Бетонирование в зимнее время. Технология бетонных работ в зимних условиях. Заливаем бетон зимой – достоинства зимнего бетонирования

Понятие «зимние условия» в технологии монолитного бетона и железобетона несколько отличается от общепринятого - календарного. Зимние условия начинаются, когда среднесуточная температура наружного воздуха снижается до +5°С, а в течение суток имеет место падение температуры ниже 0°С.

При отрицательных температурах не прореагировавшая с цементом вода переходит в лед и не вступает в химическое соединение с цементом. В результате этого прекращается реакция гидратации и, следовательно, бетон не твердеет. Одновременно в бетоне развиваются значительные силы внутреннего давления, вызванные увеличением (примерно на 9%) объема воды при переходе ее в лед. При раннем замораживании бетона его неокрепшая структура не может противостоять этим силам и нарушается. При последующем оттаивании замерзшая вода вновь превращается в жидкость и процесс гидратации цемента возобновляется, однако разрушенные структурные связи в бетоне полностью не восстанавливаются.

Замораживание свежеуложенного бетона сопровождается также образованием вокруг арматуры и зерен заполнителя ледяных пленок, которые благодаря притоку воды из менее охлажденных зон бетона увеличиваются в объеме и отжимают цементное тесто от арматуры и заполнителя.

Все эти процессы значительно снижают прочность бетона и его сцепление с арматурой, а также уменьшает его плотность, стойкость и долговечность.

Если бетон до замерзания приобретает определенную начальную прочность, то все упомянутые выше процессы не оказывают на него неблагоприятного воздействия. Минимальную прочность, при которой замораживание для бетона не опасно, называют критической.

Величина нормируемой критической прочности зависит от класса бетона, вида и условий эксплуатации конструкции и составляет: для бетонных и железобетонных конструкций с ненапрягаемой арматурой - 50% проектной прочности для В7,5...В10, 40% для В12,5... В25 и 30% для В 30 и выше, для конструкций с предварительно напрягаемой арматурой - 80% проектной прочности, для конструкций, подвергающихся попеременному замораживанию и оттаиванию или расположенных в зоне сезонного оттаивания веч-номерзлых грунтов - 70% проектной прочности, для конструкций, нагружаемых расчетной нагрузкой - 100% проектной прочности.

Продолжительность твердения бетона и его конечные свойства в значительной степени зависят от температурных условий, в которых выдерживают бетон. По мере повышения температурыувеличивается активность воды, содержащейся в бетонной смеси, ускоряется процесс ее взаимодействия с минералами цементного клинкера, интенсифицируются процессы формирования коагуляционной и кристаллической структуры бетона. При снижении температуры, наоборот, все эти процессы затормаживаются и твердение бетона замедляется.

Поэтому при бетонировании в зимних условиях необходимо создать и поддерживать такие температурно-влажностные условия, при которых бетон твердеет до приобретения или критической, или заданной прочности в минимальные сроки с наименьшими трудовыми затратами. Для этого применяют специальные способы приготовления, подачи, укладки и выдерживания бетона.

При приготовлении бетонной смеси в зимних условиях ее температуру повышают до 35...40С путем подогрева заполнителей и воды. Заполнители подогревают до 60С паровыми регистрами, во вращающихся барабанах, в установках с продувкой дымовых газов через слой заполнителя, горячей водой. Воду подогревают в бойлерах или водогрейных котлах до 90С. Подогрев цемента запрещается.

При приготовлении подогретой бетонной смеси применяют иной порядок загрузки составляющих в бетоносмеситель. В летних условиях в барабан смесителя, предварительно заполненного водой, все сухие компоненты загружают одновременно. Зимой во избежание «заваривания» цемента в барабан смесителя вначале заливают воду и загружают крупный заполнитель, а затем после нескольких оборотов барабана - песок и цемент. Общую продолжительность перемешивания в зимних условиях увеличивают в 1,2... 1,5 раза. Бетонную смесь транспортируют в закрытой утепленной и прогретой перед началом работы таре (бадьи, кузова машин). Автомашиныимеют двойное днище, в полость которого поступают отработанные газы мотора, что предотвращает теплопотери. Бетонную смесь следует транспортировать от места приготовления до места укладки по возможности быстрее и без перегрузок. Места погрузки и выгрузки должны быть защищены от ветра, а средства подачи бетонной смеси в конструкции (хоботы, виброхоботы и др.) утеплены.

Состояние основания, на котором укладывают бетонную смесь, а также способ укладки должны исключать возможность ее замерзания в стыке с основанием и деформации основания при укладке бетона на пучинистые фунты. Для этого основание отогревают до положительных температур и предохраняют от замерзания до приобретения вновь уложенным бетоном требуемой прочности.

Опалубку и арматуру до бетонирования очищают от снега и наледи, арматуру диаметром более 25 мм, а также арматуру из жестких прокатных профилей и крупные металлические закладные детали при температуре ниже - 10°С отогревают до положительной температуры.

Бетонирование следует вести непрерывно и высокими темпами, при этом ранее уложенный слой бетона должен быть перекрыт до того, как в нем температура будет ниже предусмотренной.

Строительное производство располагает обширным арсеналом эффективных и экономичных методов выдерживания бетона в зимних условиях, позволяющих обеспечить высокое качество конструкций. Эти методы можно разделить на три группы: метод, предусматривающий использование начального теплосодержания, внесенного в бетонную смесь при ее приготовлении или перед укладкой в конструкцию, и тепловыделение цемента, сопровождающее твердение бетона - так называемый метод «термоса», методы, основанные на искусственном прогреве бетона, уложенного в конструкцию - электропрогрев, контактный, индукционный и инфракрасный нагрев, конвективный обогрев, методы, использующие эффект понижения эвтектической точки воды в бетоне с помощью специальных противоморозных химических добавок.

Указанные методы можно комбинировать. Выбор того или иного метода зависит от вида и массивности конструкции, вида, состава и требуемой прочности бетона, метеорологических условий производства работ, энергетической оснащенности строительной площадки и т. д.

Метод «термоса»

Технологическая сущность метода «термоса» заключается в том, что имеющая положительную температуру (обычно в пределах 15... 30°С) бетонная смесь укладывается в утепленную опалубку. В результате этого бетон конструкции набирает заданную прочность за счет начального теплосодержания и экзотермического тепловыделения цемента за время остывания до 0°С.

В процессе твердений бетона выделяется экзотермическая теплота, количественно зависящая от вида применяемого цемента и температуры выдерживания.

Наибольшим экзотермическим тепловыделением обладают высокомарочные и быстротвердеющие портландцементы. Экзотермия бетона обеспечивает существенный вклад в теплосодержание конструкции, выдерживаемой методом «термоса».

Бетонирование методом «Термос с добавками-ускорителями»

Некоторые химические вещества (хлористый кальций СаСl, углекислый калий - поташ К2СО3, нитрат натрия NaNO3 и др.), введенные в бетон внезначительных количествах (до 2% от массы цемента), оказывают следу ющее действие на процесс твердения: эти добавки ускоряют процесс твердения в начальный период выдерживания бетона. Так, бетон с добавкой 2%-ного хлористого кальция от массы цемента уже на третий день достигает прочности, в 1,6 раза большей, чем бетон того же состава, но без добавки. Введение в бетон добавок-ускорителей, являющихся одновременно и противоморозными добавками, в указанных количествах понижает температуру замерзания до -3°С, увеличивая тем самым продолжительность остывания бетона, что также способствует приобретению бетоном большей прочности.

Бетоны с добавками-ускорителями готовят на подогретых заполнителях и горячей воде. При этом температура бетонной смеси на выходе из смесителя колеблется в пределах 25...35°С, снижаясь к моменту укладки до 20°С. Такие бетоны применяют при температуре наружного воздуха -15... -20°С. Укладывают их в утепленную опалубку и закрывают слоем теплоизоляции. Твердение бетона происходит в результате термосного выдерживания в сочетании с положительным воздействием химических добавок. Этот способ является простым и достаточно экономичным, позволяет применять метод «термоса» для конструкций с Мп

Бетонирование «Горячий термос»

Заключается в кратковременном разогреве бетонной смеси до температуры 60... 80°С, уплотнении ее в горячем состоянии и термосном выдерживании или с дополнительным обогревом.

В условиях строительной площадки разогрев бетонной смеси осуществляют, как правило, электрическим током. Для этого порцию бетонной смеси с помощью электродов включают в электрическую цепь переменного тока в качестве сопротивления.

Таким образом, как выделяемая мощность, так и количество выделяемой за промежуток времени теплоты зависят от подводимого к электродам напряжения (прямая пропорциональность) и омическогосопротивления профеваемой бетонной смеси (обратная пропорциональность).

В свою очередь, омическое сопротивление является функцией геометрических параметров плоских электродов, расстояния между электродами и удельного омического сопротивления бетонной смеси.

Электроразофев бетонной смеси осуществляют при напряжении тока 380 и реже 220 В. Для организации электроразофева на строительной площадке оборудуют пост с трансформатором (напряжение на низкой стороне 380 или 220 В), пультом управления и распределительным щитом.

Электроразогрев бетонной смеси осуществляют в основном в бадьях или в кузовах автосамосвалов.

В первом случае приготовленную смесь (на бетонном заводе), имеющую температуру 5...15°С, доставляют автосамосвалами на строительную площадку, выгружают в электробадьи, разогревают до 70... 80°С и укладывают в конструкцию. Чаще всего применяют обычные бадьи (туфельки) с тремя электродами из стали толщиной 5 мм, к которым с помощью кабельных разъемов подключают провода (или жилы кабелей) питающей сети. Для равномерного распределения бетонной смеси между электродами при загрузке бадьи и лучшей выгрузке разогретой смеси в конструкцию на корпусе бадьи установлен вибратор.

Во втором случае приготовленную на бетонном заводе смесь доставляют на строительную площадку в кузове автосамосвала. Автосамосвал въезжает на пост разогрева и останавливается под рамой с электродами. При работающем вибраторе электроды опускают в бетонную смесь и подают напряжение. Разогрев ведут в течение 10... 15 мин до температуры смеси на быстротвердеющих портландцементах 60°С, на портландцементах 70°С, на шлакопортландцементах 80°С.

Для разогрева смеси до столь высоких температур за короткий промежуток времени требуются большие электрические мощности. Так, для разогрева 1 м смеси до 60°С за 15 мин требуется 240 кВт, а за 10 мин - 360 кВт установленной мощности.

Искусственный прогрев и нагрев бетона

Сущность метода искусственного прогрева и нагрева заключается в повышении температуры уложенного бетона до максимально допустимой и поддержании ее в течение времени, за которое бетон набирает критическую или заданную прочность.

Искусственный прогрев и нагрев бетона применяют при бетонировании конструкций с Мп > 10, а также и более массивных, если в последних невозможно получить в установленные сроки заданную прочность при выдерживании только способом термоса.

Физическая сущность электропрогрева (электродного прогрева) идентична рассмотренному выше способу электроразогрева бетонной смеси, т. е. используется теплота, выделяемая в уложенном бетоне при пропуске через него электрического тока.

Образующаяся теплота расходуется на нагрев бетона и опалубки до заданной температуры и возмещение теплопотерь в окружающую среду, происходящих в процессе выдерживания. Температура бетона при электропрогреве определяется величиной вьщеляемой в бетоне электрической мощности, которая должна назначаться в зависимости от выбранного режима термообработки и величины теплопотерь, имеющих место при электропрогреве на морозе.

Для подведения электрической энергии к бетону используют различные электроды: пластинчатые, полосовые, стержневые и струнные.

К конструкциям электродов и схемам их размещения предъявляются следующие основные требования: мощность, выделяемая в бетоне при электропрогреве, должна соответствовать мощности, требуемой по тепловому расчету, электрическое и, следовательно, температурное поля должны быть по возможности равномерными, электроды следует располагать по возможности снаружи прогреваемой конструкции для обеспечения минимального расхода металла, установку электродов и присоединение к ним проводов необходимо производить до начала укладки бетонной смеси (при использовании наружных электродов).

В наибольшей степени удовлетворяют изложенным требованиям пластинчатые электроды.

Пластинчатые электроды принадлежат к разряду поверхностных и представляют собой пластины из кровельного железа или стали, нашиваемые на внутреннюю, примыкающую к бетону поверхность опалубки и подключаемые к разноименным фазам питающей сети. В результате токообмена между противолежащими электродами весь объем конструкции нагревается. С помощью пластичнатых электродов прогревают слабоармированные конструкции правильной формы небольших размеров (колонны, балки, стены и др.).

Полосовые электроды изготовляют из стальных полос шириной 20...50 мм и так же, как пластинчатые электроды, нашивают на внутреннюю поверхность опалубки.

Токообмен зависит от схемы присоединения полосовых электродов к фазам питающей сети. При присоединении противолежа щих электродов к разноименным фазам питающей сети токообмен происходит между противоположными гранями конструкции и в тепловыделение вовлекается вся масса бетона. При присоединении к разноименным фазам соседних электродов токообмен происходит между ними. При этом 90% всей подводимой энергии рассеивается в периферийных слоях толщиной, равной половине расстояния между электродами. В результате периферийные слои нагреваются за счет джоулевой теплоты. Центральные же слои (так называемое «ядро» бетона) твердеют за счет начального теплосодержания, экзотермии цемента и частично за счет притока теплоты от нагреваемых периферийных слоев. Первую схему применяют для прогрева слабоармированных конструкций толщиной не более 50 см. Периферийный электропрогрев применяют для конструкций любой массивности.

Полосовые электроды устанавливают по одну сторону конструк ции. При этом к разноименным фазам питающей сети присоединяют соседние электроды. В результате реализуется периферийный электропрогрев.

Одностороннее размещение полосовых электродов применяют при электропрогреве плит, стен, полов и других конструкций толщиной не более 20 см.

При сложной конфигурации бетонируемых конструкций при меняют стержневые электроды - арматурные прутки диаметром 6... 12 мм, устанавливаемые в тело бетона.

Наиболее целесообразно использовать стержневые электроды р виде плоских электродных групп. В этом случае обеспечивается более равномерное температурное поле в бетоне.

При электропрогреве бетонных элементов малого сечения и значительной протяженности (например, бетонных стыков шириной до 3... 4 см) применяют одиночные стержневые электроды.

При бетонировании горизонтально расположенных бетонных или имеющих большой защитный слой железобетонных конструкций используют плавающие электроды - арматурные стержни 6... 12 мм, втапливаемые в поверхность.

Струнные электроды применяют для прогрева конструкций, длина которых во много раз больше размеров их поперечного сечения (колонны, балки, прогоны и т. п.). Струнные электроды устанавливают по центру конструкции и подключают к одной фазе, а металлическую опалубку (или деревянную с обшивкой палубы кровельной сталью) - к другой. В отдельных случаях в качестве другого электрода может быть использована рабочая арматура.

Количество энергии, выделяемой в бетоне в единицу времени, а следовательно, и температурный режим электропрогрева зависят от вида и размеров электродов, схемы их размещения в конструкции, расстояний между ними и схемы подключения к питающей сети. При этом параметром, допускающим произвольное варьирование, чаще всего является подводимое напряжение. Выделяемая электрическая мощность в зависимости от перечисленных выше параметров рассчитывается по формулам.

Ток на электроды от источника питания подается через трансформаторы и распределительные устройства.

В качестве магистральных и коммутационных проводов применяют изолированные провода с медной или алюминиевой жилой, сечение которых подбирают из условия пропуска через них расчетной силы тока.

Перед включением напряжения проверяют правильность установки электродов, качество контактов на электродах и отсутствие их замыкания на арматуру.

Электропрогрев ведут на пониженных напряжениях в пределах 50... 127 В. Осредненно удельный расход электроэнергии составляет 60... 80 кВт/ч на 1 м3 железобетона.

Контактный (кондуктивный) нагрев. При данном методе используется теплота, выделяемая в проводнике при прохождении по нему электрического тока. Затем эта теплота передается контактным путем поверхностям конструкции. Передача теплоты в самом бетоне конструкции происходит путем теплопроводности. Для контактного нагрева бетона преимущественно применяют термоактивные (греющие) опалубки и термоактивные гибкие покрытия (ТАГП).

Греющая опалубка имеет палубу из металлического листа или водостойкой фанеры, с тыльной стороны которой расположены электрические нагревательные элементы. В современных опалубках в качестве нагревателей применяют греющие провода и кабели, сетчатые нагреватели, углеродные ленточные нагреватели, токопроводящие покрытия и др. Наиболее эффективно применение кабелей, которые состоят из константановой проволоки диаметром 0,7... 0,8 мм, помещенной в термостойкую изоляцию. Поверхность изоляции защищена от механических повреждений металлическим защитным чулком. Для обеспечения равномерного теплового потока кабель размещают на расстоянии 10... 15 см ветвь от ветви.

Сетчатые нагреватели (полоса сетки из металла) изолируют от палубы прокладкой асбестового листа, а с тыльной стороны опалубочного щита - также асбестовым листом и покрывают теплоизоляцией. Для создания электрической цепи отдельные полосы сетчатого нагревателя соединяют между собой разводящими шинами.

Углеродные ленточные нагреватели наклеивают специальными клеями на палубу щита. Для обеспечения прочного контакта с коммутирующими проводами концы лент подвергают меднению.

В греющую опалубку может быть переоборудована любая инвентарная с палубой из стали или фанеры. В зависимости от конкретных условий (темпа нагрева, температуры окружающей среды, мощности тепловой защиты тыльной части опалубки) потребная удельная мощность может колебаться от 0,5 до 2 кВ А/м2. Греющую опалубку применяют при возведении тонкостенных и среднемассивных конструкций, а также при замоноличивании узлов сборных железобетонных элементов.

Термоактивное покрытие (ТРАП) - легкое, гибкое устройство с углеродными ленточными нагревателями или греющими проводами, обеспечивающие нагрев до 50°С. Основой покрытия является стеклохолст, к которому крепят нагреватели. Для теплоизоляции применяют штапельное стекловолокно с экранированием слоем из фольги. В качестве гидроизоляции используют прорезиненную ткань.

Гибкое покрытие можно изготовлять различного размера. Для крепления отдельных покрытий между собой предусмотрены отверстия для пропуска тесьмы или зажимов. Покрытие можно располагать на вертикальных, горизонтальных и наклонных поверхностях конструкций. По окончании работы с покрытием на одном месте его снимают, очищают и для удобства транспортировки сворачивают в рулон. Наиболее эффективно применять ТРАП при возведенииплит перекрытий и покрытий, устройстве подготовок под полы и др. ТРАП изготовляют с удельной электрической мощностью 0,25... 1 кВ-А/м2.

При инфакрасном нагреве используют способность инфракрасных лучей поглощаться телом и трансформироваться в тепловую энергию, что повышает теплосодержание этого тела.

Генерируют инфракрасное излучение путем нагрева твердых тел. В промышленности для этих целей применяют инфракрасные лучи с длиной волны 0,76... 6 мкм, при этом максимальным потоком волн данного спектра обладают тела с температурой излучающей поверхности 300...2200°С.

Теплота от источника инфракрасных лучей к нагреваемому телу передается мгновенно, без участия какого-либо переносчика теплоты. Поглощаясь поверхностями облучения, инфракрасные лучи превращаются в тепловую энергию. От нагретых таким образом поверхностных слоев тело прогревается за счет собственной теплопроводности.

Для бетонных работ в качестве генераторов инфракрасного излучения применяют трубчатые металлические и кварцевые излучатели. Для создания направленного лучистого потока излучатели заключают в плоские или параболические рефлекторы (обычно из алюминия).

Инфракрасный нагрев применяют при следующих технологических процессах: отогреве арматуры, промороженных оснований и бетонных поверхностей, тепловой защите укладываемого бетона, ускорении твердения бетона при устройстве междуэтажных перекрытий, возведении стен и других элементов в деревянной, металлической или конструктивной опалубке, высотных сооружений в скользящей опалубке (элеваторы, силосы и т. п.).

Электроэнергия для инфракрасных установок поступает обычно от трансформаторной подстанции, от которой к месту производства работ прокладывают низковольтный кабельный фидер, питающий распределительный шкаф. От последнего электроэнергию подают по кабельным линиям к отдельным инфракрасным установкам.Бетон обрабатывают инфракрасными лучами при наличии автоматических устройств, обеспечивающих заданные температурные и временные параметры путем периодического включения-выключения инфракрасных установок.

При индукционном нагреве бетона используют теплоту, выделяемую в арматуре или стальной опалубке, находящихся в электромагнитном поле катушки-индуктора, по которой протекает переменный электрический ток. Для этого по наружной поверхности опалубки последовательными витками укладывается изолированный провод-индуктор. Переменный электрический ток, проходя через индуктор, создает переменное электромагнитное поле. Электромагнитная индукция вызывает в находящемся в этом поле металле (арматуре, стальной опалубке) вихревые токи, в результате чего арматура (стальная опалубка) нагревается и от нее (кондуктивно) нагревается бетон.

Если необходимо провести бетонирование в условиях зимы, то главной проблемой становятся низкие температуры, из-за которых происходит замерзание строительных материалов. По СНиПу 3.03.1 зимними условиями бетонирования являются температуры ниже 5 градусов Цельсия.

Особенности работ в зимний период

Все технологии, применяемые при бетонировании в условиях низких температур, призваны предотвратить это замерзание.Можно указать 2 главные особенности, которые делают процесс укладки бетона, при низких температурах, довольно сложным.

Это:

  • Замерзание воды в бетонных порах . Замёрзшая вода расширяется, что приводит к увеличению внутреннего давления. Это делает бетон менее прочным. Помимо всего этого, вокруг заполнителей могут формироваться ледяные плёнки, что в свою очередь приводит к нарушению связи между компонентами смеси.
  • Гидратация цемента замедляется при низких температурах , а это значит, что сроки по набору твёрдости бетоном сильно увеличиваются.

Важно!
Бетон набирает в районе 70% проектной прочности за неделю при температуре окружающей среды в 20 градусов.
В зимних условиях, этот срок может составить 3-4 недели.

Замерзание воды

Следует более подробно остановиться на таком важном факторе, как замерзание воды. Большое значение для прочности всей конструкции имеет срок, когда замёрзла вода. Существует прямая зависимость: чем в более раннем возрасте бетона произошло замерзание, тем более хрупким будет бетон.

Период, когда бетонная смесь схватывается, является самым критичным и определяющим. Технология бетонирования в зимних условиях гласит, что если бетонная смесь замёрзнет сразу после укладки в опалубку, то её дальнейшая прочность будет зависеть только от силы мороза.

При повышении температуры, процесс гидратации, безусловно, продолжится. Но прочность такой конструкции будет в значительной мере уступать аналогичному строению, чья смесь не подвергалась заморозке в период укладки.

Если бетон успел набрать некоторое значение прочности до момента заморозки, то тогда он вполне может перенести дальнейшее замораживание без структурных изменений и внутренних дефектов. Также необходимо попытаться избежать, так называемых, холодных швов. Для этого бетон необходимо класть непрерывно.

Величина прочности

При работе в условиях низких температур важно помнить про критическую величину прочности бетона. Эта величина равна 50% от заявленной марочной прочности. Об этом показателе важно помнить, потому что при современном зимнем бетонировании, смесь предохраняют от замерзания вплоть до момента набора ею этой самой величины в 50%.

Если речь идёт об объекте особой важности, то предохранение от замерзания осуществляют вплоть до набора смесью отметки в 70%.

Способы зимнего бетонирования

На данный момент существует 3 основных способа укладки бетона в условиях пониженных температур. Применение добавок анти морозного действия. Это наиболее дешёвый и технологически обоснованный метод по защите смеси от морозов. Все добавки подобного рода делятся на 3 основные группы, в зависимости от способа своего действия.

Особенности бетонирования в зимних условиях таковы, что зачастую, невозможно обойтись только противоморозными добавками. Необходимо предпринять ряд мер, которые усилят действие, применённых химических веществ, и ускорят сроки затвердевания.

Такими дополнительными мерами являются:

  • Предварительная очистка опалубки и арматуры от снега и льда. Железная арматура должна быть отогрета до положительных температур.
  • Все работы должны производиться в максимально возможном темпе.
  • Непосредственная транспортировка смеси должна проводиться в машине, оборудованной двойным днищем, куда с целью подогрева должны поступать отработанные газы.
  • Во время разгрузки, необходимо защитить строительную площадку от порывов ветра, а сами средства разгрузки должны быть максимально утеплёнными.
  • После того как укладка завершена, необходимо укрыть смесь матами для сохранения тепла на как можно более долгий срок.
  • В идеале, должен быть осуществлён предварительный подогрев всех компонентов смеси.

Важно!
При предварительно подогреве компонентов, необходимо применить особый порядок загрузки в смеситель, чтобы избежать «заваривания смеси».
При низких температурах, в смеситель сначала заливают воду, потом подаётся крупный заполнитель, прокручивают барабан несколько раз, и только потом засыпается песок и цемент.
Эта инструкция должна быть строго соблюдена.

Способ «термоса»

Данный метод заключается в том, чтобы смесь, имеющую положительную температуру, укладывать в утеплённую опалубку. Так же существует, похожий на него, способ «горячего термоса», при применении которого, смесь предварительно нагревается на короткий промежуток времени до отметок 60-80 градусов.

Затем происходит её уплотнение в таком нагретом состоянии. Рекомендуется дополнительный подогрев. Разогревают смесь чаще всего при помощи электродов.

Прогрев и нагрев бетона с помощью электричества и инфракрасного излучения

Применяется когда «метод термоса» недостаточен. Его суть заключается в прогревании бетона и поддержании тепла до тех пор, пока он не наберёт необходимый запас прочности, причем такой, что может потом потребоваться резка железобетона алмазными кругами.

Чаще всего раствор нагревают с помощью электрического тока. Бетон становится частью электрической цепи и оказывает сопротивление. В результате он нагревается, и цель оказывается достигнутой.

Вывод

Не стоит бояться работы с бетоном даже в минусовые температуры. Ведь при соблюдении всех правил, удастся сохранить прочностные характеристики материалов на высоком уровне, а видео в этой статье поможет разобраться во многих нюансах

Комментариев:

При широком применении бетона люди сталкиваются с одной существенной проблемой — зимнее бетонирование. Сегодня основным строительным материалом считается именно бетон, который используется при возведении любого сооружения.

Температура бетонного раствора должна быть не ниже 5° С при заливке монолитных конструкций, и не ниже 20° С — для тонкого бетона.

В южных районах можно приостановить работы в холод, а вот как быть в местах, где минусовые температуры держатся длительный период? Зимнее бетонирование — это вполне реальный процесс строительства, который неоднократно проверен на практике и нормируется рядом документов.

Особенности строительства в зимний период

Главная особенность зимнего периода — низкая температура, которая оказывает существенное влияние на свойства бетона. Основной процесс формирования бетонной структуры — гидратация цемента. Повышение температуры играет роль катализатора в этом процессе и обеспечивает ускорение оформления окончательной структуры (набора прочности).

Расчеты прочностных свойств основаны на оптимальной температуре около 18-20° С, при которой бетон набирает свою планируемую прочность через 28 дней после заливки.

Снижение температуры замедляет процесс гидратации цемента, и при температуре укладываемого раствора в 5° С бетон достигает через 4 недели только 70% необходимой прочности. При температуре ниже 0° С гидратация останавливается из-за замерзания воды, без которой этот процесс невозможен. Таким образом, надо сделать следующий вывод: при температурах бетона менее 10° С заметно удлиняется период набора прочности материала, что необходимо учитывать при строительстве при минусовых температурах (замерзание воды) процесс упрочнения прекращается.

Вернуться к оглавлению

Требования к зимнему бетонированию

Установлено, что температура бетонного раствора в момент заливки не должна быть ниже 5° С для монолитных конструкций, ниже 20° С — для тонких слоев бетона. В процессе гидратации цемента внутри смеси выделяется тепло, но его хватает для того, чтобы снизить температуру замерзания воды только на 2-3° С (сравнение с окружающим воздухом).

Помимо этого, сам раствор после смешения должен иметь температуру не ниже 20° С (желательно 30° С), иначе теряется его пластичность, укладка станет большой проблемой. Уплотнение холодной массы не достигнет нужного эффекта — появятся зоны недостаточного уплотнения смеси.

Вышеуказанные условия, необходимые для формирования качественной структуры, вызывают необходимость применения специальных мер при укладке бетона в зимний период. Технология должна обеспечивать или прогрев раствора и поддержание нужной температуры, или введение добавок, которые способны понизить температуру замерзания воды, ускорить процесс упрочнения бетона при низких температурах и повысить пластичность раствора в холодное время.

Вернуться к оглавлению

Способы зимнего бетонирования

В зимнее время раствор бетонируется 4 основными способами, способными удовлетворить предъявляемые требования, или (чаще всего) сочетанием таких способов. К ним относятся:

  1. Разогрев бетонного раствора при смешении и укладке.
  2. Введение специальных добавок противоморозной направленности.
  3. Обеспечение термосного эффекта.
  4. Длительный во время твердения.

Разогрев раствора может производиться разными методами. Наиболее распространены разогрев паром, прогрев потоком воздуха (конверторный метод), индукционный разогрев, нагрев при помощи инфракрасного излучения, прямой электрический нагрев.

Длительный прогрев осуществляется в специальных опалубках, где размещены нагревательные элементы, обеспечивает принудительное нагревание бетона в процессе его твердения до температуры не ниже 5-10° С. Термосный эффект достигается сохранением тепла, выделяемого при гидратации цемента или другой реакции при введении добавки, за счет обеспечения хорошей теплоизоляции бетонной конструкции после заливки.

При зимнем бетонировании потребуются следующие инструменты:

  • миксер строительный;
  • лопата;
  • весы;
  • мастерок;
  • шпатель;
  • термометр;
  • болгарка;
  • электродрель;
  • молоток;
  • плоскогубцы;
  • отвертка;
  • отвес;
  • уровень;
  • рулетка;
  • молоток;
  • терка;
  • кельма.

Вернуться к оглавлению

Специальные добавки в бетон

Зимнее бетонирование расширяет свои возможности при введении противоморозных добавок. Такие бетонные смеси без подогрева можно использовать при температуре 0-5° С. Самой распространенной противоморозной добавкой являются поташ и нитрат натрия. Количество вводимой добавки зависит от условий твердения бетона:

  • при температуре воздуха до -5° С потребуется 5-6% указанных добавок;
  • при температуре до -10° С — 6-8%;
  • при -15° С — 8-10%.

Если твердение массы проходит при большем морозе, то нитрат натрия не применяется, а количество поташа увеличивается до 12-15%. Помимо этих веществ, можно использовать мочевину или смесь нитрата кальция с мочевиной.

Эффект повышения морозостойкости усиливается при одновременном добавлении ускорителей твердения массы. К наиболее распространенным можно отнести формиат натрия, асол-К, смесь на основе ацетилацетона и некоторые другие. В качестве стандартных противоморозных добавок с дополнительными пластифицирующими и ускоряющими свойствами можно рекомендовать:

  • гидробетон С-3М-15;
  • гидрозим;
  • лигнопан;
  • победит-антимороз;
  • бетонсан;
  • сементол.

Наиболее экономичной добавкой для самодельных смесей является аммиачная вода.

Вернуться к оглавлению

Использование термосного эффекта

Бетонирование в зимних условиях с использованием термосного эффекта заключается в увеличении времени остывания бетонной конструкции на период, достаточный для набора нужной прочности. Главная задача — сохранить тепло раствора, обеспеченного при его приготовлении, и тепло, выделяющееся при гидратации цемента.

Способ термоса обычно используется совместно с введением добавок, ускоряющих застывание массы и снижающих температуру замерзания воды. В качестве таких добавок применяются хлористые кальций и натрий или нитрит натрия в количестве до 5% от веса цемента.

Сам «термос» монтируется в виде утепленной опалубки, стенки которой покрываются теплоизоляционными материалами в несколько слоев. Хорошими теплоизоляторами являются пенополистирол и минеральная вата. Термосные стенки изготавливаются в следующем порядке: на опалубку крепится слой гидроизоляции (полиэтиленовая пленка), поверх — теплоизоляция, сверху — еще один слой гидроизоляции. Сверху бетонная конструкция также надежно укрывается аналогичными слоями изоляции. Термосный эффект наиболее заметен в монолитных конструкциях со значительным объемом бетона и может использоваться до температуры -5° С.

Вернуться к оглавлению

Электрический разогрев

Бетонные работы зимой можно проводить при предварительном электрическом разогреве раствора. Технология способа основана на нагреве с помощью электродов, опущенных в бетонный состав. Обычно применяются электроды пластинчатого типа на напряжение в 380 В, при этом емкость должна быть заземлена.

В результате разогрева массы раствор может потерять свои эластические свойства, поэтому рекомендуется вводить пластифицирующие добавки. Прогрев смеси можно проводить и в барабане бетономешалки с применением электродов в виде стержней. Прогрев производится с таким учетом, чтобы укладываемый раствор имел температуру 30-40° С.

Электрический метод можно использовать для разогрева раствора во время заливки опалубки. Применение находят два способа: периферийный нагрев (плоские электроды размещаются по поверхности бетонного элемента) и сквозной разогрев (стержневые электроды пропущены через толщу бетона и опалубку). В последнем случае следует исключить контакт электродов с арматурой бетонной конструкции.

Можно ли зимой заливать бетон?


Зимнее похолодание доставляет серьезные неудобства строителям при выполнении мероприятий, связанных с бетонированием. Вода, входящая в состав раствора, при охлаждении превращается в лед, увеличиваясь в объеме. Монолит теряет прочность и покрывается сетью трещин. Вместе с тем заливка бетона зимой возможна благодаря специальным методам бетонирования. Их с успехом применяют профессиональные строители и частные мастера. Рассмотрим подробно специфику бетонирования при зимнем строительстве.

Бетонные работы зимой – особенности выполнения

Сложно назвать зимние месяцы благоприятным периодом для бетонирования монолитных конструкций, заливки фундаментов и формирования буронабивных опор. Это связано с кристаллизацией воды. Она затрудняет процесс гидратации, в результате которого формируются прочные связи на молекулярном уровне. При расширении воды в результате кристаллизации возрастает пористость, снижаются прочностные характеристики, происходит растрескивание массива.

Чтобы зимний бетон был крепким, необходимр создать условия или присадки для его вызревания

После бетонирования происходят следующие процессы:

  • схватывание. Продолжительность данной стадии составляет не более 24 часов, на протяжении которых осуществляется переход из жидкого состояния в твердую фазу. Прочностные характеристики при этом довольно низкие;
  • твердение. Это длительный процесс, в результате которого на протяжении месяца приобретаются эксплуатационные характеристики. Они зависят от марки раствора, введенных модификаторов, а также окружающей температуры.

Ряд застройщиков интересуется, до какой температуры можно заливать бетон зимой. Специалисты считают, что нормальное протекание процессов схватывания и достижения максимальной прочности происходит при температуре от плюс 3 до плюс 5 градусов Цельсия. При этом скорость набора твердости прямо пропорциональна температуре и возрастает при использовании портландцемента увеличенных марок.

Процесс гидратации при нормальном протекании процесса твердения проходит следующим образом:

  • образуется на поверхности тонкий слой натриевого гидросиликата;
  • цементные зерна постепенно поглощают воду, связывая все компоненты смеси;
  • внешние слои массива стают более плотными при испарении из раствора воды;
  • процесс твердения постепенно переходит в глубину массива;
  • концентрация влаги снижается до достижения эксплуатационной прочности.

Отвечая на вопрос, при какой температуре замерзает бетон, сообщаем, что процесс гидратации может протекать только при положительной температуре. Образование ледяных кристаллов затрудняет связывание компонентов бетонной смеси. При гидратации происходит нагрев раствора. Это позволяет при незначительном похолодании выполнять бетонные работы при условии использования теплосберегающей опалубки или специальных матов.

Прежде всего, необходимо правильно выбрать цемент для зимнего бетонирования фундамента

При бетонировании зимой применяют различные методы, позволяющие изменить порог замерзания и сократить продолжительность схватывания:

  • вводят модифицирующие добавки, снижающие порог кристаллизации. Специалисты индивидуально определяют, сколько соли в бетон зимой необходимо вводить, а также в каких пропорциях добавлять модификаторы;
  • нагревают раствор, используя различные способы. Выбор оптимального варианта разогрева бетонного раствора осуществляется в зависимости от специфики работ и уровня затрат на реализацию выбранного способа;
  • применяют в составе бетонного раствора портландцемент более высоких марок. Такой цемент достигает необходимой для эксплуатации прочности за более короткое время и интенсивно поглощает влагу.

Остановимся детально на нюансах заливки бетона в зимнее время.

Заливаем бетон зимой – достоинства зимнего бетонирования

Выполнение работ в условиях отрицательных температур имеет определенные плюсы:

  • позволяет осуществлять заливку на сыпучих почвах. На таких грунтах проблематично выполнять земляные работы в теплый период, так как почва осыпается. Повышение твердости грунта при замерзании облегчает выполнение работ;

Для замеса в зимнее время используют горячую воду и подогретую засыпку. Цемент греть нельзя

  • существенно уменьшает сметную стоимость работ. Это достигается за счет снижения стоимости строительных материалов зимой. Благодаря сезонным скидкам уровень затрат может быть намного ниже;
  • обеспечивает сокращения сроков выполнения строительных мероприятий. При неблагоприятных природных условиях строители вынуждены работать оперативнее, что позволяет осуществлять строительство ускоренными темпами.

Кроме того, возможны ситуации, когда объект строительства находится в холодной климатической зоне, и зимнее бетонирование является единственно возможным решением.

Можно ли заливать бетон зимой – проблемные моменты

Ряд застройщиков считает, что целесообразно воздержаться от зимнего бетонирования и выполнить весь объем работ с наступлением теплых месяцев.

Они руководствуются при этом следующими соображениями:

  • приобретение покупного материала, содержащего противоморозные добавки, повысит объем затрат;
  • создание специальных условий по укладке и применение методов разогрева повлечет дополнительные расходы;
  • сокращенная продолжительность зимнего дня потребует дополнительного финансирования, связанного с освещением площадки и теплоизоляцией бытовок;
  • использование сложных методов прогрева потребует привлечения специалистов и применения специального оборудования;
  • при значительном снижении температуры потребуется больше времени для набора эксплуатационной прочности;
  • малейшее отклонение от проверенной технологии и резкое изменение погодных условий является причинами повышенной хрупкости.

При зимнем замесе раствора меняется порядок закладки составляющих: заливается вода, в нее засыпается щебень и песок

Проанализировав комплекс проблемных моментов можно сделать заключение, что велика вероятность получения некачественного бетона и резкого возрастания общего уровня затрат.

Применяемые методы зимнего бетонирования

При выполнении бетонных мероприятий в зимний период используются следующие способы:

  • повышение температуры бетонной смеси, за счет использования предварительно нагретой воды;
  • ведение пластифицирующих добавок и модификаторов, значительно снижающих порог замерзания воды;
  • повышение температуры раствора специальными методами электрического и инфракрасного разогрева.

Остановимся детально на особенностях каждого технического приема.

Заливка бетона зимой в домашних условиях

Этот метод предусматривает прогрев смеси различными путями:

  • добавлением в раствор горячей воды, нагретой до 70–80 градусов Цельсия;
  • введением заполнителя, предварительно разогретого тепловой пушкой;
  • разогрев бетонного раствора в смесителе, прогреваемом со стороны.

Использование разогретой смеси – простейший метод, применяемый при зимней заливке. Условия применения данной технологии:

  • выполнение незначительных объемов работ;
  • бетонирование в бытовых условиях;
  • незначительное похолодание в ночное время.

Еще один способ заливки бетона при отрицательных температурах - использование химических веществ

Для достижения требуемого эффекта необходимо соблюдать следующие правила:

  • применять портландцемент марки М400 и выше;
  • вводить пластификаторы, ускоряющие процесс набора твердости;
  • не превышать максимально допустимую температуру нагрева воды.

Последовательность действий:

  1. Налейте в бетоносмеситель воду, нагретую до 80 градусов Цельсия.
  2. Засыпьте наполнитель и песок, соблюдая необходимые соотношения.
  3. Введите портландцемент, применяемый в качестве вяжущего вещества.
  4. Добавьте специальные присадки, которые ускоряют твердения раствора.
  5. Перемешайте ингредиенты до необходимой консистенции и произведите заливку.

После бетонирования следует уплотнить материал вибратором и защитить от охлаждения теплоизоляционным материалом.

Можно ли добавлять соль в бетон зимой и модифицирующие добавки

Введение специальных пластификаторов позволяет уменьшить уровень замерзания воды. При этом гидратация будет осуществляться по стандартной схеме, несмотря на пониженную температуру окружающей среды.

Наиболее распространенная присадка, повышающая «морозоустойчивость» бетона и ускоряющая его твердение, - хлористый кальций

Наряду с готовыми составами, которые можно приобрести в магазинах, используют следующие ингредиенты:

  • хлористый кальций:
  • поташ;
  • хлорид натрия;
  • натриевый нитрат.

Ряд застройщиков добавляют соль (хлорид натрия), что позволяет незначительно уменьшить порог замерзания, но не гарантирует сохранение свойств бетона. Специалисты рекомендуют использовать модификаторы, изготовленные промышленным путем, и не проводить эксперименты с доступными добавками.

Можно ли зимой заливать бетон технически сложными способами

В строительной отрасли при зимнем бетонировании используют следующие прогрессивные методы:

  • установку изоляционной обшивки, которая выполняет функцию термоса и сооружается вокруг опалубки;
  • укладку нагревающего кабеля, который соединяется с трансформатором и прогревает массив;
  • использование для разогрева воткнутых в бетон электродов, на которые подается напряжение;
  • прогрев инфракрасными обогревателями, которые направленно воздействуют на бетонный массив;
  • индукционный разогрев массива, при котором магнитное поле преобразуется в тепловую энергию.

Использование указанных технических приемов требует предварительного выполнения расчетов, применения специального оборудования и высокой квалификации.

Заключение

Принимая решение о целесообразности укладки бетона зимой, следует тщательно проанализировать, каким образом будет осуществляться процесс заливки, а также оценить общий уровень расходов. Если имеется возможность, стоит перенести зимнее бетонирование на теплый период года.

При бетонировании и заливке бетона в строительстве зимними считаются такие условия, при которых среднесуточная температура наружного воздуха снижается до +5°С, а в течение суток имеет место падение температуры ниже 0°С. Определяются они не календарем, а температурой фазового перехода в твердое состояние воды, как одного из стратегически важных строительных материалов. В северных регионах РФ такой сезон может длиться в течение большей части года. Очевидно, что в это время затраты на капитальное строительство возрастают, но его замораживание в прямом и переносном смысле даже на меньшие сроки приведет к неизмеримо большим и неоправданным потерям.

Классическая строительная бетонная смесь состоит из тщательно перемешанных компонентов:

  • Вяжущего вещества –цемента нужной марки
  • Воды
  • Крупного заполнителя - каменного щебня нужной фракции
  • Мелкого заполнителя – строительного песка надлежащего качества
  • Различных добавок, необходимых для применения бетонной смеси и достижения бетоном надлежащих свойств

Схватывание бетонной смеси происходит за счет гидратации частиц вяжущего вещества – в нашем случае алюмосиликатного портландцемента. По термодинамическим причинам скорость любой химической реакции, в том числе и гидратации, уменьшается приблизительно в два раза при падении температуры на 10 о С.


При температуре ниже 0 о С химически несвязанная вода превращается в лед и увеличивается в объеме приблизительно на 9%. В результате в толще бетона возникают напряжения, разрушающие его структуру. Замерзшая бетонная смесь обладает некоторой прочностью, но только за счет сцепления кристаллов льда. При оттаивании процесс гидратации цемента возобновляется, но из-за нарушений структуры бетон не может набрать проектной прочности, т.е. его прочностные характеристики окажутся значительно ниже, чем у бетона, не подвергнувшегося замерзанию. Экспериментами установлено, что на процесс набора прочности бетона существенно влияют условия твердения. А именно, если бетон до замерзания успеет набрать в зависимости от своей марки 30-50% проектной прочности, избыточная вода выжимается из его толщи, и дальнейшее воздействие низких температур уже не влияет на его физико-механические характеристики. Однако, дальнейшее дозревание будет происходить в разы медленнее, чем при нормальных условиях. При этом надо помнить, что нагружать ответственные несущие конструкции (балки, перемычки, ригели, перекрытия и т.п.) можно только по достижении 70% прочности. Если арматура монолита хотя бы в одном направлении была предварительно напряжена, то потребуются все 100% проектной прочности.

Каким же образом можно добиться полноценного качества монолитного бетона при укладывании бетонной смеси в зимних условиях ? Ответ очевиден – обеспечение таких термодинамических условий, при которых вода, участвующая в химическом процессе, будет находиться в жидкой фазе. Принципиально этого можно добиться двумя способами – либо повысить температуру зоны реакции, либо снизить температуру кристаллизации воды. Рассмотрим способы достижения обоих эффектов в увязке с компонентами бетонной смеси, причем в том же порядке, в котором они перечислены выше.

  1. Нормативное время схватывания классического портландцемента при нормальных условиях – 28 суток. Наряду с ним существуют высокоактивные быстротвердеющие цементы, способные обеспечить полное созревание бетона в течение 2-3 суток или даже быстрее. Если монолит достаточно массивен, то его промерзание за это время не состоится из-за высокой теплоемкости воды и экзотермичности реакции гидратации. Например, именно такого типа цемент используется в сухих смесях типа «Литой бетон марки 300». Уже через 4 часа по конструкциям из него (плитам, стяжкам, ступеням и т.п.) можно ходить. Недостатки – дороговизна и недостаток времени на доставку и укладку готовой бетонной смеси. Вследствие этого данные бетоны не нашли крупнотоннажного применения.
  2. Как известно, вода на уровне моря кипит при +100 о С. Казалось бы, при температуре +99 о С бетон затвердеет почти мгновенно. Однако, как показывает опыт, скорость его твердения резко падает после+50 о С, хотя процесс продолжает идти. Эта температура и считается технологически оптимальной. Если в толще классического бетона удастся каким-то образом обеспечить именно ее, то опалубку в большинстве случаев можно будет снять уже через 1-2 дня. При вымешивании товарной бетонной смеси производители применяют воду, нагретую вплоть до +50 о С. Вода нужна не только для химической реакции, но и для удобоукладываемости смеси. При отрицательных температурах кристаллы льда образуются именно из избыточной воды. Чтобы снизить ее содержание применяют вакуумный отсос с помощью жестких щитов или гибких матов. Нечто подобное происходит естественным путем за счет капиллярных сил при укладывании слоя кладочного раствора на пористый кирпич. Именно поэтому строительные нормы и правила позволяют вести заливку бетона и бетонирование зимой . Окончательную прочность такой цементно-песчаный раствор набирает уже после оттаивания. Наиболее сильно от замерзания страдает неокрепший железобетон. Стальные армирующие стержни являются отличными «мостиками холода» и интенсивно выводят тепло из толщи бетона. Вода вокруг них замерзает, и лед, расширяясь, отодвигает пластичную бетонную смесь. В образовавшиеся зазоры между кристаллами из нее поступает новая вода, которая в свою очередь тоже замерзает и процесс повторяется вплоть до замерзания всей воды преимущественно вокруг стержней. Понятно, что при ее оттаивании железобетон потеряет свойства композиционного материала.
  3. Для подогрева щебня до+60 о С производители товарного бетона используют специальные регистры, через которые пропускают разогретую воду или даже пар.
  4. То же самое касается песка. Подогрев цемента запрещается, чтобы избежать его «заваривания».
  5. Для повышения пластичности и, как следствия – удобоукладываемости бетона в зимнее время , в бетонную смесь добавляют пластификаторы, как минеральные (например, известь), так и органические (различные полимерные гели, дисперсии и т.п.). Возможно применение специальных добавок, например - для снижения порообразования в толще бетона. Это положительно влияет на водо- и морозостойкость бетонного камня. Существуют армирующие и структурирующие добавки, например волокна – полимерные, металлические или минеральные, повышающие прочностные характеристики бетонного камня. В рассматриваемом вопросе наиболее интересны противоморозные добавки, или, как их еще называют, присадки. В тех условиях, когда прогрев невозможен, а времени достаточно, для сохранения структуры бетона можно снизить температуру замерзания воды путем добавления электролитических реагентов. Наиболее распространенными в строительстве являются поташ, хлористый кальций, соли натрия - сульфат, нитрат и нитрит, хлорид и т.п. Однако надо учесть, что при повышении температуры и оттаивании воды в окружающей среде, эти соли за счет осмотических процессов будут диффундировать к поверхности бетона и образовывать так называемые высолы. Кроме того, скорость созревания бетона упадет до критической из-за низкой температуры жидкой фазы (до -20 о С) и увеличения ионной силы солевого раствора. Электролитические добавки запрещены в бетонах с напряженной или термически упрочненной арматурой (из-за электрохимической коррозии), а также в конструкциях расположенных в местах возникновения блуждающих токов (электрифицированных объектов – железных дорог и т.п., из-за повышенной проводимости).

Если при отрицательных температурах в ходе бетонных работ не подогревать компоненты предварительно для зимнего бетонирования , то для достижения заданной температуры бетонную смесь можно приготовлять в бетоносмесителях принудительного действия с пароподогревом, при этом жертвуя некоторым отрезком времени, которое можно было бы истратить на доставку и укладку. Надо помнить, что при температуре +40 о С гидратация идет как минимум в четыре раза быстрее, чем при нормальных условиях. Поэтому в зимних условиях все работы с бетонной смесью следует выполнять как можно быстрее. Оптимально производить разогретую бетонную смесь прямо на площадке. Она как нельзя лучше подойдет для укладывания бетона зимой методом «термоса», при котором опалубка и поверхность бетона пассивно утепляются. Зачастую в бетонную смесь добавляют 2% уже знакомого нам хлористого кальция, который ускоряет первичное схватывание, одновременно понижая температуру кристаллизации воды до -3 о С. Существуют и другие добавки, ускоряющие схватывание бетона зимой . Главное, чтобы оно не состоялось нацело при приготовлении или транспортировке бетонной смеси из-за передозировки добавок.

По строительным нормам максимальная температура бетонной смеси не должна превышать +70°С для быстротвердеющего цемента, +80°С для портландцемента и +90°С для шлакопортландцемента и пуццоланового портландцемента.

Прогрев, обогрев и нагрев бетона при зимнем бетонировании

Для поддержания необходимой температуры бетонной смеси в искусственных условиях наибольшее распространение получила принудительная подача тепла к бетонной конструкции. Различают прогрев, обогрев и нагрев твердеющего бетона.

  • Прогрев бетона зимой осуществляют путем введения в толщу бетона греющих элементов. Это могут быть трубки с циркулирующим в них теплоносителем (водой, паром или воздухом), но наибольшее распространение получили изолированные электронагревательные провода типа ПНСВ. Их наматывают группами на объемный каркас железобетонной конструкции еще до укладки бетонной смеси, а по ее завершении – подключают группы к источнику переменного или постоянного тока безопасного напряжения (трансформатору). Шаг намотки определяется сечением провода и должен быть таким, чтобы омическое сопротивление провода обеспечило необходимое тепловыделение. При подключении необходимо следить, чтобы концы проводов, выходящие из опалубки, были короткими, иначе на воздухе без оттока тепла они перегорят.
  • Для обогрева бетона при зимнем бетонировании качестве обогревающих сооружений используют тепляки. По существу, это теплицы из пленочных или тканых материалов, возведенные вокруг конструкции, внутри которых функционирует тепловая пушка или вентилятор. Для электроволнового обогрева толщи бетона применяют электроды (пластины, стержни, полосы и струны – в зависимости от конструкции). В результате подключения противоположных электродов к разным фазам переменного тока, в бетонной смеси образуется электромагнитное поле, под воздействием которого масса разогревается до требуемой температуры и его теплота поддерживается необходимое время. Пластины навешиваются на внутреннюю сторону боковой опалубки, стержни из арматуры диаметром 6-12 мм помещают в толщу бетона с расчетным шагом. Полосовые электроды можно располагать как с одной стороны конструкции, так и с обеих. Струнные электроды наиболее эффективно применять при зимнем бетонировании колонн.
  • Для нагрева торцов и нижней части монолита иногда используют термоактивную опалубку, состоящую из стальных панелей (или многослойных щитов) со смонтированными на них нагревательными элементами и термоизоляцией. При прямом нагреве поверхности бетона применяют инфракрасные генераторы – металлические трубчатые или карборундовые стержневые. Тепловая энергия от поверхности за счет теплопроводности распространяется по всему объему твердеющего монолита. Иногда инфракрасный прогрев осуществляют сквозь опалубку, для этого ее покрывают черным матовым лаком. Наряду с лучистой энергией в этих целях широкое применение нашла электромагнитная (индукционная). Индукционный нагрев осуществляется при помощи последовательных витков изолированного провода (индуктора), который выкладывается вдоль поверхности, которую следует прогреть. Число витков и интенсивность обогрева предварительно рассчитывается в лабораторных условиях для данного конкретного случая и тщательно регулируется на протяжении всего процесса. Эффективность индукционного нагрева железобетона увеличивает замкнутый стальной каркас.

Обдув опалубленного монолита нагретым паром или воздухом эффективен только для тонкостенных конструкций и не нашел широкого применения.

При любом способе прогрева и/или (обогрева, нагрева) зимнее бетонирование осуществляется следующим образом:

  • с поверхностей опалубки удаляется снег и наледь
  • с этой же целью обогревается арматурный каркас
  • устанавливается оснастка, соответствующая выбранному способу
  • укладывается и уплотняется бетонная смесь
  • поверхности конструкции, которые соприкасаются с воздухом необходимо изолировать

Потом подходит этап обустройства скважин для замера температуры, и только после этого начинается непосредственно сам прогрев, который останавливается, как только расчетная температура будет достигнута. Первые восемь часов нужно контролировать температуру уложенного бетона каждые два часа, а потом не реже, чем раз в смену (с фиксированием в журнале).

По окончании изометрического прогрева ни в коем случае нельзя резко охлаждать конструкцию, это может быть чревато серьезными повреждениями монолита. Резкое охлаждение вызывает огромное напряжение в бетоне и приводит к растрескиванию. Температура нагрева может превышать расчетную лишь на 5°С. Скорость остывания бетона после окончания прогрева не должна превышать 15°С/час, для железобетонных монолитов она составляет 2-3°С/час.

Демонтаж опалубки (распалубование) производят только после достижения бетоном необходимой прочности. Она варьируется от 40% до 70% и даже 100% в зависимости от марки бетона и назначения конструкции.

В любом случае нужно помнить о том, что только соблюдение технологических требований может гарантировать надлежащее качество монолитной конструкции.


Loading...Loading...