Вихревой теплогенератор таблица информация о результатах. Критерии выбора лучшего вихревого теплогенератора

Википедия утверждает, что теплогенератором является устройство, которое вырабатывает тепло сжиганием некоего топлива. Сразу возникает вопрос: что именно необходимо сжечь в вихревом теплогенераторе ТГ, ионном генераторе тепла или электродном котле? Далее, приводится схема со стандартной процедурой сгорания топлива в соответствующей камере, передачей тепла потребителю и фактически утверждаются ограничения на сферу применения вихревых и прочих тепогенераторов - только небольшие здания и индивидуальное отопление.

Поскольку даже электродные котлы способны отапливать солидные здания, хочу уличить википедию в безграмотности следующими доводами.

Принцип действия вихревых теплогенераторов

Изначально явление вихревой кавитации было открыто в ходе наблюдений за поведением и работой лопастей судовых винтов. Сразу же открытое явление приобрело негативную оценку, поскольку приводило к повреждениям и преждевременному износу лопастей. Однако, сегодня кавитация используется для экономичного отопления и нагрева воды в вихревых теплогенераторах, которые производит наше предприятие.

«Приручив» эффект кавитации, удалось создать высокоэффективный вихревой теплогенератор, в основу работы которого положен довольно простой принцип: создание вихревых потоков воды. Для этого используется стандартный асинхронный двигатель, который путем смешивания обратного и возмущающего потоков воды создает мощные завихрения, приводящие к образованию микроскопических пузырьков газа.

Специальная конструкция гидродинамического смесителя и нагнетаемое насосом давление воды вынуждает пузырьки газа схлопываться, высвобождая огромное количество тепловой энергии. Внутренняя температура пузырьков в момент схлопывания доходит до 1500°С. Можете себе представить какой потенциал кроется в простой воде.

В сравнении с установками прямого электрического нагрева, вихревые теплогенераторы имеют гораздо более высокое отношение полезной выходной тепловой мощности к потребляемой мощности.

Этот показатель может быть в разы больше и даже превышать единицу. Это обстоятельство получило в исследовательской среде название «сверхединичности», то есть способность отдавать с одного затраченного киловатта энергии полтора и больше киловатта тепла на выходе. Эта «сверхединичность» выходит за пределы научных академических догм, поэтому официальное объяснение этого механизма отсутствует. Не взирая на это, независимым исследователям удалось построить адекватную модель кавитационного процесса, в которой не применяются «эзотерические» гипотезы. При этом «сверхединичность» получает естественное обоснование, которое совершенно не противоречит базовым законам сохранения энергии.

Немного теории

Первым шагом в данной модели служит ревизия представлений о содержании термина «кавитационный пузырек».

В соответствии с правилами термодинамики, преобразование электрической энергии в тепловую невозможно со 100%-ой эффективностью и коэффициент полезного действия генератора тепла может принимать значения в пределах 100% (или единицы).

Однако, имеются подтвержденные факты работы кавитационных вихревых теплогенераторов с КПД равным 100% и более. К примеру, официально зафиксированы государственные испытания теплового кавитационного насоса Белорусской фирмы «Юрле», которые были проведены Институтом тепло- и массообмена им. А.В. Лыкова Национальной Академии Наук АН Беларуси. Подтвержденный коэффициент преобразования составил 0,975-1,15 (без учета тепловых потерь в окружающую среду) ». Ряд производителей реализуют кавитационные вихревые теплогенераторы с коэффициентом полезного действия 1.25 и 1.27. Бесперебойно и экономно функционируют вихревые теплогенераторы нашей компании, которые в определённых режимах работы демонстрируют превышение полезной тепловой мощности над потребляемой электрической мощностью в 1.48 раза и более.

Отклик научной среды на эти достижения ожидаемый: ученые мужи старательно их игнорируют, делая вид, что данных фактов не существует (пример этого на видео). Но разгадка парадокса «сверхединичности» есть и, по нашему мнению, ответ здесь довольно прост. В перечисленных устройствах электроэнергия не трансформируется в нагревание воды, а всего лишь служит инструментом поддержания самого процесса.

Служит своеобразным катализатором, в присутствии которого имеет место перераспределение энергий, изначально свойственных самой воде. В процессе этого перераспределения, конфигурация различных видов энергий в структуре теплоносителя меняется таким образом, что это приводит к росту температуры воды.

Выдвигаемая ниже версия этих процессов является прямым следствием современных представлений о температуре и теплоте, предлагаемых независимыми исследователями. Приведем вкратце тезисы этой теории:

  1. Температура тела – это не показатель содержания энергии в теле. Это параметр, характеризующий распределение различных видов энергии в объекте. Суммарно общее количество энергий объекта не изменяется и сохраняется постоянным при любой температуре.
  2. Во время теплового контакта двух тел с разными температурами тепловая энергия не переходит от горячего тела к холодному, несмотря на то, что их температура выравнивается и устанавливается равной для обоих. В действительности, в каждом из тел имеет место перераспределение своих внутренних энергий.
  3. Температуру объекта можно повысить без передачи ему энергии со стороны и, не совершая работы над ним.

Вероятно, такой нагрев теплоносителя происходит во время функционирования вихревых теплогенераторов благодаря кавитации. В таком случае, потребляемая мощность из электросети, расходуется на понижение давления в воде локально. По этой причине в воде формируются кавитационные агрегаты молекул. Следующий этап трансформации этих молекул не связан с потреблением электроэнергии или ее мощностью. Как было описано ранее, нагрев кавитационных объектов-молекул, приводящий к эффективному тепловому результату, не нуждается в дополнительных интервенциях электроэнергии извне. Соответственно, так как тепловая энергия на выходе оборудования здесь не зависит от электрической мощности на входе, то какие-либо запреты на превышение полезной мощности над потребляемой отсутствуют. Собственно, положения данной теории успешно воплощены в кавитационных вихревых теплогенераторах, а ее тезисы достигаются в правильно подобранных функциональных режимах.

Поэтому «запредельный» КПД (более 100%) этих режимов, в соответствии с предлагаемой теорией, совершенно не противоречит классическому закону сохранения энергии. В пример, можно привести аналогию с функционированием слаботочного реле, которое переключает высокоамперные токи. Либо работу детонатора, которая приводит к мощному взрыву.

Надо отметить, что работа именно вихревого теплогенератора стала своеобразным маркером, который столь ярко и наглядно демонстрирует «сверхединичность» процессов преобразования энергии, вразрез с устоявшимися академическими догмами. Предлагаем взглянуть на «сверхединичность» с иной позиции: если соответствующее оборудование не дотягивает до «сверхединичности», то это говорит о несовершенной конструкции изделия или о неверно выбранном режиме функционирования.

Отметим важное положительное практическое свойство вихревого теплогенератора: удачная конструкция, которая формирует кавитационные агрегаты молекул, вызывая их взрывную конденсацию, не приводит их в соприкосновение с рабочими частями изделия и даже близко к ним. Кавитационные пузырьки двигаются в свободном объёме воды. В результате, в ходе многолетней эксплуатации вихревого оборудования, практически полностью отсутствуют симптомы кавитационной эрозии. В тоже время, это очень существенно снижает уровень акустического шума, возникающего вследствие кавитации.

Купить вихревой теплогенератор

Приобрести требуемую модель вихревого теплогенератора или согласовать условия поставки, монтажа, получить примерную смету затрат Вы можете, связавшись с нами по любой контактной форме на этой странице.

Вихревой теплогенератор состоит из двигателя и кавитатора. В кавитатор подается вода (или другая жидкость). Двигатель раскручивает механизм кавитатора, в котором происходит процесс кавитации (схлопывания пузырьков). За счет этого, происходит нагрев жидкости, подаваемой в кавитатор. Подводимая электроэнергия расходуется на следующие цели: 1- нагрев воды, 2 - преодоление силы трения в двигателе и кавитаторе, 3- излучение звуковых колебаний (шум). Разработчики и производители утверждают, что принцип действия основан "на использовании возобновляемой энергии". При этом, не понятно, откуда эта энергия берется. Тем не менее, не происходит никакого дополнительного излучения. Соответственно, можно предположить, что вся энергия, подводимая к теплогенератору, тратится на нагрев воды. Таким образом, можно говорить о КПД, близком к 100%. Но не более...
Но перейдем от теории к практике.

На заре развития «вихревых теплогенераторов» предпринимались попытки проведения независимой экспертизы. Так, известная модель ЮСМАР изобретателя Ю.С.Потапова из Молдовы тестировалась американской компанией Earth Tech International (г.Остин, штат Техас), специализирующейся на экспериментальной верификации новых направлений в современной физике. В 1995 г. были проведены пять серий экспериментов по измерению соотношения между генерируемой тепловой и потребляемой электрической энергией. Заметим, что все многочисленные модификации испытуемого устройства, предназначенные для разных серий экспериментов, лично согласовывались с Ю.С.Потаповым в ходе визита одного из сотрудников компании в Молдову. Подробнейшее описание конструкции испытуемого теплогенератора с вихревой трубой, режимные параметры, методики проведения измерений и результаты приводятся на сайте компании www.earthtech.org/experiments/.

Для привода водяного насоса использовался электродвигатель с КПД=85%, тепловые потери которого на нагрев окружающего воздуха не принимались при расчете теплопроизводительности «вихревого теплогенератора». Отметим, что не измерялись и тепловые потери на нагрев окружающего воздуха, что, безусловно, несколько снижало получаемый КПД теплогенератора.

Результаты исследований, проведенных при варьировании основных режимных параметров (давление, расход теплоносителя, начальная температура воды и др.) в широком диапазоне продемонстрировали, что эффективность теплогенератора изменяется в диапазоне от 33 до 81%, что сильно не «дотягивает» до 300%, заявленных изобретателем перед проведением экспериментов.

Хотя по "тепловому вихрегенератору" расскажу...
Были некоторые примеры значительной экономии денежных средств на отопление в переходные периоды нашей экономики, когда деньги предприятий начинали считать. Сразу скажу, что с связано это с гримасами экономики, а совсем не с теплотехникой.

Скажем, некоторое предприятие желает отапливать свои помещения. Ну холодно им видите ли.
По некоторым причинам, ясно каким, не может вложиться в Газовую трубу, строить свою котельную на угле, мазуте - не хватает масштабов, а центральное отопление отсутствует или далеко.
Остается электричество, но при получении разрешения на использование электроэнергии в термальных целях устанавливали предприятию тариф, превышающий в несколько раз обычный.
Такие были раньше правила, и не только в России, но в Украине, Молдове и др. государствах, которые отпочковались от нас.
Вот тут приходил на помощь г-н Потапов и подобные.
Покупали чудо-устройство, тариф на электроэнергию для электродвигателей оставался обычный, тепловой КПД естественно никак больше сотни быть не мог, а вот в денежном отношении КПД был и 200 и 300, смотря во сколько раз сэкономили на тарифе.
Применяя ТН можно было достичь еще большей экономии, но для тех времен и вихретеплогенератора с эффективностью якобы 1,2-1,5 вполне было достаточно.
Ведь еще больший заявляемый КПД мог только повредить и отпугнуть покупателей, ведь квоты на электроснабжение выделялись по потребляемой мощности, а давал генератор тепла столько-же, если не меньше, в связи с потерями по cos Ф.
По теплопотерям помещений в 30-40% погрешности еще как-то можно было уложиться, списать на колебания погоды.
Сейчас это ушло в прошлое, но тема вихрегенераторов по инерции продолжает всплывать, и ведь находятся дураки, которые покупают, клюнув на информацию с фотками и адресами, что ряд уважаемых предприятий в свое время использовали их у себя и экономили большую кучу денег.
Только всей подоплеки им никто не рассказывает.

Редко какой хозяин не пытается сэкономить на отоплении или потреблении еще каких-либо благ, которые с каждым годом становятся все дороже и дороже. Чтобы сделать экономной отопительную систему жилого или производственного помещения, многие люди прибегают к помощи различных схем и методам получения тепловой энергии. Один из аппаратов, подходящий под эти цели – кавитационный теплогенератор.

Что такое вихревой теплогенератор

Кавитационный вихревой генератор тепла – это простое устройство, способное эффективно обогреть помещение, затрачивая при этом минимум средств. Это происходит благодаря нагреву воды при кавитации – образовании небольших паровых пузырьков в местах снижения давления жидкости, которое возникает либо при работе насоса, либо при звуковых колебаниях.

Кавитационный нагреватель способен преобразовать механическую энергию в тепловую, что активно применяется в промышленности, где нагревающие элементы могут выйти из строя, работая с жидкостью, имеющей большую температурную разность. Такой кавитатор является альтернативой для систем, работающих на твердом топливе.

Преимущества вихревых кавитационных нагревателей:

  • Экономичность системы отопления;
  • Высокая эффективность обогрева;
  • Доступность;
  • Возможность собрать своими руками.


Недостатки аппарата:

Стандартное устройство теплогенератора и принцип его работы

Процесс кавитации выражается в образовании пузырьков пара в жидкости, впоследствии чего давление медленно понижается при большой скорости потока.

Из-за чего может происходить парообразование:

  • Возникновением акустики, вызванной звуком;
  • Излучением лазерного импульса.

Закрытые воздушные области перемешиваются с водой и уходят в место с большим давлением, где хлопаются с излучением ударной волны.

Принцип работы кавитационного аппарата:

  • Струя воды движется через кавитатор, где насос создает водяное давление, попадающее в рабочую камеру;
  • В камерах жидкость увеличивает скорость и давление с помощью различных трубочек разных размеров;
  • В центре камеры потоки смешиваются, и появляется кавитация;
  • При этом полости пара остаются маленькими и не взаимодействуют с электродами;
  • Жидкость движется к противоположному концу камеры, откуда возвращается назад для следующего использования;
  • Нагрев происходит благодаря движению и расширению воды на выходе из сопла.

Так работает вихревой кавитационный нагреватель. Его устройство простое, но позволяет быстро и эффективно обогреть помещение.

Кавитационный нагреватель и его типы

Нагреватель, работающий с кавитацией, может быть нескольких типов. Чтобы понять, какой генератор вам нужен, следует разобраться в его типажах.


Виды кавитационного нагревателя:

  1. Роторный – самый популярный из них это аппарат Григгса, работающий с помощью центробежного насоса ротационного действия. Внешне он выглядит как диск с отверстиями без выхода. Одно такое отверстие носит название: ячейка Григгса. Параметры этих ячеек и их число зависят от типа генератора и частоты вращения привода. Нагрев воды происходит между статором и ротором посредством быстрого ее движения по поверхности диска.
  2. Статический – он не имеет никаких вращающихся элементов, а кавитацию создают специальные сопла (элементы Лаваля). Насос нагнетает давление воды, что проводит к ее быстрому движению и нагреву. Выходные отверстия сопел более узкие, чем предыдущие и жидкость начинает двигаться еще быстрее. Из-за быстрого расширения воды и получается кавитация, дающая в итоге тепло.

Если выбирать между этими двумя видами, то следует учитывать, что производительность роторного кавитатора более высокая и он не такой габаритный, как статический.

Правда, статический нагреватель меньше изнашивается из-за отсутствия вращающихся элементов. Использовать аппарат можно до 5 лет, а если выйдет из строя сопло – его с легкостью можно заменить, затрачивая на это куда меньше средств, чем на теплогенератор в роторном кавитаторе.

Экономный кавитационный теплогенератор своими руками

Создать самодельный вихревой генератор с кавитацией вполне реально, если внимательно изучить чертежи и схемы устройства, а также понимать его принцип работы. Самым простым для самостоятельного создания считается ВТГ Потапова с КПД 93%, схема которого подойдет как для домашнего, так и для промышленного использования.

Перед тем, как приступить к сборке прибора, следует правильно выбрать насос, ориентируясь по его типу, мощности, нужной тепловой энергии и величине напора.

В основном все кавитационные генераторы имеют формы сопла, которая считается самой простой и удобной для таких устройств.

Что нужно для создания кавитатора:

  • Манометры для измерения давления;
  • Термометр для замера температуры;
  • Выходные и входные патрубки с краниками;
  • Вентили для удаления воздушных пробок из отопительной системы;
  • Гильзы для термометров.

Также нужно проследить за размером сечения отверстия между диффузором и конфузором. Оно должно быть примерно 8 – 15 см, не уже и не шире.

Схема создания кавитационного генератора:

  1. Выбор насоса – здесь следует определиться с нужными параметрами. Насос обязательно должен иметь возможность работать с жидкостями высоких температур, иначе он быстро сломается. Также он должен уметь создавать рабочее давление в минимум 4 атмосферы.
  2. Создание камеры кавитации – тут главное правильно выбрать размер сечения проходного канала. Оптимальным вариантом считается 8-15 мм.
  3. Выбор конфигурации сопла – оно может быть в виде конуса, цилиндра или просто быть закругленным. Впрочем, не так важна форма, как то, чтобы вихревой процесс начинался уже при входе воды в сопло.
  4. Изготовление водного контура – внешне это такая изогнутая трубка, ведущая от камеры кавитации. К ней присоединяются две гильзы с термометром, два манометра, воздушный вентиль, который ставится между входом и выходом.


После создания корпуса следует провести испытание теплогенератора. Для этого насос следует подключить к электроэнергии, а радиаторы к отопительной системе. Далее происходит включение в сеть.

Особенно стоит смотреть на показания манометров и выставить нужную разницу между входом и выходом жидкости в пределах 8-12 атмосфер.

Теплогенератор своими руками (видео)

Кавитационный нагреватель достаточно интересный и экономный способ обогреть помещение. Он легко доступен и при желании может создаваться самостоятельно. Для этого нужно докупить необходимые материалы и сделать все в соответствии со схемами. И эффективность аппарата не заставит себя долго ждать.

Вихревой теплогенератор позволяет получать тепло в результате преобразования энергий: одного ее рода в другой эквивалент. Производительность таких устройств крайне высока, в результате чего жидкость может нагреваться до 95 градусов. А это позволяет обеспечивать объекты разной величины и целевого назначения горячей водой и теплом с существенной экономией.

Область применения теплогенераторов

На сегодняшний день помимо проведения непрерывных разработок уже вводятся в эксплуатацию и тепла. В зависимости от условий рабочей среды могут применяться различные агрегаты для обогрева помещения или системной подачи горячей воды. В качестве одного из таких вариантов выступает вихревой теплогенератор.

Смотрим видео, принцип работы и область применения:

Основная задача подобных агрегатов заключается в нагреве воды. В результате высокой эффективности этого процесса можно направлять полученное тепло на отопление производственных, гражданских, сельскохозяйственных и частных объектов. При этом вихревой теплогенератор позволяет организовать полностью автономную систему отопления. Дополнительно к этому свойство данного устройства преобразовывать один вид энергии в другой может обеспечить любой объект горячей водой.

Основы функционирования

Достоверного и подтвержденного объяснения того, как работает вихревой теплогенератор, до сих пор нет. Известно лишь, что функционирует такой агрегат на основе процесса кавитации. При вращении воды посредством ротора происходит образование пузырьков, заполненных газообразной средой. По мере движения жидкости пузырьки «схлопываются», что, по мнению многих, как раз и является причиной нагрева воды. Прогретая жидкость подается в систему отопления. Приблизительная схема функционирования выглядит следующим образом:

Тем не менее, исследования не останавливались и сегодня вихревой теплогенератор представлен довольно большим количеством исполнений. Тот факт, что разработки продолжились, несмотря на отсутствие твердого основания для подобных процессов, объясняется высоким КПД, так как нагрев жидкости происходит с эффективностью 100%.

Ряд преимуществ и недостатков

Вихревой высокопроизводительный теплогенератор представлен большим количеством исполнений как раз благодаря тому, что подобные устройства характеризуются рядом значимых достоинств, среди которых:

Как и любой другой альтернативный источник тепла, вихревой кавитационный теплогенератор не пользуется широкой популярностью, несмотря на довольно высокую эффективность. Соответственно, один из главных недостатков – высокая стоимость, что отчасти обусловлено незначительным уровнем распространения подобной техники, несмотря на то, что сегодня производители предлагают различные модели.

Особенности моделей

Вихревой кавитационный теплогенератор существует в разных исполнениях. Сегодня наиболее распространены устройства, работающие на водяной основе, то есть, в качестве теплоносителя выступает жидкость.

Но есть возможность приобрести и твердотопливный агрегат, на выходе которого образуется газообразная смесь дымового газа и воздушной среды.

Теплогенератор твердотопливный высокопроизводительный вихревой отличается возможностью сжигания древесины высокой влажности (до 65%). Соответственно, при выборе учитывается назначение агрегата и предполагаемая нагрузка, так как существуют исполнения с разным уровнем тепловой мощности. В зависимости от того, какой по величине объект предполагается обслуживать, подбирается подходящее устройство.

В случае с твердотопливным оборудованием важно учесть скорость расхода топлива, размеры погрузочной камеры и вид загрузки топлива. Можно подбирать вихревой разнотипный теплогенератор по уровню тепловой мощности, а можно обратить внимание на пункт в сопроводительной документации о том, какой величины объем допускается прогревать. Немаловажным является вес, а также габаритные размеры оборудования.

Для крупных помещений и зданий предполагается использование массивных агрегатов, тогда как для частного жилья достаточно устройства мощностью 2,2 кВт и весом всего 40 кг.

Обзор моделей разных конструкций

Если планируется задействовать вихревой теплогенератор, то можно купить его по цене 62 000 руб., как, например, модель мощностью 2,2 кВт от производителя ЗАО «Индустриальные технологии 21». Это жидкостный агрегат, который может быть подключен к новой или уже действующей системе отопления. Агрегат обслуживает помещение объемом до 90 куб. м, его вес составляет 40 кг.

Смотрим видео о продукции компании «Индустриальные технологии 21»:

Если выбрать твердотопливное исполнение, то в данном случае рассматривается более производительное оборудование с тепловой мощностью от 250 до 700 кВт. Например, модели ТВВ-Р-250, ТВВ-Р-500, ТВВ-Р-700. Все они предполагают ручную загрузку топлива. Но более мощные исполнения потребляют больше топлива. Если модель 250 расходует 120 кг/час, то исполнение 700 потребляет около 340 кг/час. Существуют устройства намного более производительные тепловой мощностью 2 500 кВт. Если планируется использовать такие вихревые теплогенераторы, то их цена будет заметно выше.

Чем меньше габаритные размеры подобной техники, тем более простым будет ее эксплуатация. Например, существуют полностью автономные устройства с автоматическим управлением. При этом пользователю нет необходимости участвовать в процессе. А вот при использовании некоторых исполнений твердотопливных теплогенераторов без участия обученного оператора для загрузки топлива не обойтись, так как в данных агрегата предполагается ручная подача древесины.

Сегодня существуют разные исполнения подобной техники с полностью автоматизированным исполнением, включая и предустановленный температурный режим. Учитывая, что агрегаты такого рода полностью безопасны, как с точки зрения экологичности, так и с точки зрения пожарной безопасности, то нет необходимости их постоянного контроля.

Но для эффективной продолжительной работы рекомендуется периодически производить обслуживание, в особенности, агрегатов, которые работают с жидкостным теплоносителем.

Таким образом, для организации отопительной системы и горячего водоснабжения не всегда обязательно обращаться к стандартным решениям. На практике оказывается, что при использовании тепловых установок на базе вихревых теплогенераторов отмечается существенная экономия в сравнении с прочими видами отопительных систем.

В результате можно получить не просто высокопроизводительную технику, но еще и экономить при ее эксплуатации. Несмотря на довольно высокую стоимость подобных агрегатов, их дальнейшая эксплуатация полностью окупается, причем этого не придется ждать слишком долго, так как в некоторых случаях сроки окупаемости достигают 6 месяцев.

С каждым годом подорожание отопления заставляет искать более дешевые способы обогрева жилой площади в холодную пору года. Особенно это относится к тем домам и квартирам, которые имеют большую квадратуру. Одним из таких способов экономии является вихревой . Он имеет массу преимуществ, а также позволяет экономить на создании. Простота конструкции не затруднит его сбор даже у новичков. Далее рассмотрим преимущества такого способа отопления, а также попытаемся составить план-схему по сбору теплогенератора своими руками.

Теплогенератор – это специальный прибор, основная цель которого вырабатывать тепло, путем сжигания, загружаемого в него, топлива. При этом вырабатывается тепло, которое затрачивается на обогрев теплоносителя, который уже в свою очередь непосредственно выполняет функцию обогрева жилой площади.

Первые теплогенераторы появились на рынке еще в 1856 году, благодаря изобретению британского физика Роберта Бунзена, который в ходе ряда проведенных опытов заметил, что вырабатываемое при горении тепло можно направлять в любое русло.

С тех пор генераторы, конечно же, модифицировались и способны обогревать гораздо больше площади, нежели это было 250 лет назад.

Принципиальным критерием, по которому генераторы отличаются друг от друга, является загружаемое топливо. В зависимости от этого выделяют следующие виды :

  1. Дизельные теплогенераторы – вырабатывают тепло в результате сгорания дизельного топлива. Способны хорошо обогревать большие площади, но для дома их лучше не использовать в силу наличия выработки токсичных веществ, образуемых в результате сгорания топлива.
  2. Газовые теплогенераторы – работают по принципу непрерывной подачи газа, сгорая в специальной камере который также вырабатывает тепло. Считается вполне экономичным вариантом, однако установка требует специального разрешения и соблюдения повышенной безопасности.
  3. Генераторы, работающие на твердом топливе – по конструкции напоминают обычную угольную печь, где имеется камера сгорания, отсек для сажи и пепла, а также нагревательный элемент. Удобны для эксплуатации на открытой местности, поскольку их работа не зависит от погодных условий.
  4. – их принцип работы основывается на процессе термической конверсии, при которой пузырьки, образуемые в жидкости, провоцируют смешанный поток фаз, увеличивающий вырабатываемое количество тепла.
Loading...Loading...