Производство бетонных работ в зимнее время сп. Использование термосного эффекта. Прогрев, обогрев и нагрев бетона при зимнем бетонировании

В зимних условиях (среднесуточная температура наружного воздуха ниже +5° С) происходит замерзание свободной воды, что прекращает процесс гидратации цемента, ее увеличение в объеме (до 9%) разрушает структуру бетона. Это приводит к тому, что после оттаивания бетон уже не может набрать проектную прочность.

Установлено, если бетон до замерзания наберет 30...50% проектной прочности, то дальнейшее воздействие низких температур не влияет на его физико-механические характеристики. Такая величина прочности называется критической. В зависимости от марки бетона она равна: 50% М - для М200, 40% М - для М300 и 30% М - для М400 и выше.

К зимним способам бетонирования, обеспечивающим достижение бетоном критической прочности, относятся: разогрев бетона при его приготовлении; выдерживание бетона в утепленных опалубках (метод термоса); внесение в бетон химических добавок, снижающих температуру замерзания; тепловое воздействие греющих опалубок на свежеуложенный бетон; электродный прогрев; воздействие инфракрасных источников теплоты и т. д. Выбирают технологические приемы в зависимости от экономической эффективности, условий бетонирования, вида конструкций и особенностей используемых бетонов, наличия дешевых источников тепла.

При приготовлении бетонных смесей на заводах организуют подогрев составляющих и воды затворения, сам же процесс приготовления осуществляют в утепленном помещении, чем обеспечивают выход бетонной смеси заданной температуры. Для подогрева песка и щебня используют специальные регистры, через которые пропускают разогретую до 90° С воду или пар. Воду затворения подогревают до температуры 40...80° С (в зависимости от вида цемента) преимущественно паром в водонагревателях.

Транспортируют бетонную смесь зимой в утепленных бетоновозах, специальных контейнерах, автосамосвалах с подогревом кузова выхлопными газами. Кузов накрывают брезентом или утепленными щитами, бадьи и бункеры - деревянными утепленными крышками.

К зимнему бетонированию с безобогревным выдерживанием бетона относится способ «термоса», который основан на укладке бетонной смеси, разогретой до температуры 20...80° С, в утепленную опалубку. Открытые поверхности бетона защищают от охлаждения. Количество теплоты, внесенной в бетонную смесь и выделенной при экзотермической реакции цемента, вполне достаточно для достижения бетоном критической прочности.

Транспортирование к месту бетонирования разогретой бетонной смеси сопровождается значительными потерями теплоты, повышением жесткости смеси и снижением ее удобоукладываемости. С целью исключения этих недостатков бетон целесообразнее разогревать непосредственно у места производства работ. Для этого используют специальные электроды, которые погружают в бетонную смесь, находящуюся в кузове самосвала или в бункере. Подводя к ним электрический ток 380 В, смесь нагревают в течение 5...10 мин до температуры 75...90° С.

В практике широко распространен метод электротермообработки бетона. Он основан на преобразовании электрической энергии в тепловую непосредственно внутри бетона либо в различного рода электронагревательных устройствах. В строительстве освоены следующие методы: электродный прогрев (собственно электропрогрев); разогрев в электромагнитном поле (индукционный) ; обогрев различными электронагревательными устройствами.

Электродный способ прогрева подразделяется на сквозной и периферийный. При сквозном прогреве используют стержневые электроды диаметром до 6 мм, располагая их по всему сечению, при периферийном - плавающие рамочные и пластинчатые, нашивные пластинчатые и струнные. В каждом конкретном случае рассчитывают схему расположения электродов и напряжения на них. При разогреве бетона строго следят за скоростью подъема его температуры (8... 15° С/ч) и временем изотермического прогрева.

Для контактного электроразогрева применяются различного вида греющие опалубки, которые подразделяют на жесткие (деревянные, металлические) и мягкие (из брезентовой или асбестовой ткани, резиновые, пластиковые и т. п.). Устанавливают термоактивную опалубку отдельными щитами или укрупненными панелями. Источниками тепла в щитах служат стержневые, трубчато-стержневые и уголково-стержневые электронагреватели, полосовые электроды, электроды из проволоки или фольги, запрессованные в электропроводящий состав.

Для обогрева бетона паром вокруг забетонированной конструкции создают так называемую «паровую рубашку», обеспечивающую требуемые температурно-влажностные условия твердения бетона. Температура разогрева 70...95° С.

Индукционный прогрев бетона происходит за счет выделения тепла при прохождении вихревых токов в металлической опалубке и конструкции, находящихся в электромагнитном поле индуктора (многовитковой катушки), через который пропускают переменный ток промышленной частоты напряжением 36...120 В. Тепло от арматуры и металлической опалубки передается бетону в нагревает его. Индукционный нагрев применяют в основном для термообработки бетона конструкций небольшого сечения: колонн, балок, стыков, сооружений, возводимых в скользящей, подъемно-переставной и горизонтально перемещаемой опалубке.

В качестве источников обогрева инфракрасными лучами служат ТЭНы мощностью 0,6...1,2 кВт, керамические стержневые излучатели диаметром 6...50 мм мощностью 1...10 кВт, кварцевые трубчатые излучатели и другие средства. Инфракрасные излучатели в комплекте с отражателями используют для обогрева тонкостенных емкостных сооружений, бетонной подготовки, замоноличивания стыков и узлов и др. При обогреве температура на поверхности бетона не должна превышать 80...90° С.

Использование химических добавок в бетоне снижает температуру замерзания воды и тем самым обеспечивает твердение бетона при отрицательных температурах. В качестве противоморозных добавок применяют поташ (П), нитрит натрия (НН), нитрат кальция (НК), соединение нитрата кальция с мочевиной (НКМ), нитрит-нитрат кальция (ННК), хлорид кальция (ХК) с хлоридом натрия (ХН), хлорид кальция (ХК) с нитритом натрия (НН) и др. Выбор противоморозных добавок и их оптимальное количество зависят от вида бетонируемой конструкции, степени ее , наличия агрессивных средств и блуждающих токов, температуры окружающей среды.

Бетонные работы желательно выполнять при круглосуточной температуре наружного воздуха выше +5°С. Но тогда все стройки в климатических условиях большинства районов нашей страны были бы законсервированы более чем на полгода. Чтобы бетонирование в зимних условиях стало возможным, были разработаны и внедрены в производство различные методы, это:

Все эти способы могут применяться при заливке бетона зимой, как самостоятельные варианты или в комплексе.

Что происходит с бетоном при минусовых температурах

При твердении бетонной смести в нормальных температурно-влажностных условиях вода, вступая во взаимодействие с цементом, песком и щебнем, способствует их крепкому сцеплению между собой. В результате получается монолит, наделенный высокими прочностными характеристиками. Если допустить замерзание воды в составе бетонной смеси, то произойдет обратный, разрушительный эффект.

Водная составляющая при низких температурах, расширяясь, увеличивается в объеме делает массу рыхлой. А главный элемент бетона - цемент - теряет свои свойства. Кроме того, замерзшая вода создаст полости вокруг деталей арматурного каркаса, тем самым нарушив целостность конструкции. После размораживания бетонная масса уже не сможет восстановить необходимые качества. Это плохо для любой конструкции, но касательно фундаментов - такое положение дел катастрофично. Так можно ли заливать бетон зимой? Нежелательно, но допустимо при соблюдении определенных правил и требований СНиП к выполнению строительных работ при низких температурах наружного воздуха.

Практическими исследованиями установлен пограничный предел прочности для различных марок бетона, после которого замораживание для него не будет критичным. Потери прочности в готовом виде составят, в таком случае, не более 6%.

Добавки, повышающие морозостойкость бетона

Бетонные работы зимой должны проводиться с добавлением в бетонную смесь специальных противоморозных добавок. Они способствуют понижению температуры замерзания состава и ускорению сроков схватывания и твердения бетона. К таким веществам относятся:

  • хлористый кальций (поваренная соль);
  • хлористый натрий;
  • нитрит и нитрат натрия;
  • формиат натрия;
  • поташ;
  • лигносульфанат.

Любую из этих добавок вводят в бетонную смесь небольшими дозами. Достаточно 1-2 % от веса цемента, чтобы зимний бетон приобрел нужные качества.

Помимо своего главного предназначения, противоморозные добавки улучшают прочностные характеристики материала, увеличивают его плотность, положительно влияют на долговечность конструкции.

Приготовление бетонной смеси зимой

Помимо использования противоморозных добавок, зимнее бетонирование выполняют теплым составом. Температуру бетонной смеси необходимо довести до 35-40 градусов. Для этого подогревают воду и заполнители, мелкий и крупный. Цемент греть нельзя категорически, но хранить его в теплом помещении нужно.

Замечательно, если на строительной площадке есть бетономешалка с электрическим подогревом, так как заливать бетон зимой надо только теплым. Обычную мешалку разогревают путем прокручивания в ней очень горячей воды. В холодный период года порядок приготовления бетонной смеси отличается от обычного:

  • сначала в бетономешалку заливают горячую воду с растворенными в ней добавками;
  • засыпают подогретые заполнители;
  • разогрев песка и щебня можно выполнять горячим воздухом с помощью компрессора или в специальных печах;
  • после перемешивания добавляется цемент;
  • процесс замешивания бетонной смеси по времени увеличивается примерно наполовину, против обычных сроков.

Готовую смесь заливают в заранее приготовленную опалубку. Перед этим необходимо удалить возможную наледь и прогреть арматурный каркас любым удобным способом: переносными жаровнями с топливом, тепловыми пушками, электричеством.

Бетонирование зимой должно производиться непрерывно, чтобы конструкция получилась прочной и однородной. Временной промежуток между заливками отдельных порций бетонной смеси должен быть таким, чтобы минусовая температура не успевала повлиять на предыдущую часть. Заформованную долю конструкции необходимо немедленно укрывать теплоизоляционными материалами, пленкой ПВХ.

Уход за бетоном в зимнее время

Использование горячего раствора и применение противоморозных добавок очень важны при работе зимой. Но не менее существенно грамотно организовать условия твердения и соответствующий уход за бетоном в зимнее время. Для продления сроков остывания готовой конструкции используют любые подходящие материалы: пленку, сено, солому, теплоизолирующие маты.

Отличный эффект дает использование несъемной опалубки из пенополистирола. Она поможет бетонной массе созреть равномерно, без заморозки, а после набора бетоном проектной прочности будет служить качественной теплоизоляцией и защитит его от вредного воздействия окружающей среды.

В промышленных условиях и на масштабных стройках используется еще такой метод, как электропрогрев. Удовольствие не из дешевых, но весьма эффективное. Осуществлять электропрогрев можно двумя путями: подключением электродов к арматурному каркасу или помещением их в бетонную массу.

Для контроля за процессом применяют специальные автоматические устройства с датчиками. Если таковых нет, то работа выполняется вручную периодическим измерением температуры и включением/отключением электродов при достижении температуры +30°С.

Для реализации прогрева бетонной массы при помощи электричества используют следующие средства:

  • Провод ПНСВ, состоящий из стального стержня и поливинилхлоридной изоляции. Сечение может быть от 1 до 6 мм. Применим для электрических сетей с переменным током до 380 В или с постоянным - до 1000В. В качестве прогревающего элемента для твердения бетона в зимних условиях используется через понижающий трансформатор.
  • Кабели ВЕТ финского производителя и КДБС от Российского изготовителя разработаны специально с намерением использовать их в строительном производстве для ускорения сроков твердения бетона. Примечательно, что применение этих проводов не нуждается в трансформаторах, они работают от обычной бытовой электросети в 220в.

Нагревательный кабель выбранной марки, рассчитанной мощности оборачивают вокруг арматурного каркаса с примерным шагом 250-300 мм. Внутри конструкции провода не должны перехлестываться, сильно провисать, и закладывать их глубже, чем на 200 мм тоже не следует. Если заливке бетонной смесью подлежит не отдельно стоящий элемент, а тот, что стыкуется с имеющейся деталью, то укладку провода надо начинать от места стыка.

На один квадратный метр расходуется обычно около 4 м провода. Это количество определено опытным путем, исходя из такого расчета, что для прогрева 1м3 бетона нужно 0,4-1,5 кВт мощности. На установление точной цифры влияет толщина изделия, вид опалубки, свойства и состав самой бетонной смеси. Для крепления кабелей используют вязальную арматурную проволоку.

Подключение к сети или трансформатору осуществляется по окончании всего комплекса формовочных работ. При этом должна быть полностью исключена возможность повреждения нагревательных кабелей.

Если необходимо провести бетонирование в условиях зимы, то главной проблемой становятся низкие температуры, из-за которых происходит замерзание строительных материалов. По СНиПу 3.03.1 зимними условиями бетонирования являются температуры ниже 5 градусов Цельсия.

Особенности работ в зимний период

Все технологии, применяемые при бетонировании в условиях низких температур, призваны предотвратить это замерзание.Можно указать 2 главные особенности, которые делают процесс укладки бетона, при низких температурах, довольно сложным.

Это:

  • Замерзание воды в бетонных порах . Замёрзшая вода расширяется, что приводит к увеличению внутреннего давления. Это делает бетон менее прочным. Помимо всего этого, вокруг заполнителей могут формироваться ледяные плёнки, что в свою очередь приводит к нарушению связи между компонентами смеси.
  • Гидратация цемента замедляется при низких температурах , а это значит, что сроки по набору твёрдости бетоном сильно увеличиваются.

Важно!
Бетон набирает в районе 70% проектной прочности за неделю при температуре окружающей среды в 20 градусов.
В зимних условиях, этот срок может составить 3-4 недели.

Замерзание воды

Следует более подробно остановиться на таком важном факторе, как замерзание воды. Большое значение для прочности всей конструкции имеет срок, когда замёрзла вода. Существует прямая зависимость: чем в более раннем возрасте бетона произошло замерзание, тем более хрупким будет бетон.

Период, когда бетонная смесь схватывается, является самым критичным и определяющим. Технология бетонирования в зимних условиях гласит, что если бетонная смесь замёрзнет сразу после укладки в опалубку, то её дальнейшая прочность будет зависеть только от силы мороза.

При повышении температуры, процесс гидратации, безусловно, продолжится. Но прочность такой конструкции будет в значительной мере уступать аналогичному строению, чья смесь не подвергалась заморозке в период укладки.

Если бетон успел набрать некоторое значение прочности до момента заморозки, то тогда он вполне может перенести дальнейшее замораживание без структурных изменений и внутренних дефектов. Также необходимо попытаться избежать, так называемых, холодных швов. Для этого бетон необходимо класть непрерывно.

Величина прочности

При работе в условиях низких температур важно помнить про критическую величину прочности бетона. Эта величина равна 50% от заявленной марочной прочности. Об этом показателе важно помнить, потому что при современном зимнем бетонировании, смесь предохраняют от замерзания вплоть до момента набора ею этой самой величины в 50%.

Если речь идёт об объекте особой важности, то предохранение от замерзания осуществляют вплоть до набора смесью отметки в 70%.

Способы зимнего бетонирования

На данный момент существует 3 основных способа укладки бетона в условиях пониженных температур. Применение добавок анти морозного действия. Это наиболее дешёвый и технологически обоснованный метод по защите смеси от морозов. Все добавки подобного рода делятся на 3 основные группы, в зависимости от способа своего действия.

Особенности бетонирования в зимних условиях таковы, что зачастую, невозможно обойтись только противоморозными добавками. Необходимо предпринять ряд мер, которые усилят действие, применённых химических веществ, и ускорят сроки затвердевания.

Такими дополнительными мерами являются:

  • Предварительная очистка опалубки и арматуры от снега и льда. Железная арматура должна быть отогрета до положительных температур.
  • Все работы должны производиться в максимально возможном темпе.
  • Непосредственная транспортировка смеси должна проводиться в машине, оборудованной двойным днищем, куда с целью подогрева должны поступать отработанные газы.
  • Во время разгрузки, необходимо защитить строительную площадку от порывов ветра, а сами средства разгрузки должны быть максимально утеплёнными.
  • После того как укладка завершена, необходимо укрыть смесь матами для сохранения тепла на как можно более долгий срок.
  • В идеале, должен быть осуществлён предварительный подогрев всех компонентов смеси.

Важно!
При предварительно подогреве компонентов, необходимо применить особый порядок загрузки в смеситель, чтобы избежать «заваривания смеси».
При низких температурах, в смеситель сначала заливают воду, потом подаётся крупный заполнитель, прокручивают барабан несколько раз, и только потом засыпается песок и цемент.
Эта инструкция должна быть строго соблюдена.

Способ «термоса»

Данный метод заключается в том, чтобы смесь, имеющую положительную температуру, укладывать в утеплённую опалубку. Так же существует, похожий на него, способ «горячего термоса», при применении которого, смесь предварительно нагревается на короткий промежуток времени до отметок 60-80 градусов.

Затем происходит её уплотнение в таком нагретом состоянии. Рекомендуется дополнительный подогрев. Разогревают смесь чаще всего при помощи электродов.

Прогрев и нагрев бетона с помощью электричества и инфракрасного излучения

Применяется когда «метод термоса» недостаточен. Его суть заключается в прогревании бетона и поддержании тепла до тех пор, пока он не наберёт необходимый запас прочности, причем такой, что может потом потребоваться резка железобетона алмазными кругами.

Чаще всего раствор нагревают с помощью электрического тока. Бетон становится частью электрической цепи и оказывает сопротивление. В результате он нагревается, и цель оказывается достигнутой.

Вывод

Не стоит бояться работы с бетоном даже в минусовые температуры. Ведь при соблюдении всех правил, удастся сохранить прочностные характеристики материалов на высоком уровне, а видео в этой статье поможет разобраться во многих нюансах

Понятие «зимние условия» в технологии монолитного бетона и железобетона несколько отличается от общепринятого - календарного. Зимние условия начинаются, когда среднесуточная температура наружного воздуха снижается до +5°С, а в течение суток имеет место падение температуры ниже 0°С.

При отрицательных температурах не прореагировавшая с цементом вода переходит в лед и не вступает в химическое соединение с цементом. В результате этого прекращается реакция гидратации и, следовательно, бетон не твердеет. Одновременно в бетоне развиваются значительные силы внутреннего давления, вызванные увеличением (примерно на 9%) объема воды при переходе ее в лед. При раннем замораживании бетона его неокрепшая структура не может противостоять этим силам и нарушается. При последующем оттаивании замерзшая вода вновь превращается в жидкость и процесс гидратации цемента возобновляется, однако разрушенные структурные связи в бетоне полностью не восстанавливаются.

Замораживание свежеуложенного бетона сопровождается также образованием вокруг арматуры и зерен заполнителя ледяных пленок, которые благодаря притоку воды из менее охлажденных зон бетона увеличиваются в объеме и отжимают цементное тесто от арматуры и заполнителя.

Все эти процессы значительно снижают прочность бетона и его сцепление с арматурой, а также уменьшает его плотность, стойкость и долговечность.

Если бетон до замерзания приобретает определенную начальную прочность, то все упомянутые выше процессы не оказывают на него неблагоприятного воздействия. Минимальную прочность, при которой замораживание для бетона не опасно, называют критической.

Величина нормируемой критической прочности зависит от класса бетона, вида и условий эксплуатации конструкции и составляет: для бетонных и железобетонных конструкций с ненапрягаемой арматурой - 50% проектной прочности для В7,5...В10, 40% для В12,5... В25 и 30% для В 30 и выше, для конструкций с предварительно напрягаемой арматурой - 80% проектной прочности, для конструкций, подвергающихся попеременному замораживанию и оттаиванию или расположенных в зоне сезонного оттаивания веч-номерзлых грунтов - 70% проектной прочности, для конструкций, нагружаемых расчетной нагрузкой - 100% проектной прочности.

Продолжительность твердения бетона и его конечные свойства в значительной степени зависят от температурных условий, в которых выдерживают бетон. По мере повышения температурыувеличивается активность воды, содержащейся в бетонной смеси, ускоряется процесс ее взаимодействия с минералами цементного клинкера, интенсифицируются процессы формирования коагуляционной и кристаллической структуры бетона. При снижении температуры, наоборот, все эти процессы затормаживаются и твердение бетона замедляется.

Поэтому при бетонировании в зимних условиях необходимо создать и поддерживать такие температурно-влажностные условия, при которых бетон твердеет до приобретения или критической, или заданной прочности в минимальные сроки с наименьшими трудовыми затратами. Для этого применяют специальные способы приготовления, подачи, укладки и выдерживания бетона.

При приготовлении бетонной смеси в зимних условиях ее температуру повышают до 35...40С путем подогрева заполнителей и воды. Заполнители подогревают до 60С паровыми регистрами, во вращающихся барабанах, в установках с продувкой дымовых газов через слой заполнителя, горячей водой. Воду подогревают в бойлерах или водогрейных котлах до 90С. Подогрев цемента запрещается.

При приготовлении подогретой бетонной смеси применяют иной порядок загрузки составляющих в бетоносмеситель. В летних условиях в барабан смесителя, предварительно заполненного водой, все сухие компоненты загружают одновременно. Зимой во избежание «заваривания» цемента в барабан смесителя вначале заливают воду и загружают крупный заполнитель, а затем после нескольких оборотов барабана - песок и цемент. Общую продолжительность перемешивания в зимних условиях увеличивают в 1,2... 1,5 раза. Бетонную смесь транспортируют в закрытой утепленной и прогретой перед началом работы таре (бадьи, кузова машин). Автомашиныимеют двойное днище, в полость которого поступают отработанные газы мотора, что предотвращает теплопотери. Бетонную смесь следует транспортировать от места приготовления до места укладки по возможности быстрее и без перегрузок. Места погрузки и выгрузки должны быть защищены от ветра, а средства подачи бетонной смеси в конструкции (хоботы, виброхоботы и др.) утеплены.

Состояние основания, на котором укладывают бетонную смесь, а также способ укладки должны исключать возможность ее замерзания в стыке с основанием и деформации основания при укладке бетона на пучинистые фунты. Для этого основание отогревают до положительных температур и предохраняют от замерзания до приобретения вновь уложенным бетоном требуемой прочности.

Опалубку и арматуру до бетонирования очищают от снега и наледи, арматуру диаметром более 25 мм, а также арматуру из жестких прокатных профилей и крупные металлические закладные детали при температуре ниже - 10°С отогревают до положительной температуры.

Бетонирование следует вести непрерывно и высокими темпами, при этом ранее уложенный слой бетона должен быть перекрыт до того, как в нем температура будет ниже предусмотренной.

Строительное производство располагает обширным арсеналом эффективных и экономичных методов выдерживания бетона в зимних условиях, позволяющих обеспечить высокое качество конструкций. Эти методы можно разделить на три группы: метод, предусматривающий использование начального теплосодержания, внесенного в бетонную смесь при ее приготовлении или перед укладкой в конструкцию, и тепловыделение цемента, сопровождающее твердение бетона - так называемый метод «термоса», методы, основанные на искусственном прогреве бетона, уложенного в конструкцию - электропрогрев, контактный, индукционный и инфракрасный нагрев, конвективный обогрев, методы, использующие эффект понижения эвтектической точки воды в бетоне с помощью специальных противоморозных химических добавок.

Указанные методы можно комбинировать. Выбор того или иного метода зависит от вида и массивности конструкции, вида, состава и требуемой прочности бетона, метеорологических условий производства работ, энергетической оснащенности строительной площадки и т. д.

Метод «термоса»

Технологическая сущность метода «термоса» заключается в том, что имеющая положительную температуру (обычно в пределах 15... 30°С) бетонная смесь укладывается в утепленную опалубку. В результате этого бетон конструкции набирает заданную прочность за счет начального теплосодержания и экзотермического тепловыделения цемента за время остывания до 0°С.

В процессе твердений бетона выделяется экзотермическая теплота, количественно зависящая от вида применяемого цемента и температуры выдерживания.

Наибольшим экзотермическим тепловыделением обладают высокомарочные и быстротвердеющие портландцементы. Экзотермия бетона обеспечивает существенный вклад в теплосодержание конструкции, выдерживаемой методом «термоса».

Бетонирование методом «Термос с добавками-ускорителями»

Некоторые химические вещества (хлористый кальций СаСl, углекислый калий - поташ К2СО3, нитрат натрия NaNO3 и др.), введенные в бетон внезначительных количествах (до 2% от массы цемента), оказывают следу ющее действие на процесс твердения: эти добавки ускоряют процесс твердения в начальный период выдерживания бетона. Так, бетон с добавкой 2%-ного хлористого кальция от массы цемента уже на третий день достигает прочности, в 1,6 раза большей, чем бетон того же состава, но без добавки. Введение в бетон добавок-ускорителей, являющихся одновременно и противоморозными добавками, в указанных количествах понижает температуру замерзания до -3°С, увеличивая тем самым продолжительность остывания бетона, что также способствует приобретению бетоном большей прочности.

Бетоны с добавками-ускорителями готовят на подогретых заполнителях и горячей воде. При этом температура бетонной смеси на выходе из смесителя колеблется в пределах 25...35°С, снижаясь к моменту укладки до 20°С. Такие бетоны применяют при температуре наружного воздуха -15... -20°С. Укладывают их в утепленную опалубку и закрывают слоем теплоизоляции. Твердение бетона происходит в результате термосного выдерживания в сочетании с положительным воздействием химических добавок. Этот способ является простым и достаточно экономичным, позволяет применять метод «термоса» для конструкций с Мп

Бетонирование «Горячий термос»

Заключается в кратковременном разогреве бетонной смеси до температуры 60... 80°С, уплотнении ее в горячем состоянии и термосном выдерживании или с дополнительным обогревом.

В условиях строительной площадки разогрев бетонной смеси осуществляют, как правило, электрическим током. Для этого порцию бетонной смеси с помощью электродов включают в электрическую цепь переменного тока в качестве сопротивления.

Таким образом, как выделяемая мощность, так и количество выделяемой за промежуток времени теплоты зависят от подводимого к электродам напряжения (прямая пропорциональность) и омическогосопротивления профеваемой бетонной смеси (обратная пропорциональность).

В свою очередь, омическое сопротивление является функцией геометрических параметров плоских электродов, расстояния между электродами и удельного омического сопротивления бетонной смеси.

Электроразофев бетонной смеси осуществляют при напряжении тока 380 и реже 220 В. Для организации электроразофева на строительной площадке оборудуют пост с трансформатором (напряжение на низкой стороне 380 или 220 В), пультом управления и распределительным щитом.

Электроразогрев бетонной смеси осуществляют в основном в бадьях или в кузовах автосамосвалов.

В первом случае приготовленную смесь (на бетонном заводе), имеющую температуру 5...15°С, доставляют автосамосвалами на строительную площадку, выгружают в электробадьи, разогревают до 70... 80°С и укладывают в конструкцию. Чаще всего применяют обычные бадьи (туфельки) с тремя электродами из стали толщиной 5 мм, к которым с помощью кабельных разъемов подключают провода (или жилы кабелей) питающей сети. Для равномерного распределения бетонной смеси между электродами при загрузке бадьи и лучшей выгрузке разогретой смеси в конструкцию на корпусе бадьи установлен вибратор.

Во втором случае приготовленную на бетонном заводе смесь доставляют на строительную площадку в кузове автосамосвала. Автосамосвал въезжает на пост разогрева и останавливается под рамой с электродами. При работающем вибраторе электроды опускают в бетонную смесь и подают напряжение. Разогрев ведут в течение 10... 15 мин до температуры смеси на быстротвердеющих портландцементах 60°С, на портландцементах 70°С, на шлакопортландцементах 80°С.

Для разогрева смеси до столь высоких температур за короткий промежуток времени требуются большие электрические мощности. Так, для разогрева 1 м смеси до 60°С за 15 мин требуется 240 кВт, а за 10 мин - 360 кВт установленной мощности.

Искусственный прогрев и нагрев бетона

Сущность метода искусственного прогрева и нагрева заключается в повышении температуры уложенного бетона до максимально допустимой и поддержании ее в течение времени, за которое бетон набирает критическую или заданную прочность.

Искусственный прогрев и нагрев бетона применяют при бетонировании конструкций с Мп > 10, а также и более массивных, если в последних невозможно получить в установленные сроки заданную прочность при выдерживании только способом термоса.

Физическая сущность электропрогрева (электродного прогрева) идентична рассмотренному выше способу электроразогрева бетонной смеси, т. е. используется теплота, выделяемая в уложенном бетоне при пропуске через него электрического тока.

Образующаяся теплота расходуется на нагрев бетона и опалубки до заданной температуры и возмещение теплопотерь в окружающую среду, происходящих в процессе выдерживания. Температура бетона при электропрогреве определяется величиной вьщеляемой в бетоне электрической мощности, которая должна назначаться в зависимости от выбранного режима термообработки и величины теплопотерь, имеющих место при электропрогреве на морозе.

Для подведения электрической энергии к бетону используют различные электроды: пластинчатые, полосовые, стержневые и струнные.

К конструкциям электродов и схемам их размещения предъявляются следующие основные требования: мощность, выделяемая в бетоне при электропрогреве, должна соответствовать мощности, требуемой по тепловому расчету, электрическое и, следовательно, температурное поля должны быть по возможности равномерными, электроды следует располагать по возможности снаружи прогреваемой конструкции для обеспечения минимального расхода металла, установку электродов и присоединение к ним проводов необходимо производить до начала укладки бетонной смеси (при использовании наружных электродов).

В наибольшей степени удовлетворяют изложенным требованиям пластинчатые электроды.

Пластинчатые электроды принадлежат к разряду поверхностных и представляют собой пластины из кровельного железа или стали, нашиваемые на внутреннюю, примыкающую к бетону поверхность опалубки и подключаемые к разноименным фазам питающей сети. В результате токообмена между противолежащими электродами весь объем конструкции нагревается. С помощью пластичнатых электродов прогревают слабоармированные конструкции правильной формы небольших размеров (колонны, балки, стены и др.).

Полосовые электроды изготовляют из стальных полос шириной 20...50 мм и так же, как пластинчатые электроды, нашивают на внутреннюю поверхность опалубки.

Токообмен зависит от схемы присоединения полосовых электродов к фазам питающей сети. При присоединении противолежа щих электродов к разноименным фазам питающей сети токообмен происходит между противоположными гранями конструкции и в тепловыделение вовлекается вся масса бетона. При присоединении к разноименным фазам соседних электродов токообмен происходит между ними. При этом 90% всей подводимой энергии рассеивается в периферийных слоях толщиной, равной половине расстояния между электродами. В результате периферийные слои нагреваются за счет джоулевой теплоты. Центральные же слои (так называемое «ядро» бетона) твердеют за счет начального теплосодержания, экзотермии цемента и частично за счет притока теплоты от нагреваемых периферийных слоев. Первую схему применяют для прогрева слабоармированных конструкций толщиной не более 50 см. Периферийный электропрогрев применяют для конструкций любой массивности.

Полосовые электроды устанавливают по одну сторону конструк ции. При этом к разноименным фазам питающей сети присоединяют соседние электроды. В результате реализуется периферийный электропрогрев.

Одностороннее размещение полосовых электродов применяют при электропрогреве плит, стен, полов и других конструкций толщиной не более 20 см.

При сложной конфигурации бетонируемых конструкций при меняют стержневые электроды - арматурные прутки диаметром 6... 12 мм, устанавливаемые в тело бетона.

Наиболее целесообразно использовать стержневые электроды р виде плоских электродных групп. В этом случае обеспечивается более равномерное температурное поле в бетоне.

При электропрогреве бетонных элементов малого сечения и значительной протяженности (например, бетонных стыков шириной до 3... 4 см) применяют одиночные стержневые электроды.

При бетонировании горизонтально расположенных бетонных или имеющих большой защитный слой железобетонных конструкций используют плавающие электроды - арматурные стержни 6... 12 мм, втапливаемые в поверхность.

Струнные электроды применяют для прогрева конструкций, длина которых во много раз больше размеров их поперечного сечения (колонны, балки, прогоны и т. п.). Струнные электроды устанавливают по центру конструкции и подключают к одной фазе, а металлическую опалубку (или деревянную с обшивкой палубы кровельной сталью) - к другой. В отдельных случаях в качестве другого электрода может быть использована рабочая арматура.

Количество энергии, выделяемой в бетоне в единицу времени, а следовательно, и температурный режим электропрогрева зависят от вида и размеров электродов, схемы их размещения в конструкции, расстояний между ними и схемы подключения к питающей сети. При этом параметром, допускающим произвольное варьирование, чаще всего является подводимое напряжение. Выделяемая электрическая мощность в зависимости от перечисленных выше параметров рассчитывается по формулам.

Ток на электроды от источника питания подается через трансформаторы и распределительные устройства.

В качестве магистральных и коммутационных проводов применяют изолированные провода с медной или алюминиевой жилой, сечение которых подбирают из условия пропуска через них расчетной силы тока.

Перед включением напряжения проверяют правильность установки электродов, качество контактов на электродах и отсутствие их замыкания на арматуру.

Электропрогрев ведут на пониженных напряжениях в пределах 50... 127 В. Осредненно удельный расход электроэнергии составляет 60... 80 кВт/ч на 1 м3 железобетона.

Контактный (кондуктивный) нагрев. При данном методе используется теплота, выделяемая в проводнике при прохождении по нему электрического тока. Затем эта теплота передается контактным путем поверхностям конструкции. Передача теплоты в самом бетоне конструкции происходит путем теплопроводности. Для контактного нагрева бетона преимущественно применяют термоактивные (греющие) опалубки и термоактивные гибкие покрытия (ТАГП).

Греющая опалубка имеет палубу из металлического листа или водостойкой фанеры, с тыльной стороны которой расположены электрические нагревательные элементы. В современных опалубках в качестве нагревателей применяют греющие провода и кабели, сетчатые нагреватели, углеродные ленточные нагреватели, токопроводящие покрытия и др. Наиболее эффективно применение кабелей, которые состоят из константановой проволоки диаметром 0,7... 0,8 мм, помещенной в термостойкую изоляцию. Поверхность изоляции защищена от механических повреждений металлическим защитным чулком. Для обеспечения равномерного теплового потока кабель размещают на расстоянии 10... 15 см ветвь от ветви.

Сетчатые нагреватели (полоса сетки из металла) изолируют от палубы прокладкой асбестового листа, а с тыльной стороны опалубочного щита - также асбестовым листом и покрывают теплоизоляцией. Для создания электрической цепи отдельные полосы сетчатого нагревателя соединяют между собой разводящими шинами.

Углеродные ленточные нагреватели наклеивают специальными клеями на палубу щита. Для обеспечения прочного контакта с коммутирующими проводами концы лент подвергают меднению.

В греющую опалубку может быть переоборудована любая инвентарная с палубой из стали или фанеры. В зависимости от конкретных условий (темпа нагрева, температуры окружающей среды, мощности тепловой защиты тыльной части опалубки) потребная удельная мощность может колебаться от 0,5 до 2 кВ А/м2. Греющую опалубку применяют при возведении тонкостенных и среднемассивных конструкций, а также при замоноличивании узлов сборных железобетонных элементов.

Термоактивное покрытие (ТРАП) - легкое, гибкое устройство с углеродными ленточными нагревателями или греющими проводами, обеспечивающие нагрев до 50°С. Основой покрытия является стеклохолст, к которому крепят нагреватели. Для теплоизоляции применяют штапельное стекловолокно с экранированием слоем из фольги. В качестве гидроизоляции используют прорезиненную ткань.

Гибкое покрытие можно изготовлять различного размера. Для крепления отдельных покрытий между собой предусмотрены отверстия для пропуска тесьмы или зажимов. Покрытие можно располагать на вертикальных, горизонтальных и наклонных поверхностях конструкций. По окончании работы с покрытием на одном месте его снимают, очищают и для удобства транспортировки сворачивают в рулон. Наиболее эффективно применять ТРАП при возведенииплит перекрытий и покрытий, устройстве подготовок под полы и др. ТРАП изготовляют с удельной электрической мощностью 0,25... 1 кВ-А/м2.

При инфакрасном нагреве используют способность инфракрасных лучей поглощаться телом и трансформироваться в тепловую энергию, что повышает теплосодержание этого тела.

Генерируют инфракрасное излучение путем нагрева твердых тел. В промышленности для этих целей применяют инфракрасные лучи с длиной волны 0,76... 6 мкм, при этом максимальным потоком волн данного спектра обладают тела с температурой излучающей поверхности 300...2200°С.

Теплота от источника инфракрасных лучей к нагреваемому телу передается мгновенно, без участия какого-либо переносчика теплоты. Поглощаясь поверхностями облучения, инфракрасные лучи превращаются в тепловую энергию. От нагретых таким образом поверхностных слоев тело прогревается за счет собственной теплопроводности.

Для бетонных работ в качестве генераторов инфракрасного излучения применяют трубчатые металлические и кварцевые излучатели. Для создания направленного лучистого потока излучатели заключают в плоские или параболические рефлекторы (обычно из алюминия).

Инфракрасный нагрев применяют при следующих технологических процессах: отогреве арматуры, промороженных оснований и бетонных поверхностей, тепловой защите укладываемого бетона, ускорении твердения бетона при устройстве междуэтажных перекрытий, возведении стен и других элементов в деревянной, металлической или конструктивной опалубке, высотных сооружений в скользящей опалубке (элеваторы, силосы и т. п.).

Электроэнергия для инфракрасных установок поступает обычно от трансформаторной подстанции, от которой к месту производства работ прокладывают низковольтный кабельный фидер, питающий распределительный шкаф. От последнего электроэнергию подают по кабельным линиям к отдельным инфракрасным установкам.Бетон обрабатывают инфракрасными лучами при наличии автоматических устройств, обеспечивающих заданные температурные и временные параметры путем периодического включения-выключения инфракрасных установок.

При индукционном нагреве бетона используют теплоту, выделяемую в арматуре или стальной опалубке, находящихся в электромагнитном поле катушки-индуктора, по которой протекает переменный электрический ток. Для этого по наружной поверхности опалубки последовательными витками укладывается изолированный провод-индуктор. Переменный электрический ток, проходя через индуктор, создает переменное электромагнитное поле. Электромагнитная индукция вызывает в находящемся в этом поле металле (арматуре, стальной опалубке) вихревые токи, в результате чего арматура (стальная опалубка) нагревается и от нее (кондуктивно) нагревается бетон.

Loading...Loading...