала. Борис теперь был богатый человек, далеко ушедший в почестях, уже не искавший покровительства, а на ровной ноге стоявший с высшими из своих сверстников.
В двенадцать часов ночи еще танцевали. Элен, не имевшая достойного кавалера, сама предложила мазурку Борису. Они сидели в третьей паре. Борис, хладнокровно поглядывая на блестящие обнаженные плечи Элен, выступавшие из темного газового с золотом платья, рассказывал про старых знакомых и вместе с тем, незаметно для самого себя и для других, ни на секунду не переставал наблюдать государя, находившегося в той же зале. Государь не танцевал; он стоял в дверях и останавливал то тех, то других теми ласковыми словами, которые он один только умел говорить.
При начале мазурки Борис видел, что генерал адъютант Балашев, одно из ближайших лиц к государю, подошел к нему и непридворно остановился близко от государя, говорившего с польской дамой. Поговорив с дамой, государь взглянул вопросительно и, видно, поняв, что Балашев поступил так только потому, что на то были важные причины, слегка кивнул даме и обратился к Балашеву. Только что Балашев начал говорить, как удивление выразилось на лице государя. Он взял под руку Балашева и пошел с ним через залу, бессознательно для себя расчищая с обеих сторон сажени на три широкую дорогу сторонившихся перед ним. Борис заметил взволнованное лицо Аракчеева, в то время как государь пошел с Балашевым. Аракчеев, исподлобья глядя на государя и посапывая красным носом, выдвинулся из толпы, как бы ожидая, что государь обратится к нему. (Борис понял, что Аракчеев завидует Балашеву и недоволен тем, что какая то, очевидно, важная, новость не через него передана государю.)
Но государь с Балашевым прошли, не замечая Аракчеева, через выходную дверь в освещенный сад. Аракчеев, придерживая шпагу и злобно оглядываясь вокруг себя, прошел шагах в двадцати за ними.

Электрическая дуга - один из видов электрического разряда в газах. Всякое направ­ленное движение заряженных частиц между электродами в газах называется разрядом. Ме­сто дуги среди других видов разрядов в газах:

Дуговой разряд отличается от других:

1 - высокой температурой 4000 - 50 ООО К

2 - высокой силой тока 50-10 000 А

3 - слабым электрическим полем 10 - 60 В.

Называется дугой из-за характерной формы, которая возникает от взаимодействия за­ряженных частиц дуги с магнитным полем самой дуги. При увеличении тока магнитное поле может разрывать дуговой разряд

Ток в дуговом процессе протекает между электродами (полюсами дуги) через газ дуго­вого пространства.

Положительный электрод - анод.

Отрицательный электрод - катод

Различают дугу свободную (свободно расширяющуюся) и сжатую. Свободной (свобод­но расширяющейся) называется дуга оадиус которой, не ограничен ни в одном её сечении;

сжатой называется дуга радиус которой, ограничен хотя бы в одном сечении.

Распределение падения напряжения в дуге. В межэлектродном пространстве на­блюдается неравномерное распределение электрического поля (скачки потенциала в при - электродных областях) и в соответствии с зтим неравномерно падение напряжения по длине дуги.

Свободные электроны, которые есть в металлах под действием электрического поля при высокой температуре катода покидают его Потенциалом катодной области разгоняются и ионизуют атомы столба дуги Атомы столба могут ионизироваться и от высокой темпера­туры (соударением, фотоионизация) Электроны перемещаются в столбе дуги в сторону анода Приблизившись к аноду, попадают на него под действием электрического поля анод­ной области Ионы двигаются в противоположную сторону, бомбардируя катод

Сопротивление газового проводника является нелинейным и поэтому дуга не подчиня­ется Закону Ома

Статическая вольт-амперная характеристика дуги. В зависимости от плотности тока вольтамперная характеристика может быть падающей, пологой и возрастающей

При малых токах с увеличением тока интенсивно возрастает количество заряженных частиц, главным образом, из-за нагрева и увеличения эмиссии электронов с поверхности катода, а, значит, и соответствующего ей увеличения объемной ионизации в столбе дуги.

Сопротивление столба дуги при этом уменьшается и падает необходимое для поддержки разряда напряжение. Характе­ристика дуги - падающая.

При дальнейшем увеличении тока и ограниченном сечении электродов столб дуги немного сжимается и объем газа, ко­торый берет участие в переносе зарядов уменьшается. Это приводит к меньшей скорости роста числа заряженных частиц.

Напряжение дуги становится мало зависи­мым от тока. Характеристика - пологая.

В первых двух областях электрическое сопротивление дуги отрицательно (негативно). Эти области характерные для дуг со сравнительно малой плотностью тока. Дальнейший рост тока приводить к исчерпанию термоэмиссионной способности ка­тода. Количество заряженных частиц не увеличивается и сопротивление дуги становится положительным и почти постоянным. Появляется высокоионизованна» сжатая плазма, кото­рая по свойствам близка к металлическим проводникам. Такая дуга подчиняется закону Ома.

Энергетическая ёмкость различных областей дуги

Для приведенных цифр падение напряжения в областях дуги (дуга в парах железа) и характерных для ручной дуговой сварки значений тока:

В катодной области 14Вх100А=1,4 кВт на длине *10"5 см

В столбе дуги 25 В/см х 0,6 см х 100 А = 1,5 кВт на длине ^0.6 см

В анодной области 2,5 В х 100 А = 250 Вт на длине ^Ю"4 см.

Основные потребители энергии - катодная область и столб дуги, очевидно, что в них и происходят основные процессы, которые характеризуют физические явление, результатом которых является дуговой разряд.

При постоянных диаметрах электрода и расстояниях между ними электрические пара­метры дуги будут зависеть от материала электродов (эмиссия, пары металлов в столбе), состава газов в дуге, температуры электродов, состава газа в дуге (в столбе дуги).

То есть, электрические параметры дуги зависят от физических и геометрических фак­торов. Изменение размеров электродов и расстояния между ними влияет на электрические характеристики дуги

Сварочные дуги подразделяют (классифицируют):

По материалам электродов (Fe, W, Си и т. д.)

По составу газов (в воздухе, в парах металлов, в потоке защитных газов;

Плавящимся или неплавящимся электродом и т. п.

Физические процессы в катодной области

Электроны покидают поверхность катода и двигаются к аноду. Путь, который они про­ходят до первого столкновения с атомами газов дуги ограничивает катодную область. Рас­четы показывают, что это является * Ю"ь см для нормального давления и дуги в воздухе и в парах железа.

К катодной области принято относить эту область дуги (1C)"5 см) и саму поверхност­ность катода.

1) Общий электрический ток в катодной области состоит из электронного и ионного тока

Плотность тока (А/см2):

I = eo-rvWe’i© = e0n©W&

е0 - заряд электрона;

л© - количество электронов;

W© - скорость движения (дрейфа) электронов.

Если предположить равенство ппотности то­ков ионного и электронного (на самом I, > 1в), то

Ионы и электроны, которые проходят катодную область, накапливают кинетическую энергию:

Р _ П1фУф - _ тсЛЧэ.

где те, т© - соответствующие массы.

Поскольку они разгоняются электрическим полем, то энергия, которую они получают, будет Єо-ІЛ (произведение зарядов на разницу потенциалов):

Еф = Ее=Єо. ик

тогда скорости движения заряженных частиц:

w* = ; we = №., тогда

пе _ W9 _ у гпе _ I гп(

Масса электрона mQ, = 9,106-10"28 г

Масса протона mn = 1,66-10"24 г

1,66-10"24-55,84 _з19

Для иона железа AFe = 55,84; в этом случае:

о катод, отдают ему свою энергию, разогревая его, захватывают электрон, превращаясь в нейтральные атомы. Электроны из катода разгоняются до энергии eo U* ударяются в атомы столба дуги и ионизируют их.

Катодная эмиссия

Различают такие виды эмиссии электронов с поверхности катода:

Термоэлектронная;

Автоэлектронная (электростатическая);

Фотоэлектронная (внешний фотоэффект);

Вторичная (бомбардировка поверхности атомами, ионами, тяжелыми частицами, электронами и др.);

При сварке дуговыми способами наиболее часто встречается термо - и авто­электронная эмиссия.

Интенсивность эмиссии оценивают плотностью тока j [А/см2] (для сварки 102 ... 105 А/мм2).

Термоэлектронная эмиссия.

Свободным электронам, которые есть в твердом теле, не дает покинуть его электриче­ское поле - поверхностный потенциальный барьер.

Величина наименьшей энергии, которую необходимо придать электрону, чтобы он мог выйти из поверхности тела и удалиться на расстояние, при котором между ним и телом не­возможно взаимодействие называется работа выхода.

Всегда найдутся такие электроны, которые случайно наберут эту энергию и выйдут из тела. Но под действием электрического поля они сразу же возвращаются назад.

С ростом температуры тела количество электронов, которые имеют энергию, доста­точную для выхода из тела, увеличивается.

В электростатических расчетах работа выхода А* = е0 ф, где <р - потенциал выхода. Е0 = 1, А, = ф в эктрон-вольтах.

Плотность тока для термоэлектронной эмиссии определяется уравнением Ричардсона - Дештмена:

jT=AT2e“kf; jT = AT2e"^

А - постоянная, зависит от материала катода

Т - температура

к: - постоянная Больцмана к = 8,62 10‘5 эв/К = 1,38-10"23 ДжЖ

Ток термоэлектронной эмиссии оказывается на несколько порядков (в 100.... 10000 раз) меньше чем необходимый для катода при сварке, например, стали.

Но 8 катодной области есть объемный положи­тельный ионный заряд, который создает напряжен­ность поля 1-Ю6 В/см и больше. Электрическое по­ле такой напряженности изменяет условия эмиссии электронов из катода.

Работа выхода электронов уменьшается в со­ответствии с величиной напряженности поля в при - электродной (прикатодной) области. Это явление на­зывается эффект Шоттки. Работа выхода при нали­чии электрического поля е приповерхностной области катода уменьшается на величину: ДАв=е"2Е,/2 ДАВ =3,8-10“*Е

Е - напряженность электрического поляОсобую роль в объяснении явлений катодной эмиссии для аномально больших плот­ностей тока, характерных для сварки плавящимся электродом, играет электростатическая гипотеза (автоэлектронная эмиссия) Ленгмюра (1923 г). Поток электронов имеет волновые свойства Электрон - волна может проникнуть из катода в анод, не поднимаясь до потен­циального уровня, необходимого для эмиссии, а обходя его. Это называется туннельный переход Он происходит без расходования энергии.

При этом величина потенциального барьера должна быть меньше чем длина волны электрона в потоке. Длина волны потока электронов:

Ft - постоянная Планка ft =4,13-10"15 е-в с m - масса электрона V - скорость потока электронов.

у и в - константы, которые зависят от материала катода.

Фотоэмиссия (внешний фотоэффект, эффект Эйнштейна). При поглощении катодом квантов света могут появиться электроны, которые имеют энергию намного большую от ра­боты выхода. Условие возникновения фотоэмиссии (закон Эйнштейна)

Fi v £ ф + Уз mv2

fi - постоянная Планка F> = 6,626176 (36)- 10 м Дж-сек; v - частота световой волны;

m - масса электро. на

v - скорость электрона после эмиссии.

с - скорость светла в вакууме равна 299792458,0 (1,2) м/сек;

vo, *о - граничные частота и длина волны света, которые могут вызвать фотоэмиссию.

Смесь газов ионизуется иначе, чем каждый отдельный газ из-за того, что электронный газ, который создается в результате ионизации будет совместным для всех составных газо­вой смеси. Степень ионизации смеси:

■Л-тс п-д Р’

п - количество частиц;

S - диаметр взаимодействия частиц (диаметр Рамзауэра);

Р - внешнее давление.

Средняя квадратическая скорость определяется из средней энергии теплового движе­ния.

к - постоянная Больцмана.

Свободный пробег иона - X* свободный пробег нейтрального атома. Свободный пробег электрона Л*о * 4ІЛп (эффект Рамзауэра).

Расчёты показывают, что при массах иона железа и электрона: пір** = 56-1,66-1 O"2* г, me0 = 9,106 10’28 г,

соотношение их подвижностей составит:

Очевидно, что и ток ионный в 1830 раз меньше чем ток электронный. Из приведенных зависимостей с учетом давления подвижность электронов будет:

ь. =й-Ц-Ц - ■Jt ps

В = 3,62-10‘13 - безразмерная величина;

5 - диаметр взаимодействия частиц (Рамзауэра).

Скорость дрейфа электрона в столбе дуги:

В расчетах столб дуги принимаемая цилиндрическим по Форме, однородным с посто­янной по сечению плотностью тока - каналовая модель К. К. Хренова.

Длина столба дуги практически равняется длине дуги (в пределах 0.1 - 15 мм). Паде­ние напряжения в столбе дуги пропорционально длине столба:

Электрическое поле анода отбрасывает положительные ионы в столб дуги, вместо этого притягивая электроны. Создается объемный отрицательный заряд. Из поверхностного анода не происходит эмиссии положительных ионов (за случаем отдельных видов угольной дуги). В связи с этим ток анодной области - это чисто электронный ток га = /«<>.

Длина анодной области приблизительно равна длине свободного пробега электронов от последнего соударения с атомом. Объемный отрицательный заряд анодной области вы­зывает анодное падение напряжения, которое мало зависит от материала анода, газов дуги, тока через дугу и равняется 2 ... 3 В. Электрон, достигая анода, отдает ему свою кинетиче­скую энергию, а также работу выхода, которая была потрачена на отрыв электрона от като­да.

Вольт-амперная характеристика дуги, которая свободно расширяется (свободная)

Дуговой разряд - устойчивая система. При постоянном питании энергией поддержива­ет себя в широком интервале режимов. Всякое нарушения равновесия вызывает такое из­менение параметров дуги, чтобы дуговой процесс остался (не прерывался). Границы. в ко­торых возможны дуговые процессы и характер изменения параметров дуги в ответ на нару­шения равновесия, определяют вольт-амперные характеристики.

Статические -1 - ос; динамические -1 - 0.

Рассматривать будем статические характеристики столба дуги.

Предположения (Каналовая модель К. К. Хренова):

Рассматриваем устойчивый дуговой процесс. Энергия подводится в дугу в неограни-ченном количестве и как угодно длительное время. Никакие внешние факторы не влияют на диаметр дуги.

Во всех зонах дуги строго поддерживается термодинамическое равновесие. При этом дуговая плазма подчиняется закону Саха.

Столб дуги представляет собой цилиндр, поверхность которого резко отделяет плазму дуги с температурой Тд от окружающей среды Т = 0.

Все тепповые потери столба дуги это потери на излучение внешней цилиндрической оболочки дуги и подчиняются закону Стефана-Больцмана.

Принцип минимума Штейнбека.

В Дуге, которая свободно расширяется, физические процессы устанавливаются таким образом, чтобы £-> min.

При устойчивом дуговом процессе тепловые потери столба дуги являются минимально возмож­ными для данных условий. Для заданного состояния газовой фазы и постоянных 1Я и Р электрическое поле будет зависеть только от 1^.

1. При увеличении температуры столба от Т6 увеличивается степень ионизации, подвижность электронов, плотность тока, напряженность электри­ческого поля, одновременно увеличиваются и потери на излучение.

2. С уменьшением температуры столба от ТБ уменьшается степень ионизации, плотность тока, но увеличивается напряженность поля. Расходы энер­гии увеличиваются.

При условии отсутствия ограничений на диаметр дуги, дуга в широких пределах явля­ется саморегулируемой системой. В дуге автоматически поддерживается минимально воз­можная напряженность поля. То есть, при постоянных значениях физических параметров среды и Ід в дуге устанавливается такие значения Т^ и гст, при которых напряженность поля в столбе будет минимальной.

Баланс энергии в областях дуги

Баланс энергии в столбе дуги f - доля электронного тока, |а - сварочный ток.

Энергия источника (тепло Джоуля-Ленца, выделяемое на сопротивлении плазмы столба дуги проходящему току):

ист - падение напряжения на столбе дуги.

Ионизация нейтральных атомов:

Ц - потенциал ионизации газов дугового промежутка.

Тепловые потери на излучение - RCT

Тепловые потери на конвекцию - R^*,

Тепловые потери на диффузию, заря­женных частиц в окружающую среду - RAWt>

Тепловые потери на эндотермические химические реакции - RXMt

Уравнение баланса:

(1 - f)l*U* + (1- f)l*Ui+ 4г - Rem = f-lu

Q* + R* или, в упрощённой форме:

Q* = lc*(UK - <р)

отсюда вывод:

чем лучше эмиссия электронов с поверхности катода (чем меньше работа выхода <р) - тем больше теплоты выделяется на катоде. Опытные данные показывают:

причём: 2 - характерно для неплавящихся катодов;

10 - характерно для плавящихся катодов.

3. Баланс энергии на аноде.

Уравнение баланса:

Р + А ■ Rem - Qt + R*

или, в упрощённой форме:

Q« = l~(U, + <р)

Опытные данные показывают:

Сжатая дуга.

Радиус столба дуги гет есть, прежде всего, функция тока в дуге:

рі/2,2 3 гст = С2 -гг - д

ЬЗ,!9Л2 а0 Uj

С увеличением тока увеличивается радиус дуги.

drCT „ Р12 2,-13 . Р12 Дід

Ид Стд3и{912 3 ИЛИ 2а‘3и!9,2",Ц

Дгст - темп увеличения радиуса дуги.

Темп изменения радиуса столба дуги (Дгст - темп) зависит от абсолютного значения то­ка. При малых токах радиус чувствителен к изменению тока, при больших токах - мало чув­ствителен. Предельно, когда I» -*«, Дгет = 0.

Когда Дгст = const, ток дуги определяется плотностью тока "і"

I = ЛГап " Urn-

Дуга, которая имеет такие свойства, называется сжатой. Если радиус хотя бы в одном сечении является величиной постоянной^Д^га называется сжатой.

Граница перехода от свободной к сжатой дуге зависит от потенциала ионизации U,. При малой величине U, нужен большой ток для перехода в сжатую дугу. Ограничение радиу­са может быть по площади одного из электродов, или через увеличение теплоотдачи из бо­ковой поверхности столба. Обдувая дугу потоком холодного газа, можно перевести ее в сжа­тую при малых значениях тока.

В реальных условиях на величину прироста Дгет могут влиять:

1. Радиус электродов, между которыми горит дуга.

2. Потенциал ионизации газа, в котором горит дуга.

3. Теплоотдача с боковой поверхности столба дуги.

Способы получения сжатой дуги

Исходя из этого, есть такие способы получения сжатой дуги:

Ограничение диаметра хотя бы одного из электродов;

Обдув дуги газом с высоким потенциалом ионизации и высокой теплопроводностью (Аг. Не);

Внешнее продольное магнитное поле (в технике не применяется).

Общее описание вольт-амперной характеристики дуги, исходя из изложенного может быть выполнено следующим образом:

1) Свободная дуга (свободно расширяющаяся). Радиус столба дуги гст увеличивается с

ростом ток^Ід. Температура дуги остаётся постоянной Т = const, степень ионизации х - очень малая. Падающую характеристику имеют и столб дуги и катодная область.

2) Сжатая слабоионизированая дуга. Радиус столба дуги гет - не увеличивается с рос­том т. ока^начинает заметно увеличиваться степень ионизации х и температура стопба дуги Та. Столб дуги имеет еще падающую характеристику. Катодная область - возрастающую

3) Си^т^ в^юок£ионизированая дуга. Степень ионизации х-*1 ВАХ столба дуги и ка­тодной области - возрастающие. Процессы в дуге перестают зависеть от полярности, мате­риалов электродов и свойств газов столба дуги. Дуга становится обычным проводником на уровне металлов (при 10 ООО К удельное сопротивление р = 1,5-1 O"4 Ом см), превращаясь в высококонцентрированный весьма устойчивый источник сварочного нагрева

Loading...Loading...