Виды теплоизоляционных материалов – подбираем подходящие. Виды утеплителей их свойства и характеристики

Строительная индустрия предлагает множество различных видов теплоизоляционных материалов. Несмотря на разнообразие, их можно разделить на несколько основных типов. Наиболее применяемые материалы для теплоизоляции:

  • минераловатные утеплители;
  • пенополистирол и его экструдированная модификация;
  • вспененный полиэтилен с металлизированным покрытием;
  • пенополиуретан.

Каждый из перечисленных вариантов утепления имеет свои сильные и слабые стороны и оптимальную область применения.

Свойства минераловатных утеплителей

Минеральная вата является современной модификацией стекловаты и лишена многих недостатков последней. Она производится из отходов металлургической промышленности с добавлением обработанных базальтовых пород. Выпускается в виде матов и рулонов различных размеров.

К минусам минераловатных утеплителей следует отнести значительный удельный вес, постепенное проседание под действием собственной тяжести и «пыление» при монтаже.

Эти материалы для теплоизоляции имеют следующие достоинства:

  • высокая теплоизолирующая способность;
  • хорошее шумопоглощение;
  • огнестойкость;
  • невысокая стоимость.

Широко применяются при утеплении полов, стен, крыш, чердачных и подвальных помещений. Используются в качестве теплоизолятора систем вентилируемых фасадов.

Пенополистирол - характристики утеплителя

Представляет собой вспененный полимерный материал с высокими теплоизолирующими характеристиками. Применяется, как и базальтовые утеплители, при обработке всех конструкционных элементов дома.

Положительные отличия:

  • малый вес;
  • высокая звукоизоляция;
  • хорошая пароизоляция и стойкость к сжатию;
  • устойчивость к действию влаги, химических и биологических факторов;
  • простота монтажа.

Недостатки: хрупкость, низкая огнестойкость и способность выделять токсичные соединения при возгорании.

В продаже имеется экструдированный аналог ППС, обладающий лучшими характеристиками по плотности, пластичности и влагоустойчивости. Экструдированный пенополистирол – современный утеплительный материал. Он более долговечен и стабилен, удобен в обработке, но стоимость его выше, чем обычного пенопласта. Области применения обеих разновидностей аналогичны.

Современный теплоизолятор, состоящий из вспененного полиэтилена и алюминиевой фольги. Выпускается множество разновидностей, различающихся по толщине, наличию самоклеящейся пленки и количеству отражающих слоев (их может быть один или два).

Достоинства утеплителя:

  • Малая толщина при высокой теплоизолирующей способности. Лист пенофола соответствует эффективности минераловатной плиты, превосходящей его по толщине в 20 раз.
  • Хороший пароизолятор;
  • Защищает от внешнего воздействия влаги и ветра;
  • Универсальность. Благодаря отражающей способности фольги, защищает от всех видов потерь тепла: конвекции, теплопроводности и излучения;
  • Экологическая чистота;
  • Простота раскроя и монтажа.

Успешно используется везде, где востребованы материалы для теплоизоляции: в строительстве, промышленности, автомобилестроении, оборонной сфере. В жилом секторе применяется в качестве изоляции любых элементов зданий, трубопроводов водоснабжения и водоотведения, систем вентиляции и кондиционирования. Незаменим как отражатель, устанавливаемый между радиатором отопления и стеной.

Пенополиуретан для теплоизоляции

Прогрессивный метод утепления, заключающийся в напылении жидкого состава на утепляемую поверхность. Затвердевший и расширившийся полимер создает надежную защиту от холода. Такие материалы для теплоизоляции как вспененный полиэтилен и пенополиуретан являются самыми эффективными техническими решениями.

К достоинствам ППУ относятся:

  • низкая теплопроводность;
  • бесстыковая технология, не образующая мостиков холода;
  • хорошая адгезия к большинству строительных материалов;
  • доступность самых сложных мест;
  • антикоррозионные свойства;
  • устойчивость к действию влаги, грибков и плесени;
  • шумозащитные свойства;
  • долговечность.

Слабым местом является неустойчивость к прямому действию солнечных лучей. Предотвратить это можно окрашиванием, либо использованием ППУ в качестве теплоизолятора в навесных фасадах. Поэтому пенополиуретан применяется везде, где и перечисленные выше материалы.

Нанесение пенополиуретана производится с помощью сложного оборудования, работающего под высоким давлением, и с использованием дорогостоящих компонентов. Производить эти работы могут только квалифицированные специалисты. Это объясняет дороговизну данного метода.

Представленные выше технологии – далеко не все варианты утепления жилых домов. Существуют и другие материалы для теплоизоляции: керамзит, утеплительная штукатурка, вспененный каучук, перлит, утеплитель из переработанных конопли и льна, нетканое изоляционное волокно, пеностекло и прочие. На них приходится менее 5% от общего объема применяемых теплоизоляторов. Основные виды используемых материалов были рассмотрены выше.

Материалы для теплоизоляции – это изделия для проведения строительства, которые имеют низкий уровень теплопроводности. Они предназначены для утепления зданий, технической изоляции и защиты холодных камер от нагревания.

Чтобы определиться с выбором материала для теплоизоляции, необходимо знать её свойства и характеристики. Важно, чтобы материал обладал низкой теплопроводностью. Последняя обеспечивается за счёт движения молекул, которые переносят тепло. Теплоизоляционные материалы способствуют замедлению их движения.

Важные свойства утеплительных материалов

Теплоизоляторами называются строительные материалы с невысоким коэффициентом тепловодности. В случае, если теплоизоляция используется для внутреннего удержания тепла в здании, материалы носят название утеплители.

Материалы для теплоизоляции должны обладать рядом свойств:

  • низкая теплопроводность;
  • пористая структура;
  • плотность;
  • паропроницаемость;
  • водопоглащение;
  • биоустойчивость;
  • огнеупорность;
  • пожаробезопасность;
  • устойчивость температуры;
  • теплоёмкость;
  • морозостойкость.

Распространённые виды утеплителя

Разновидностей материалов для теплоизоляции довольно много, один из них – это утеплитель с волокнистой структурой, к которому относится минеральная вата. Она обладает высокой пористостью, примерно 95% её объёма составляет воздух. Именно поэтому минеральная вата обладает хорошими теплоизоляционными свойствами и её часто используют для утепления зданий. Её производство довольно доступное, а значит и цена тоже. К преимуществам минеральной ваты относят:

  • не удерживает в себе влагу;
  • не поддаётся горению;
  • обеспечивает шумоизоляцию;
  • долгий срок эксплуатации.

Стоит отметить, что при попадании влаги на материал, он теряет свои теплоизоляционные свойства. При монтаже минеральной ваты необходимо использовать гидро- и пароизоляционную плёнку.

Стекловата производится из волокон, которые получают из кварцевого песка, соды, и извести. Материалы для теплоизоляции можно приобрести в виде рулона, плиты или скорлупы. По своим характеристикам она напоминает минеральную вату, но немного прочнее и в большей мере гасит шум. Из недостатков – низкий уровень температурной устойчивости.

Пеностекло изготавливают при помощи спекания газообразователей со стеклянным порошком, он выпускается в виде плит или блоков. Его структура имеет пористость до 95%, что обеспечивает отличные теплоизоляционные свойства. Пеностекло - довольно прочный материал для теплоизоляций, обладающий такими характеристиками:

  • морозостойкость;
  • водостойкость;
  • несгораемость;
  • прочность;
  • длительный срок службы.

Недостатки - высокая цена и паронепроницаемость

Целлюлозная вата – древесноволокнистый материал с мелкозернистой структурой, который на 80% состоит из волокон древесины, на 12% - из антипирена и на остальные 8% - из антисептика. Материал для теплоизоляции укладывают двумя методами: сухим и мокрым. Для мокрого метода укладки используют специальную установку, с помощью которой выдувают влажную целлюлозную вату. Таким образом, активируются клейкие свойства пектина. Сухой метод можно осуществить вручную или при помощи специального оборудования. Целлюлозная вата засыпается и трамбуется до определённой плотности. Вата довольно доступна и обладает хорошими утеплительными свойствами.

Материалы для теплоизоляции довольно разнообразны, поэтому необходимо изучить из свойства, чтобы определиться с выбором. Ведь для каждого здания требуется определённый материал.

Для любого помещения не помешает утепление, несмотря на температурный режим. В зимние холода комната станет теплее, тогда как зной будет переносить гораздо легче. Утепление способно создать комфортный климат для проживания и работы.

Современные производители стараются выпускать разнообразные материалы, каждый из которых предназначается для выполнения основных и дополнительных задач. В магазине можно встретить теплоизоляцию, представленную жгутами, гранулами проч. Кроме того, предпочесть можно утеплитель в виде матов, цилиндров и блоков.

В первую очередь обращать внимание необходимо не на форму, а на содержание и качественные характеристики. виды и свойства которых будут описаны ниже, необходимо выбирать, руководствуясь, прежде всего, качествами теплопроводности. Эта характеристика указывает на то, сколько тепла будет проходить сквозь данный материал.

Можно выделить теплоизоляцию двух видов, первый из которых обладает отражающими характеристиками, тогда как второй - предотвращающими свойствами. Первые материалы способны снизить теплопотери благодаря уменьшению инфракрасного излучения. Что касается предотвращающей разновидности, то ее используют наиболее часто. Она предусматривает применение материалов с незначительными качествами теплопроводности. В этой роли выступают три типа, среди них - неорганические, смешанные и органические.

Разновидности утеплителей

Теплоизоляционные материалы, виды и свойства которых будут описаны в статье, широко представлены на современном рынке. Для их производства применяется сырье, которое имеет естественное происхождение, а именно отходы деревообрабатывающего и сельскохозяйственного производства. Помимо прочего, в составе органических утеплителей находятся некоторые виды цемента и пластика.

Полученный материал характеризуется отличной устойчивостью к возгоранию, на него не воздействует влага, он не реагирует на биологически активные вещества. Используется утеплитель там, где поверхность не нагревается больше, чем на 150 градусов по Цельсию. Органические используются в роли внутреннего слоя многослойных конструкций. Здесь можно выделить оштукатуренные фасады. Ниже представлены некоторые разновидности органических утеплителей.

Свойства арболита

Рассматривая теплоизоляционные свойства материалов, вы наверняка обратите внимание на арболит, который является достаточно новым в своей области. Его изготавливают из стружки, камыша, соломы и мелко нарезанных опилок. Среди ингредиентов содержатся химические добавки и цемент.

Основные характеристики

Плотность изменяется в пределах от 40 до 80 килограммов на кубический метр. Если достичь цифры 50 килограммов на кубический метр, то материал будет демонстрировать качество влагостойкости. Коэффициент теплопроводности максимально достигает показателя 0,028 ватта на метр на Кельвин. Это значение можно назвать лучшим среди тех, которыми обладают современные утеплительные материалы.

Характеристики пеноизола

Рассматривая основные теплоизоляционные материалы, описанные в статье, можно выделить пеноизол. В ходе производства для исключения качеств хрупкости добавляется глицерин. В продаже пеноизол встречается в виде блоков или крошки. Производитель выпускает данный утеплитель еще и в жидком виде, при этом производится заливка теплоизоляции в специальные полости. При воздействии комнатной температуры структура начинает твердеть.

Качественные характеристики

Плотность не превышает двадцати килограммов на кубический метр. Если сравнивать с показателями, свойственными пробке, то эта цифра меньше в десять раз. Коэффициент теплопроводности не превышает 0,03 ватта на метр на Кельвин. Температура возгорания равна 300 градусам. При более низкой температуре материал не горит, но обугливается. В качестве минуса в данном случае можно выделить беззащитность перед агрессивными химическими веществами. Помимо прочего, недостаток выражен в сильном поглощении влаги.

Особенности пенополистирола

Если вы рассматриваете теплоизоляционные материалы, виды и свойства, таблица которых представлена в начале статьи, то следует обратить особое внимание на распространенный сегодня пенополистирол. На 98% он состоит из воздушных пузырьков. В составе имеется полистирол и незначительный объем модификаторов.

Коэффициент теплопроводности максимально составляет 0,042 ватта на метр на Кельвин. Материал обладает высокими гидроизоляционными качествами и устойчив к коррозии. На него без изменения качественных характеристик могут воздействовать реагенты и микрофлора. Большинство потребителей выбирает пенополистирол из-за низкой горючести, таким образом, материал затухает самостоятельно. Если он загорается, то выделение тепловой энергии происходит в 7 раз менее интенсивно по сравнению с древесиной.

Использование

Пенополистирол применяется при утеплении разных поверхностей и конструкций. Его можно укладывать под стяжку, не боясь повреждения и продавливания. Таким образом, для обустройства пола необходимо уложить утеплитель с перевязкой швов, после застелить армирующую сетку, на которую заливается бетонная стяжка. Пол при этом получается очень прочным и утепленным. Важно исключить образование стыкующихся швов, которые могут стать причиной проникновения холода.

Особенности фибролита

Рассматривая теплоизоляционные материалы (виды и свойства, таблица представлена в статье), можно приобрести фибролит. Он изготавливается из древесных стружек, которые называются Среди ингредиентов можно выделить магнезиальный компонент или цемент. Выпускается материал в виде плит, не боится биологических и химических агрессивных воздействий, а также хорошо способен защитить от шума.

Использование фибролита

Данный утеплитель можно применять в помещениях, которые эксплуатируются при высокой влажности. Это относится, например, к бассейнам. Материал можно использовать в роли несъемной опалубки, которая выполняет функцию утеплителя в процессе эксплуатации. Фибролит незаменим при строительстве жилых помещений, подвалов и чердаков. Достаточно часто его используют для формирования перегородок, перекрытий в постройках монолитного и каркасно-деревянного типа.

Использование эковаты

Если вы выбираете теплоизоляционные материалы (виды и свойства, таблица - все это рассмотрено), то эковата тоже является отличным решением. Она обеспечивает высокий уровень звукоизоляции и теплостойкости. Однако необходимо учесть, что в таком случае есть необходимость в дополнительной гидрозащите, так как полотна способны впитывать влагу. Данный параметр варьируется в пределах от 9 до 15%, что весьма внушительно для утеплителя.

Заключение

Теплоизоляционные материалы (виды и свойства, таблица - вся необходимая информация представлена выше) обладают разными техническими характеристиками, однако выбор следует совершить только после того, как вы изучите их свойства.

В последнее время все более актуальной становится для наших сограждан проблема минимизации потерь тепла в своих домах. На рынке доступно немало материалов, с помощью которых можно достаточно эффективно решить эту проблему. При этом имеющиеся в продаже теплоизоляционные материалы отличаются друг от друга назначением, а также эксплуатационными параметрами.

Классификация

Исходя из такого параметра, как форма изделия, эти материалы могут быть классифицированы на следующие группы – сыпучие, единичные и рулонные . В зависимости от структуры их можно представить в виде следующих категорий:

  • ячеистые;
  • волокнистые;
  • зернистые.

Также во время выбора потребитель учитывает и сырье, из которого изготовлены материалы. Оно может иметь органическое и неорганическое происхождение. Далее будут приведены особенности наиболее часто используемых материалов для теплоизоляции.

Изделия из органического сырья

Эти материалы превосходят все прочие аналоги по экологичности, однако не во всех случаях их выбор может выступать наиболее целесообразным решением. В качестве сырья, из которого могут изготавливаться теплоизоляторы, могут выступать:

  • древесное волокно;
  • бумага;
  • пробковая кора.

Благодаря использованию подобного сырья можно производить разные типы утеплителей.

Целлюлозная вата

В качестве основы для ее изготовления применяется древесное волокно. Подобный материал получил наибольшее распространение среди всех других изоляторов, имеющих органическое происхождение. В продаже она представлена в виде порошка либо плит. Однако прежде чем решить выполнять работы по теплоизоляции с ее помощью, необходимо учесть ряд минусов, которые ей присущи:

  • низкая огнеупорность (чтобы устранить подобный недостаток, часто в этот материал может входить полифосфат аммония);
  • низкий уровень устойчивости к воздействию микроорганизмов.

Что касается же достоинств целлюлозной ваты, то главными следует назвать прекрасные свойства теплоизоляции и доступную цену . В процессе работы с ней не возникает больших сложностей.

Бумажные гранулы

Чаще всего их изготавливают на основе макулатуры. Также технология производства предусматривает обработку специальными солями, что придает готовому продукту свойство негорючести. При использовании гранулированной бумаги можно эффективно решить проблему теплоизоляция за счет наличия у этого материала прекрасных водоотталкивающих свойств.

Из минусов этого изолятора следует отметить ограниченную сферу применения. Следует помнить, что монтажные работы на основе этого материала должны обязательно проводиться квалифицированными специалистами, так как для соблюдения технологии необходимо обладать определенными навыками .

Пробковая кора

Это сырье используется для изготовления теплоизоляционных материалов, что реализуется путем применения технологии прессования в условиях высокой температуры. Среди достоинств этого сырья следует выделить:

  • малый вес;
  • длительный срок службы;
  • прочность на изгиб и сжатие;
  • невосприимчивость к процессам гниения.

Защитить этот изолятор от возгорания можно путем введения в состав особых синтетических пропиток, однако подобное решение ухудшает экологические свойства теплоизолятора.

Изделия из неорганического сырья

Подобные материалы изготавливаются с применением такого сырья, как:

При использовании того или иного теплоизолятора следует учитывать их свойства, которым будет уделено внимание далее.

Каменная вата

Технология изготовления этого изолятора предусматривает использование в качестве сырья горных пород, подвергаемых плавлению, в результате чего возникает два компонента – волокно и воздух.

Основное назначение каменной ваты – теплоизоляция стен. Ввиду того что изготовление этого материала требует достаточно много энергии, это увеличивает его стоимость. Также ему присущ и другой недостаток, коим выступает необходимость в специальной утилизации.

К числу достоинств, которыми обладает каменная вата, следует отнести пожаробезопасность. Это связано с ее способностью справляться с воздействием высоких температур. Также она отличается высокой устойчивостью к гниению. Обработанные с ее помощью конструкции наделяются высокими теплоизолирующими свойствами, а также прекрасной шумозащитой.

Перлит

Об этом сырье вулканического происхождения человек узнал еще в прошлом веке. Одним из его свойств является значительное увеличение в объеме при воздействии высокой температуры. Технология утепления с использованием подобного теплоизолятора не сопряжена с какими-либо трудностями. Суть ее сводится к заполнению щелей. Помимо этого сырье часто используют в виде добавки для теплоизоляционных растворов.

Изоляторы, создаваемые на основе такого сырья, отличаются экологической чистотой. Важным свойством перлита является его способность сохранять в течение длительного времени свою структуру. За счет этого исключается такое явление, как усадка теплоизолирующего слоя. Помимо этого материал демонстрирует нейтральность к влаге и открытому огню. Среди недостатков, которые проявляются при работе с этим материалом, следует выделить высыпание гранул из щелей, что может часто происходить во время монтажа инженерных сетей в толщу утепленных конструкций.

Именно с применением подобного теплоизоляционного материала и проводят чаще всего работы по утеплению различных конструкций. Этот изолятор может быть представлен в продаже в различных вариантах – плитах, цилиндрах, матах и в виде рыхлой ваты. Обычно его изготавливают на основе таких компонентов, как доломиты, базальты и иных ископаемых. Технология производства подобного теплоизолятора предусматривает выведение из минералов волокон, которые впоследствии связывают посредством специальных смол.

Среди наиболее значимых достоинств , которые присущи минеральной вате, следует выделить:

  • неподверженность воздействию микроорганизмов;
  • высокий уровень пожаробезопасности;
  • стойкость к критически низким температурам;
  • дополнительная шумоизоляция,
  • высокие характеристики теплозащиты.

Прежде чем остановить выбор на подобном материале, следует рассмотреть и присущие ему минусы. Среди них следует особо упомянуть про токсичность ваты . По этой причине во время использования этого материала для утепления жилых объектов он должен быть изолирован. Технология укладки изолятора требует устройство пароизоляции, в противном случае это приведет к появлению на поверхности конденсата.

Пеностекло

Рассматривая подобный теплоизолятор, следует учесть такие его особенности, как высокую стоимость, а также необходимость в создании дополнительной вентиляции в процессе укладки. Что же касается остальных характеристик, то в этом плане пеностекло превосходит все прочие материалы неорганического происхождения. Изолятор отличается наличием довольно прочной структуры, благодаря чему он может выступать основанием для монтажа на нём крепежных элементов.

Среди достоинств, которыми обладает пеностекло, следует выделить неподверженность воздействию влаги и микроорганизмов, а также высокую стойкость к критически низким температурам.

Благодаря подобным свойствам материал может эксплуатироваться на протяжении довольно продолжительного времени.

Пенополиуретан

Если рассматривать современные теплоизоляционные материалы, то в этот список обязательно необходимо включить и этого представителя. Технология выполнения теплоизоляции требует применения пенополиуретана обязательно в жидком виде. Практически это реализуется путем использования особой установки, где компоненты смешиваются с воздухом. Это приводит к возникновению аэрозоля , равномерно покрывающего обрабатываемые поверхности.

Подобный изолятор может применяться для утепления и поверхностей, имеющих неровности. В этом случае на всю работу уйдет минимум времени. Из достоинств технологии утепления с применением подобного теплоизолятора следует отметить отсутствие стыков. Хотя полиуретану не страшны микроорганизмы, он не защищен от воздействия огня, что может привести к образованию токсичных газов.

Полистирольный пенопласт

Этот материал выполнен в виде шариков, имеющих разные диаметры, которые скреплены друг с другом. Технология изготовления пенопластовых плит сводится к прессованию сырья. Изолятор отличается простотой в монтаже, а главными его достоинствами следует назвать высокие прочностные характеристики и доступную цену. Во время выполнения работ по утеплению обязательно должно быть создана дополнительная вентиляция, что связано с отсутствием у пенопласта способности «дышать».

Перед его использованием необходимо обработать основание, так как в случае попадания ультрафиолетового излучения может быть нарушена его структура. Наряду с этим разрушающим воздействием обладает и влага, поэтому следует не допускать контакта с ней пенопласта.

Пенополистирол

Если сравнивать его с пенопластом, то этот материал обладает повышенными характеристиками прочности. Также его отличает высокая стойкость к воздействию влаги. Наличие цельной микроструктуры обеспечило экструдированному пенополистиролу повышенный коэффициент теплопроводности. Его структура представлена в виде отдельных ячеек, содержащих воздух, которые изолированы друг от друга, что исключает проникновение внутрь материала воды и воздуха.

Единственная угроза, от которой не защищен экструдированный пенополистирол – огонь. Во время горения происходит образование токсических веществ . Также следует учитывать, что созданный теплоизоляционный слой на основе подобного материала, не обладает способностью «дышать».

Основные характеристики

Вне зависимости от того, на основе какого материала был создан теплоизоляционный слой, в первую очередь он должен исключать тепловые потери или сводить их к минимуму. Рассмотренные выше типы материалов по-разному выполняют эту задачу. Эффективность ее решения в многом зависит от характеристик, которыми обладают теплоизоляционные материалы:

Очень важно обращать внимание на все перечисленные выше факторы, так как от них зависит такой параметр, как коэффициент теплопроводности , чаще всего учитываемый потребителями при выборе. Его расчет выполняется путем определения количества тепла, выделяемого одним квадратным метрам площади.

Сравнительный анализ

В процессе рассмотрения различных теплоизоляционных материалов следует учитывать основные характеристики, которыми обладает каждый из этих представителей. Помочь в выборе оптимального изолятора может таблица, где указаны свойства каждого из основных теплоизоляторов.

Если судить по таблице, то у каждого из изделий имеются как свои плюсы, так и минусы. Поэтому, чтобы принять правильное решение, следует отдавать предпочтение тому варианту, характеристики которого в наибольшей степени соответствуют предъявляемым требованиям.

Заключение

Выбор материала для утепления представляется сложной задачей, особенно для потребителя, который впервые будет решать подобный вопрос. Основные трудности связаны с большим выбором подобных материалов, поэтому важно в первую очередь учитывать их технические характеристики. Только при условии, что выбранный теплоизолятор будет в максимальной степени соответствовать предъявляемым покупателем требованиям, можно быть уверенным, что утепление с его использованием обеспечит надежную защиту дома от холодов.

  • Глава 2. Основные свойства строительных материалов
  • 2.1. Связь состава, строения и свойств строительных материалов
  • 2.2. Классификация и характеристика основных свойств строительных материалов
  • Показатели плотности, пористости и теплопроводности (средние значения) для некоторых строительных материалов
  • Характеристика важнейших свойств строительных материалов
  • Раздел 2. Природные материалы
  • Глава 3. Природные каменные материалы
  • 3.1. Общие сведения о горных породах
  • Классификация горных пород по генетическому признаку
  • 3.2. Технические требования к каменным материалам
  • 3.3. Добыча, обработка и виды изделий из природного камня
  • Глава 4. Материалы и изделия из древесины
  • 4.1. Состав и строение древесины
  • 4.2. Свойства древесины
  • 4.3. Защита древесины от гниения и возгорания
  • 4.4. Виды материалов, изделий и конструкций из древесины
  • Раздел 3. Материалы, получаемые термической обработкой минерального сырья
  • Глава 5. Керамические материалы
  • 5.1. Общие сведения
  • 5.2. Сырье для производства керамических материалов
  • 5.3. Основы технологии керамических изделий
  • 5.4. Виды керамических материалов
  • Номинальные размеры стеновых керамических изделий
  • Группы изделий по теплотехническим характеристикам
  • Глава 6. Неорганические вяжущие вещества
  • 6.1. Общие сведения. Классификация
  • 6.2. Воздушные вяжущие вещества
  • 6.2.1. Гипсовые вяжущие вещества
  • 6.2.2. Воздушная известь
  • 6.3. Гидравлические вяжущие вещества
  • 6.3.1. Портландцемент
  • Сроки схватывания цементов
  • Требования к прочности образцов
  • Тепловыделение клинкерных минералов
  • Соотношение марок и классов портландцемента
  • 6.3.3. Глиноземистый цемент
  • 6.3.4. Расширяющиеся цементы
  • Специальные виды портландцемента
  • Раздел 4. Материалы на основе неорганических вяжущих веществ
  • Глава 7. Бетоны
  • 7.1. Общие сведения, классификация
  • 7.2. Материалы для бетона
  • Классификация песков по крупности
  • Требования к зерновому составу крупного заполнителя
  • 7.3. Свойства бетонной смеси
  • Классификация бетонных смесей по удобоукладываемости
  • 7.4. Основы технологии бетона
  • 7.5. Свойства бетона
  • 7.6. Разновидности бетонов
  • Виды бетона
  • Раздел 5. Органические вяжущие вещества и материалы на их основе
  • Глава 8. Битумные и дегтевые вяжущие вещества и материалы на их основе
  • 8.1. Общие сведения, классификация
  • 8.2. Битумы
  • Физико-механические свойства нефтяных битумов
  • 8.3. Дегти
  • Глава 9. Полимерные строительные материалы
  • 9.1. Общие сведения
  • 9.2. Состав пластмасс
  • 9.3. Основы технологии строительных изделий из пластмасс
  • 9.4. Свойства строительных пластмасс
  • 9.5. Применение полимерных материалов и изделий
  • Раздел 6. Строительные материалы специального назначения
  • Глава 10. Теплоизоляционные материалы
  • 10.1. Общие сведения, классификация
  • 10.2. Способы создания высокопористого строения:
  • 10.3.
  • Свойства теплоизоляционных материалов
  • 10.4. Основные виды и особенности применения теплоизоляционных материалов
  • Заключение
  • Практическая часть Примеры вариантов контрольного задания
  • Рекомендуемая литература
  • 10.3. Свойства теплоизоляционных материалов

    Теплопроводность () определяет качество теплоизоляционных материалов и составляет 0,03-0,175 Вт/(м. 0 С). Теплопроводность материалов зависит в первую очередь от объема пор (пористости) и характеристик поровой структуры (характер пор, их распределение по размерам, по объему). Предпочтительны мелкие, замкнутые, равномерно распределенные по объему поры. Теплопроводность материала зависит также от химического состава, строения (кристаллическое или аморфное), от влажности и температуры применения материала. Чем сложнее химический состав и структура ближе к аморфной, тем меньше теплопроводность. Увлажнение и тем более замерзание воды в порах приводит к увеличению . возд. = 0,023; Н2О = 0,58, льда = 2,32 Вт/(м. 0 С). Теплопроводность материалов (кроме магнезитовых огнеупоров, металлов) увеличивается при повышении температуры.

    Плотность (кг/м 3) материала определяет его теплопроводность. По плотности устанавливают марки: от D15 до D500.

    Прочность теплоизоляционных материалов невелика (табл 10.1), обычно колеблется от 0,2 до 2,5 МПа (R cж) и определяется прочностными показателями твердой фазы и параметрами поровой структуры.

    Таблица 10.1

    Свойства теплоизоляционных материалов

    Материал

    Плотность,

    Предел прочности, МПа, при

    Фибролит

    Теплоизоляционная керамика

    Ячеистый бетон

    Пеностекло

    Пенопласты

    Прочность теплоизоляционного материала должна обеспечить его сохранность при перевозке, складировании, монтаже и работе в эксплуатационных условиях.

    Предельная температура применения зависит от состава и структуры материала и составляет 60-100 0 С для органических теплоизоляционных материалов, 400 0 С для ячеистого бетона и пеностекла, до 900 0 С для трепельного кирпича, вспученного перлита и вермикулита, 1100-1300 0 С для керамических волокон.

    Водопоглощение зависит от структуры и при закрытой пористости (пеностекло, пенопласты) оно невелико; при открытой сообщающейся пористости W m может составить 400-600%.

    Морозостойкость должна учитываться как свойство утеплителя наружных ограждающих конструкций зданий и холодильников.

    Огнеупорность важна для высокотемпературной теплоизоляции и легковесных огнеупоров.

    Химическую и биологическую стойкость теплоизоляции повышают, применяя различные защитные покрытия. Для повышения биостойкости применяется также обработка материалов антисептиками.

    10.4. Основные виды и особенности применения теплоизоляционных материалов

    Основные виды неорганических теплоизоляционных материалов. Минеральная вата – рыхлый материал, состоящий из тончайших взаимно переплетающихся стекловидных волокон. Ее вырабатывают из силикатных расплавов, получаемых из горных пород (базальт, мергель, каолины и др.), металлургических шлаков (шлаковая вата), отходов стекла (стекловата). Вид сырья определяет температуростойкость ваты, так у базальтовой ваты: она составляет до 1000 0 С, а у стекловаты – 550-650 0 С.

    Для получения изделий волокна скрепляют с помощью связующего вещества, в качестве которого обычно используют синтетические смолы и битумы. Минераловатные изделия (плиты, цилиндры, полуцилиндры) на синтетическом связующем можно использовать для изоляции горячих поверхностей до 400 0 С, а на битумном - от минус 100 до плюс 60 0 С. Прошивные маты из минеральной ваты не содержат связующего и сохраняют форму за счет механического переплетения волокон и дополнительной прошивки слоя волокнистого материала стальной проволокой, стеклянными нитями и др. Отсутствие органического связующего позволяет применять их при температуре изолируемых поверхностей до 700 0 С.

    Пеностекло – материал ячеистой структуры с равномерно распределенными замкнутыми порами размером 0,1-5 мм. Его получают из смеси тонкоизмельченного стеклянного порошка (обычно используется стеклобой) с газообразователем.

    По сочетанию свойств пеностекло можно отнести к лучшим теплоизоляционным материалам: при плотности 150-400 кг/м 3 его теплопроводность составляет 0,06-0,12 Вт/(м. 0 С), прочность на сжатие – 1-3 МПа, интервал рабочих температур – от минус 200 до плюс 500 0 С. Пеностекло имеет очень низкое водопоглощение 2-5% и паронепроницаемость. Ячеистое стекло легко обрабатывается (пилится, сверлится), хорошо сцепляется с цементными материалами. Его можно с успехом применять как в индивидуальном строительстве, так и для тепловой изоляции конструкций и огнезащиты в высотном домостроении.

    Ячеистые бетоны – наиболее перспективный вид теплоизоляционных бетонов. Применяют ячеистые бетоны в основном в виде камней правильной формы, заменяющих 8-16 кирпичей. Материал легко обрабатывается, негорючий, долговечный. Изделия из ячеистого бетона применяют для изоляции строительных конструкций и горячего промышленного оборудования с температурой до 400 0 С. Широкому распространению ячеистых бетонов препятствует высокое водопоглощение и гигроскопичность.

    Основные виды органических теплоизоляционных материалов. Ячеистые пластмассы – высокопористые материалы (пористость 90-98%) с преимущественно замкнутыми порами. Газонаполненные пластмассы характеризуются высокой теплоизолирующей способностью (теплопроводность у разных видов пластмасс – 0,028-0,043 Вт/(м. 0 С)), низкой плотностью (марки – от 15 до 50), обладают малым расходом полимерного сырья при достаточной прочности. Недостатки пластмасс описаны в главе 9.

    Наиболее известный вид строительных пенопластов – пенополистирол. Из беспрессового пенополистирола получают крупноразмерные плиты, применяемые для тепловой изоляции стен, когда необходима паропроницаемость всей конструкции. Прессовый (экструзионный) пенополистирол вследствие особенностей технологии имеет плотные «корки» на обеих поверхностях плит и полностью замкнутую пористость. Он рекомендуется для тепловой изоляции конструкций, где возможен контакт с водой и не нужна паропроницаемость (например, стены подвалов).

    Пенополивинилхлорид применяется для теплоизоляции кровельных конструкций. Пенополиэтилен – относительно новый вид строительных пенопластов, изготавливается в виде листового рулонного материала. Дублированный алюминиевой фольгой используется в качестве отражающей теплоизоляции, а в виде трубок - применяется для изоляции трубопроводов и герметизации стыков в панельных зданиях. Заливочные пенопласты – жидко-вязкие олигомерные смолы, заливаемые в пазухи, оставленные в изолируемой конструкции, вспучивающиеся и отверждающиеся прямо в них.

    Материалы на основе древесного сырья : изоляционные древесно-волокнистые плиты (ДВП), фибролит, арболит. ДВП – листовой материал, состоящий из древесных или растительных волокон, получаемых из отходов деревообработки, неделовой древесины, а также костры, камыша, хлопчатника и др. При изготовлении плит вводят специальные добавки: водные эмульсии синтетических смол, антипирены, антисептики. Средняя плотность плит 150-350 кг/м 3 , теплопроводность 0,046-0,093 Вт/(м. 0 С), предел прочности при изгибе – 0,4-2 МПа. Большие размеры плит (длина до 3 м, ширина до1,6 м) ускоряют проведение строительно-монтажных работ. Их применяют для тепло- и звукоизоляции стен и перекрытий, устройства подстилающих слоев в конструкциях полов и т.п.

    Фибролит - плитный материал, изготавливаемый из древесной шерсти (длинная стружка) и неорганического вяжущего (портландцемента или магнезиального вяжущего). Фибролит применяют для изоляции перекрытий, перегородок, каркасных стен с последующим оштукатуриванием. Арболит разновидность легкого бетона на заполнителях из древесных отходов.

    Целлюлозная вата (эковата) – волокнистый материал серого цвета, изготавливаемый из макулатуры. Это тонкоизмельченная газетная бумага, обработанная модифицирующими борными добавками, антисептиками и антипиренами. Эффективным методов устройства теплоизоляции из эковаты является ее напыление компрессором на вертикальные, наклонные и горизонтальные потолочные поверхности совместно с клеевым составом. Получается сплошной (без швов и стыков) теплоизоляционный слой, плотно прилегающий к изолируемой поверхности.

    Вопросы для самоконтроля к главе 10

    1. Какие материалы называют теплоизоляционными? В чем их назначение?

    2. Какова эффективность применения теплоизоляционных материалов?

    3. По каким признакам классифицируют теплоизоляционные материалы? Каковы особенности их структуры?

    4. Какими способами получают материалы высокопористого строения?

    5. Каковы основные свойства теплоизоляционных материалов?

    6. От каких факторов зависит теплопроводность материала?

    7. Что такое марка теплоизоляционного материала?

    8. Назовите и кратко охарактеризуйте основные виды неорганических и органических теплоизоляционных материалов.

    Как выбрать теплоизоляционный материал, который Вам нужен? Для этого надо понимать как работает теплоизоляция, а для этого немного погрузимся в науку.

    Теплоизоляционные материалы. Введение

    Теплоизоляционные материалы - это строительные материалы и изделия, которые обладают малой теплопроводностью, предназначены для:

    • Тепловой защиты зданий;
    • Для технической изоляции (для изоляции различных инженерных систем, например труб);
    • Защита от нагревания (теплоизоляция холодильных камер).

    Существуют три вида теплопередачи:

    Теплопроводность, конвекция и излучение.


    Три вида теплопередачи

    Теплопроводность - это перенос тепла за счет движения молекул. Теплоизоляционные материалы замедляют движение молекул. Но остановить это движение совсем невозможно. Наилучший коэффициент теплопроводности -это теплопроводность сухого воздуха (неподвижного) составляет 0,023 Вт/(м*С), другими словами молекулы медленнее всего движутся в сухом воздухе. Поэтому, при производстве строительных материалов используют основной принцип - удержание воздуха в порах или ячейках материала. И следовательно, чем ниже коэффициент теплопроводности - тем лучше теплоизоляция. Так что, как правило, теплоизоляционные материалы - это правильно упакованный воздух.

    Вот так выглядят при увеличении теплоизоляционные материалы:


    Пенопласт


    Базальтовая вата


    Пеностекло

    Как видно на фотографиях, сам материал (стенки ячеек или волокна) занимает минимум места, главная их задача «задержать» воздух.

    Материалы, имеющие очень низкий коэффициент теплопроводности, называют теплоизоляторами. Если теплоизоляция применяется для удержания тепла внутри изолируемого объекта, такие материалы могут называться утеплителями. Но сейчас уже никто не разграничивает эти два понятия. Теплоизоляцию называют утеплителем и наоборот.

    И также существует отражающая теплоизоляция, которая сохраняет тепло за счёт отражения инфракрасного "теплового" излучения. О ней расскажу отдельно, после обзора основных материалов.

    Основные характеристики теплоизоляционных материалов

    Основной характеристикой является теплопроводность .

    Коэффициент теплопроводности λ - характеризует теплопроводность материала, он равен количеству теплоты, проходящей через материал толщиной 1 м и площадью 1 м2 за час при разности температур на двух противоположных поверхностях в 10°С . Измеряется в Вт/(м*К) или Вт/(м*С). Теплопроводность зависит от влажности материала (вода проводит тепло в 25 раз лучше, чем воздух, то есть материал не будет выполнять свою теплоизолирующую функцию, если он мокрый) и его температуры., химического состава материала, структуры, пористости.

    Пористость - доля объема пор в общем объеме материала. Для теплоизоляции пористость начинается от 50% и до 90...98% (например, у ячеистых пластмасс). Она определяет основные свойства теплоизоляции: плотность, теплопроводность, прочность, газопроницаемость и др. Важно равномерное распределение воздушных пор в материале и характер пор. Поры бывают открытые, закрытые, крупные, мелкие.

    Кроме этого, важны и другие характеристики:

    Плотность - отношение массы материала к занимаемому ним объему, кг/м3 .

    Паропроницаемость - величина, численно равная количеству водяного пара в миллиграмах, которое проходит за 1 час через слой материала площадью 1 кв м и толщиной 1 м при условии, что температура воздуха у противоположных сторон слоя одинакова, а разность парциального давления водяного пара равняется 1 Па.

    Влажность - содержание влаги в материале. Очень важной характеристикой является сорбционная влажность (равновесная гигроскопическая влажность материала, при различной температуре и относительной влажности воздуха).

    Водопоглощение - это способность материала впитывать и удерживать в порах влагу при прямом контакте с водой. Определяется количеством воды, поглощаемым материалом с нормальной влажностью когда он находиться в воде, к массе сухого материала.

    Значительно снизить водопоглощение минеральной ваты помогает гидрофобизация (вводят специальные добавки, отталкивающие влагу)

    Биостойкость - способность материала противостоять действию микроорганизмов, грибков и некоторых видов насекомых. Микроорганизмы живут там, где есть влага, поэтому для повышения биостойкости теплоизоляция должна быть водостойкой.

    Огнестойкость - способность конструкций в течение определенного времени выдерживать без разрушения воздействие высоких температур. Подробнее об этом в документе ПОЖЕЖНА БЕЗПЕКА ОБ’ЄКТІВ БУДІВНИЦТВА ДБН В.1.1.7-2002.

    Прочность - предел прочности при сжатии колеблется от 0,2 до 2,5 МПа. Если прочность при сжатии выше 5 МПа, то материалы называют теплоизоляционно-конструктивными и используют для несущих ограждающих конструкций.

    Предел прочности при изгибе (показатель для плит, скорлуп, сегментов) и предел прочности при растяжении (для матов, войлока и т. п.) нужны для того, чтобы определить достаточна ли прочность для сохранности материала при транспортировании, складировании, монтаже.

    Температуростойкость - это температура, выше которой материал изменяет свою структуру, теряет механическую прочность и разрушается, а органические материалы могут загораться.

    Теплоемкость - это количество теплоты, аккумулированное теплоизоляцией, кДж/(кг°С). Важная характеристика в условиях частых теплосмен.

    Морозостойкость - способность выдерживать многоразовое изменение температур от стадии замораживания до стадии оттаивания попеременно, без видимых признаков нарушения структуры.

    Виды теплоизоляционных материалов можно разделить на некоторые группы.

    Неорганические материалы и изделия (волокнистые теплоизоляционные материалы)

    Минеральная вата

    Любой волокнистый утеплитель, получаемый из минерального сырья (мергелей, доломитов, базальтов и др.) Минеральная вата высокопористая (до 95% объема занимают воздушные пустоты), поэтому у нее высокие теплоизоляционные свойства. Вот эту схемка поможет Вам разобраться в названиях материалов:

    Волокно, которое получают из расплава, скрепляется в изделие с помощью связующего, (чаще всего это фенолформальдегидная смола). Есть изделия, которые называются прошивные маты - в них материал зашивается в стеклоткань и прошивается нитками.

    Таблица 1. Виды теплоизоляционных изделий и их характеристики

    Минеральная вата занимает одно из первых мест среди теплоизоляции, связано это с доступностью сырья для ее производства, несложной технологией получения, и как следствие - доступной ценой. О ее теплопроводности сказано выше, отмечу следующие ее достоинства :

    • Не горит;
    • Мало гигроскопична (при попадании влаги тут же ее отдает, главное - обеспечить вентиляцию);
    • Гасит шум;
    • Морозостойкая;
    • Стабильность физических и химических характеристик;
    • Длительный срок эксплуатации.

    Недостатки:

    • При попадании влаги теряет теплоизолирующие свойства.
    • Требует пароизоляционной и гидроизоляционной пленки при монтаже.
    • Уступает по прочности (например, пеностеклу).

    Маты и плиты из базальтовой ваты

    Высокие теплоизолирующие свойства;

    Выдерживает высокие температуры, не теряя теплоизолирующие свойства;


    Базальтовая вата

    Таблица 2. Применение базальтовой ваты и ценообразование

    За основу брались средние цены на вату европейского производства.

    Стекловата

    Производят ее из волокна, которое получают из того же сырья, что и стекло (кварцевый песок, известь, сода).


    Стекловата

    Выпускают в виде рулонных материалов, плит и скорлуп (для трубной изоляции). В целом ее достоинства такие же (см. минеральная вата). Она прочнее базальтовой ваты, лучше гасит шум.

    Недостаток температуростойкость стекловаты 450°С, ниже, чем у базальтовой (речь идет о самой вате, без связующего). Эта характеристика важна для технической изоляции.

    Таблица 3. Характеристика стекловаты и ее ценообразование

    За основу брались средние цены на стекловату европейского производства.

    Пеностекло (ячеистое стекло)

    Производят его путем спекания стеклянного порошка с газообразователями (например известняком). Пористость материала 80-95%. Это обуславливает высокие теплоизоляционные свойства пеностекла.


    Пеностекло

    Достоинства пеностекла:

    • Очень прочный материал;
    • Водостойкий;
    • Несгораемый;
    • Морозостойкий;
    • Легкий при механической обработке, в него даже можно вбивать гвозди;
    • Срок его службы практически неограниче;
    • Его «не любят» грызуны
    • Оно биологически стойкое и химически нейтральное.

    Паронепроницаемость пеностекла - так как оно не «дышит» , это нужно учитывать, при обустройстве вентиляции. Также его «минус» это цена, оно дорогое. Поэтому оно и применяется в основном на промышленных объектах для плоских кровель (там где нужна прочность, и где оправдываются денежные затраты на такую теплоизоляцию). Выпускают в виде блоков и плит.

    Таблица 4. Характеристика пеностекла

    Кроме перечисленных материалов, есть еще целый ряд материалов, которые также относят к данной группе материалов неорганических теплоизоляционных материалов.

    Теплоизоляционные бетоны бывают: газонаполненные (пенобетон , ячеистый бетон, газобетон ) и на основе легких заполнителей (керамзитобетон , перлитобетон, полистиролбетон и т.п.).

    Засыпная теплоизоляция (керамзит , перлит, вермикулит). Отличается высоким водопоглощением, неустойчива к вибрации, может дать усадку со временем, что приводит к образованию пустот, требует высоких затрат при монтаже. У нее есть и плюсы, например: керамзит обладает высоким уровнем морозоустойчивости и прочности. Стоимость керамзита - 350 грн/м3.

    Теплоизоляционные материалы и изделия из различного растительного сырья

    Целлюлозная вата


    Целлюлозная вата

    Целлюлозная вата - это древесноволокнистый материал, мелкозернистой структуры (например, Эковата). Состоит на 80% из древесного волокна и на 12% антипирена (борной кислоты) и на 7% из антисептика (буры). Методы укладки материала: мокрый и сухой. При мокром способе вату выдувают, что требует спец. установки. Выдувают ее во влажном состоянии. В ее волокнах находится вещество пектин, который обладает клейкостью при увлажнении. За счет этого вата и образует покрытие.

    Сухой способ: можно использовать установку или просто ручная укладка. Просто засыпается вата и трамбуется до необходимой плотности.

    Таблица 5. Характераристика целлюлозной ваты и ее ценообразование

    Преимущества:

    • Низкая цена;
    • Монолитность (сплошной) теплоизоляционного слоя, и как следствие нет «мостиков холода»;
    • Безопасна при производстве и монтаже;
    • Хорошая теплоизолирующая способность;
    • Наносится методом «напыления» это позволяет заизолировать самые углубления и зазоры, возможно утеплять неровные поверхности;
    • Не нуждается в пароизоляции (она впитывает влагу и отдает, без ухудшения теплоизолирующих свойств, и влага не попадает на другие части конструкций).

    Примечание: насчет "не нуждается в пароизоляции",- это не совсем так. Так заявляет производитель, но в жизни всё зависит от конструкции утепления. Например, в стене каркасного дома пароизоляция обязательна. Так что, лучше задавайте вопросы по конкретной конструкции, и нужно будет решать, какие слои там нужны.

    Недостатки:

    • Все-таки это материал в основном из древисины, горючий материал;
    • Более трудоемкая в укладке;
    • Низкая прочность на сжатие (не подходит для «плавающих» полов).

    Древесноволокнистые(ДВП) и древесностружечные плиты (ДСП)


    Листы ДСП и ДВП

    При их производстве в основном используют древесные отходы, которые пропитывают синтетическими смолами или маслами, после чего их термически обрабатывают.

    Существуют следующие виды ДВП: твердые, полутвердые, сверхтвердые, изоляционные, изоляционно-отделочные и мягкие.

    Мягкие и используют как теплоизоляцию. Применяют для облицовки каркасных перегородок, стен и потолков зданий, как подкладочный материал под паркет. Они применяется для временных сооружений.

    • Плотность - 250 кг/м3;
    • Предел прочности при изгибе МПа - не менее 1,2;
    • Водопоглощение за 2 часа, % - не более 30;
    • Теплопроводность - Вт/м°C - не более 0,07;
    • Древесностружечные плиты(ДСП);
    • Плотность - 250 кг/м3;
    • Предел прочности при изгибе МПа - не менее 5;
    • Водопоглощение за 2 часа, % - не более 80;
    • Теплопроводность - Вт/м°C - не более 0,058;
    • Цены около 50 грн за м.кв.

    Достоинства: применение плит ускоряет и удешевляет строительство. Дешевые.

    Недостатки: Их нужно защищать от увлажнения и грызунов, насекомых, микроорганизмов. Горят.

    Пробковая теплоизоляция


    Теплоизоляция из пробки

    Производят из коры пробкового дуба. Отличительные черты - материал экологичный, легкий, прочный на сжатие и изгиб, не поддается усадке и гниению. Материал легко режется (удобно работать с ним). Пробка химически инертна и долговечна (до 50 лет и более). Существуют: черный (чистый) и агломерат (агломерат - спекшиеся гранулы) - производится из пробковых гранул, скрепленных между собой суберином (натуральной смолой, также входящей в состав пробки) . При производстве агломерата не применяют синтетических веществ и материалов.

    Белый агломерат агломерат производится из измельченной пробковой коры, которую прессуют при высокой температуре. В качестве связующего вещества здесь может выступать органический клей, смолы или желатин.

    Материалы из пробки не горят, а только тлеют (при наличии источника открытого огня). Поэтому их обрабатывают составами, чтобы они были негорючими. При тлении пробка не выделяет вредных веществ.

    В качестве теплоизоляции в основном применяют плиты толщиной 25-50 мм. Температура применения не выше 120°С.

    Таблица 6. Характеристика пробкового теплоизоляционного материала

    Цена - черный агломерат толщина 30 мм - 140 грн м2;

    Цена - белый агломерат толщина 30 мм - 70 грн м2.

    Полимерная теплоизоляция (Пенопласт)

    Так называют не один материал, а целое семейство теплоизоляции. Кратко хочу сказать, что они бывают жесткими, полужесткими и эластичными, также деляться они на:

    Термопластичные, размягчающиеся при повторных нагреваниях:

    • пенополистиролы (ПС);
    • пенополивинилхлориды (ПВХ).

    Термонепластичные, отвердевающие при первом цикле нагревания и не размягчающиеся при повторных нагреваниях:

    • пенополиуретаны (ПУ);
    • материалы на основе фенольно-формальдегидных (ФФ);
    • эпоксидных (Э) и кремнийорганических (К) смол.

    Полистирольные пенопласты


    Полистирольный пенопласт

    Существует два метода производства - беспрессовый и прессовый. Внешне практически ничем не отличаются. Структура материала - это маленькие, скрепленные между собой шарики. Материал, произведенный прессовым способом более распространен. Обозначается он как ПС. Беспрессовый обозначается как ПСБ.

    Достоинства:

    • Прочный;
    • Высокие теплоизолирующие свойства;
    • Низкое водопоглощение;
    • Недорогой;
    • Удобен в работе;
    • Практически не имеет нижней тепературной границы применения (поэтому подходит для холодильников).

    Недостатки:

    • Все таки влага проникает в материал, при замораживании, вода разрушает его структуру;
    • Горючий;
    • Подвержены деструкции от солнца (желтеют и распадаются);
    • Не «дышит».

    Пенополиуретан

    Пенополиуретан получают при реакции двух жидких компонентов (изоционата и полиола), - в результате которой образуются микрокапсулы, заполненные воздухом. Если ингредиенты (изоционат и полиол) смешиваются воздухом, то образуется мелкодисперсная аэрозоль, которая наносится на поверхность. Этот процесс называется напыление пенополиуретана.

    Достоинства:

    • Возможность утеплять неровные поверхности;
    • Нет стыков (сплошная изоляция);
    • Экономит время монтажа;
    • Широкий диапазоне температур применения (от -250°С до +180°С);
    • Материал биологически нейтрален, устойчив к микроорганизмам, плесени, гниению;
    • Высокоэластичный материал.

    Недостатки:

    Экструдированный пенополистирол


    ЭППС

    Свое название получил из за метода, которым его производят (экструзия). Имеет прочную, цельную микроструктуру, представляющую собой закрытые ячейки, заполненных газом (воздухом). Ячейки непроницаемы, потому что, в отличие от пенопласта, не имеют микропор, следовательно, проникновение газа и воды из одной ячейки в другую невозможно.

    Достоинства:

    • Прочнее пенопласта;
    • Самый низкий показатель водопоглощения;
    • Долговечность, не разрушается под действием солнца, атмосферных осадков;
    • Низкая теплопроводность;
    • Инертность (не вступает в реакцию с большинством веществ);
    • Нетоксичный.

    Недостатки:

    • Горючий;
    • Не «дышит».

    Таблица 7. Характеристика экструдированного пенополистирола различной толщины

    Вспененный каучук

    Таблица 8. Характеристика вспененного каучука

    Техническая изоляция на основе каучука (эластомера), проще резины. Производят в виде трубок и листов.

    Вспененный полиэтилен


    Вспененный полиэтилен

    Техническая изоляция на основе полиэтилена. Производят также в виде трубок и листов. Также как техническая изоляция применяется базальтовая вата.

    Анализ основных особенностей каучука, полиэтилена и минеральной ваты

    Таблица 9. Сравнительная таблица характеристик теплоизоляционных материалов

    Отражающая теплоизоляция


    Отражающая теплоизоляция

    Изготавливается из вспененного полиэтилена и алюминиевой фольги.

    Применяется для:

    • жилых, промышленных зданий;
    • бань и саун;
    • холодильных камер;
    • изоляция технологического оборудования в промышленности;
    • изоляция трубопроводов системы отопления, водоснабжения, вентиляции и кондиционирования;
    • для транспорта (автомобили, и др.);
    • дополнение к основному утеплению.

    Таблица 10. Технические характеристики отражающей теплоизоляции

    Отражающий эффект излучающей энергии, %
    Рабочая температура, ºС -60..+100
    Сопротивление теплопередаче, м 2 ·ºС/Вт 1,2
    Водопоглащение, % 0,6 - 3,5
    Удельная теплоемкость, кДж/кг·ºС 1,95 - 2
    Массовое отношение влаги в материале, % 2

    Динамический модуль упругости (под нагрузкой 2-5 кПа), МПа

    0,26 - 0,77
    Относительное сжатие (под нагрузкой 2-5 кПа) 0,09 - 0,2
    Коэффициент теплопроводности, Вт/м 2 ·ºС 0,037-0,039
    Звукопоглащение, дБ(А) 32
    Предел прочности при сжатии, МПа 0,035
    Удельный вес, кг/м 3 44±10

    Коэффициент паропроницаемости, мг/мчПа

    0,0011

    Коэффициент теплоусвоения (при периоде 24 ч), Вт/м·ºС

    0,44 - 0,48

    Достоинства:

    • Отличные теплоизоляционные свойства, за счет отражения лучистой энергии повышает тепловое сопротивление конструкции, без увеличения ее объёма.
    • Отличная пароизоляция.
    • Снижение структурного шума.
    • Стойкость к корозии, воздействию УФ-излучения, масло- бензо- стоек, не подвержен гниению.
    • Долговечность материала до 100 лет при сохранении своих свойств.
    • Удобство монтажа.

    Недостатки:

    • Работает только при наличии воздушной прослойки, важен правильный монтаж.
    • Лучше теплоизолирует в жаркую погоду, чем в холодную (поэтому широко распространена в жарких странах).
    • Не всегда есть нужная толщина изоляции, складывать толщину из 2х слоев экономически не эффективно, выгоднее скомбинировать с ватой.
    • Стоимость 10-20 грн м2.

    Выводы

    В этой статья я перечислила самые популярные материалы на сегодняшний день. Есть много материалов, которые уже устарели. Постоянно появляются новые технологии и материалы. Как видно, выбор их большой, и это не случайно. Нет плохих или хороших материалов. Каждый материал хорош по своему, и выбор его зависит от:

    • доступности материала;
    • условий, при которых будет осуществляться монтаж;
    • цены (сколько Вы готовы потратить на утепление);
    • скорости монтажа (насколько Вам срочно нужно сделать работы);
    • есть ли у Вас бригада, которая может произвести качественно работы и т.п.

    Внимание: Цены актуальны для Украины и на 2009 год.

    Loading...Loading...